Big Data. Buzzword, Mythos & Realität. Worum geht es...? K. Talk im Park, Erlangen,

Größe: px
Ab Seite anzeigen:

Download "Big Data. Buzzword, Mythos & Realität. Worum geht es...? 24.07.15 K. Talk im Park, Erlangen, 21.07.2015"

Transkript

1 Big Data Buzzword, Mythos & Realität Talk im Park Erlangen-Tennenlohe, den Worum geht es...? (c) Daniela & Christian Alexande Graf, Qualitätssicherung & Statistik 1

2 Big Data 1997 Visualization provides an interesting challenge for computer systems: data sets are generally quite large, taxing the capacities of main memory, local disk, and even remote disk. We call this the problem of big data. [Michael Cox and David Ellsworth: Application-Controlled Demand Paging for Out-of-Core Visualization, Report NAS , July 1997] Big Data 2001 and 2012 Volume Doug Laney 2001: 3D Data Management Controlling Data Volume, Velocity & Variety als Schlüsseltechnologie für e-commerce Variety Big data is data that exceeds the processing capacity of conventional database systems. The data is too big, moves too fast, or doesn t fit the structures of your database architectures. [Edd Dumbill, January 11, 2012] Velocity 2

3 Big Data Challenge Classification Volume [Byte] Variety Months Days Hours Secs Real Time Velocity Big Data Volumes Volume [Byte] gogol Googles vision 51,2 exabyte Monthly IP traffic 2013 [Cis14] Variety <150 GB: Wikipedia Database (estimation) [https://stats.wikimedia.org/en/tablesdatabasesize.htm] and [http://en.wikipedia.org/wiki/wikipedia_talk: Size_of_Wikipedia#size_in_GB] ~ 110 kb Storage capacity 5.25 inch floppy 10 3 ~ size of a book page Months Days Hours Secs Real Time Velocity 3

4 Big Data Velocities Volume [Byte] Mietspiegel, Arbeitslosenstatistik,... Projektfortschritte, Wochenergebnisse (Handel), Variety Wettervorhersage, Suchanfragen, Diagnostik, (c) Christian Alexande Graf, Qualitätssicherung &... Statistik Ungepufferte Datenströme, Fahrzeugsteuerung, Online Börsenhandel,... Velocity Months Days Hours Secs Real Time Big Data Variety Volume [Byte] Variety Muster-Erkennung, Exploration,... Data Warehouse, Map Reduce 10 3 No SQL Datenbanken, JSON, Suchbäume Geordnete Tabellen, Klassische SQL Datenbank Months Days Hours Secs Real Time Velocity 4

5 Die Big Data Idee: Datenschätze heben Der Big Data Methoden Katalog Statistik Information retrieval Algorithmen 5

6 Technologische Ebene: Apache Hadoop Map Reduce Jobtracker Tasks Tasks Tasks Name-nodes Metadaten HDFS (Hadoop distributed file system) Abfrage replication Tasks Datanodes Datanodes Datanodes Datanodes Social Media Analysis Typische Fragestellungen: Ruf eines Produkts Aktuelle Diskussionen Trends Typische Ziele: Entwurf gezielter Werbekampagnen Identifikation von Trendsettern für gezielte Angebote Beispiele Bing: Verwendung von Bayesian Belief Networks [Quelle: https://blogs.bing.com/blog/2015/03/15/leveraging-search-algorithms-for-bing-predicts/] IBM Big Insights Statistische Methoden, Hadoop und Map Reduce 6

7 Google Grippe-Trends Gesamt-Fallzahl überschätzt Google Grippe-Trends - Schätzungen Daten zu Deutschland vom European Influenza Surveillance Network Quellen: [1] Google Grippe-Trends (http://www.google.org/flutrends) am [2] Nature Vol. 457, 19 February 2009, doi: /nature07634 Big Data New Kids on the Block r 7

8 Industrie 4.0 & Internet of Things (IoT) Alte Welt Kommunikation erfolgt über Bussysteme und ist damit über die Spezifikation des Busses eingeschränkt Intelligenz steckt in zentralen Steuerkomponenten des Systems Schnittstellen und Treiber müssen bewusst implementiert werden Beispiele zu Ansätzen Smart Grids c t Meterix Industrie 4.0 Intelligente Bauteile, die abhängig vom Kontext in dem sie gesetzt werden, ihre Aufgabe kennen Kommunikation erfolgt über das Internet Bauteile sind smart benötigt: Offene Standards vgl. https://openbit.eu/projekte/iot-industrie-4-0/ Internet of Things (IoT) Geräte sind mit einer digitalen Identität ausgestattet Geräte ermitteln Daten und können über das Internet mit Ihrer Umgebung interagieren Bauteile können sich selber nachbestellen und Produktionsprozesse beeinflussen Geschäftsmodelle Anbieten von Diensten wie Quantified Self Mass Customization Quellen https://openbit.eu/projekte/iotindustrie-4-0/ James P. Hogan The two Faces of Tomorrow, 1979 (dtsch.: Der Computersatellit ) 8

9 Ausblick Rechtliche & gesellschaftliche Aspekte Tracking & Fingerprinting BDSG, EU-Recht: EU Richtlinie 95/46/EC Tracking mit Cookies: Ein Werbeanbieter platziert ein eindeutig identifizierbares Cookie auf dem Rechner des Anwenders Bei jedem Besuch einer anderen Webseite kann dieses Cookie mit dem Rechner des Benutzers vielleicht sogar seinem Account in Verbindung gebracht werden Fingerprinting anhand von JavaScript-Abfragen Browsereinstellungen, Betriebssystem & Plugins Rechner-individuelle Farbeigenschaften Vorhandene Schriftarten Uber s Rides of Glory Maps 9

10 Werbe-Interessen im Quantified Self Die richtigen Laufschuhe Angebot zur rechten Zeit bevor die alten Schuhe kaputt sind Preise passend zum Wohnort Angebote von Läden an denen man oft vorbei läuft. [Quelle: Symantec How safe is your quantified self?] Weitere Quellen [Cis14] Cisco Visual Networking Index: Forecast and Methodology, , retrieved on March 8, 2015 [Win1] Big Data and the History of Information Storage, retrieved on March 8,

Gegenwart und Zukunft

Gegenwart und Zukunft Gegenwart und Zukunft von Big Data Dieter Kranzlmüller Munich Network Management Team Ludwig Maximilians Universität München (LMU) & Leibniz Rechenzentrum (LRZ) der Bayerischen Akademie der Wissenschaften

Mehr

Big Data Das neue Versprechen der Allwissenheit

Big Data Das neue Versprechen der Allwissenheit Big Data Das neue Versprechen der Allwissenheit Dieter Kranzlmüller Munich Network Management Team Ludwig Maximilians Universität München (LMU) & Leibniz Rechenzentrum (LRZ) der Bayerischen Akademie der

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Algorithms for graph visualization

Algorithms for graph visualization Algorithms for graph visualization Project - Orthogonal Grid Layout with Small Area W INTER SEMESTER 2013/2014 Martin No llenburg KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Datenspuren. Doris Aschenbrenner, Joachim Baumeister, Aleksander Paravac. Nerd2Nerd e.v. cms@nerd2nerd.org http://www.nerd2nerd.

Datenspuren. Doris Aschenbrenner, Joachim Baumeister, Aleksander Paravac. Nerd2Nerd e.v. cms@nerd2nerd.org http://www.nerd2nerd. Überwachung Metadaten Doris Aschenbrenner, Joachim Baumeister, Aleksander Paravac Nerd2Nerd e.v. cms@nerd2nerd.org http://www.nerd2nerd.org Übersicht Überwachung Metadaten 1 Überwachung 2 HTTP-Request

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Wird BIG DATA die Welt verändern?

Wird BIG DATA die Welt verändern? Wird BIG DATA die Welt verändern? Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Big Data Entmythisierung von Big Data. Was man über Big Data wissen sollte. Wie

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft BIG DATA: EXPECT THE UNEXPECTED T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft Big Data Ein Wort wie eine Grippeepidemie Quelle: Google Trends Unternehmen werden mit

Mehr

Privacy-preserving Ubiquitous Social Mining via Modular and Compositional Virtual Sensors

Privacy-preserving Ubiquitous Social Mining via Modular and Compositional Virtual Sensors Privacy-preserving Ubiquitous Social Mining via Modular and Compositional s Evangelos Pournaras, Iza Moise, Dirk Helbing (Anpassung im Folienmaster: Menü «Ansicht» à «Folienmaster») ((Vorname Nachname))

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Industrie 4.0. Potentiale für BI-/DWH-Lösungen und Big-Data-Ansätze

Industrie 4.0. Potentiale für BI-/DWH-Lösungen und Big-Data-Ansätze Industrie 4.0 Potentiale für BI-/DWH-Lösungen und Big-Data-Ansätze Prof. Dr. Hans-Georg Kemper Keplerstr. 17 70174 Stuttgart Telefon: +49 (711) 685-83194 Telefax: +49 (711) 685-83197 E-Mail: kemper@wi.uni-stuttgart.de

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de Big Data in a Nutshell Dr. Olaf Flebbe of ät oflebbe.de Zu mir Bigdata Projekt, benutzt Apache Bigtop Linux seit Anfang vor Minix/ATARI Linuxtag 2001? Promoviert in Computational Physics in Tü Seit Jan

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Bildverarbeitung Das Auge von Industrie 4.0. Joachim Hachmeister Chefredakteur inspect B2B

Bildverarbeitung Das Auge von Industrie 4.0. Joachim Hachmeister Chefredakteur inspect B2B Bildverarbeitung Das Auge von Industrie 4.0 Joachim Hachmeister Chefredakteur inspect B2B Industrie 4.0 schon wieder!? Industrie 4.0 ist (k)ein Schlagwort. Es bezeichnet die vierte industrielle Revolution.

Mehr

Sozio- Technische Systeme

Sozio- Technische Systeme Soziotechnische Informationssysteme 7. Skalierbarkeit 2013 757 Millionen melden sich täglich an (12/2013) 802 DAUs laut FB (1 Quartal 2014) 1.23 Milliarden Nutzer im Monat (12/2013) 556 Millionen täglich

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

BIG DATA Impulse für ein neues Denken!

BIG DATA Impulse für ein neues Denken! BIG DATA Impulse für ein neues Denken! Wien, Januar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust The Age of Analytics In the Age of Analytics, as products and services become

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

Heutige und künftige Struktur der Internetindustrie in Deutschland und Europa

Heutige und künftige Struktur der Internetindustrie in Deutschland und Europa Heutige und künftige Struktur der Internetindustrie in Deutschland und Europa Vortrag von Dr. Karl-Heinz Neumann auf der BMBF Konferenz Zukünftiges Internet Berlin, 5.7. 6.7.2011 0 Inhalt 1. Die Internetindustrie

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Symbio system requirements. Version 5.1

Symbio system requirements. Version 5.1 Symbio system requirements Version 5.1 From: January 2016 2016 Ploetz + Zeller GmbH Symbio system requirements 2 Content 1 Symbio Web... 3 1.1 Overview... 3 1.1.1 Single server installation... 3 1.1.2

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr

Unternehmen-IT sicher in der Public Cloud

Unternehmen-IT sicher in der Public Cloud Unternehmen-IT sicher in der Public Cloud Safely doing your private business in public David Treanor Team Lead Infrastructure Microsoft Certified Systems Engineer (MCSE) Microsoft Certified Systems Administrator

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives. Visuelle Exploration Digitaler Bibliothken

Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives. Visuelle Exploration Digitaler Bibliothken Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives Visuelle Exploration Digitaler Bibliothken Prof. Dr. am Beispiel des Projektes MedioVis Harald.Reiterer@uni-konstanz.de Kurzvorstellung

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Hadoop I/O. Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen. 14.02.2012 Prof. Dr. Christian Herta 1/29

Hadoop I/O. Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen. 14.02.2012 Prof. Dr. Christian Herta 1/29 Hadoop I/O Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen 14.02.2012 Prof. Dr. Christian Herta 1/29 Data I/O und Hadoop Allgemeine Techniken Data I/O Datenintegrität Kompression

Mehr

Internet of things. Copyright 2016 FUJITSU

Internet of things. Copyright 2016 FUJITSU Internet of things 0 Fujitsu World Tour 2016 Human Centric Innovation in Action Wie das Internet der Dinge den Handel verändert Ralf Schienke Leitung Vertrieb Handel Deutschland 1 2X Cost of SENSORS Past

Mehr

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI Hanau, 25.02.2015 1 Titel der Präsentation, Name, Abteilung, Ort, xx. Monat 2014 Der Aufbau der Group BI Plattform

Mehr

Wenn das Netzwerk mitdenkt

Wenn das Netzwerk mitdenkt Peter Wippermann, Gründer Trendbüro Professor für Kommunikationsdesign an der Folkwang Universität, Essen Wenn das Netzwerk mitdenkt Die Zukunft der personalisierten Dienste 9. Europäischer Trendtag Gottlieb

Mehr

Von Big zu Smart - Wie Daten in Wirtschaft und Gesellschaft zu Innovationen führen

Von Big zu Smart - Wie Daten in Wirtschaft und Gesellschaft zu Innovationen führen Von Big zu Smart - Wie Daten in Wirtschaft und Gesellschaft zu Innovationen führen 27. März 2014 TUM School of Management Technische Universität München W3-Professorin Lehrstuhl für Strategie und Organisation

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

mitp Professional Rethink Big Data Volume, Velocity, Variety von Cornel Brücher 1. Auflage

mitp Professional Rethink Big Data Volume, Velocity, Variety von Cornel Brücher 1. Auflage mitp Professional Rethink Big Data Volume, Velocity, Variety von Cornel Brücher 1. Auflage Rethink Big Data Brücher schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische Gliederung:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik Das komplette Material finden Sie hier: School-Scout.de Pronouns I Let s talk about

Mehr

Microsoft Azure Fundamentals MOC 10979

Microsoft Azure Fundamentals MOC 10979 Microsoft Azure Fundamentals MOC 10979 In dem Kurs Microsoft Azure Fundamentals (MOC 10979) erhalten Sie praktische Anleitungen und Praxiserfahrung in der Implementierung von Microsoft Azure. Ihnen werden

Mehr

Web-Marketing und Social Media

Web-Marketing und Social Media Web-Marketing und Social Media Trends & Hypes Stephan Römer 42DIGITAL GmbH Web-Marketing und Social - stephan.roemer@42digital.de - Berlin, 05/2013 - Seite 1 K u r z v i t a Studierter Medieninformatiker

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Industrie 4.0 22.07.2014

Industrie 4.0 22.07.2014 Industrie 4.0 Georg Weissmüller 22.07.2014 Senior Consultant Fertigungsindustrie Agenda Überblick Industrie 4.0/Anwendungsfälle Intelligenter Service Augmented Reality Diskussion 2014 SAP AG or an SAP

Mehr

Large Scale Data Management

Large Scale Data Management Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype

Mehr

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part XI) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Mobile Backend in der

Mobile Backend in der Mobile Backend in der Cloud Azure Mobile Services / Websites / Active Directory / Kontext Auth Back-Office Mobile Users Push Data Website DevOps Social Networks Logic Others TFS online Windows Azure Mobile

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

Prozess- und Datenmanagement Kein Prozess ohne Daten

Prozess- und Datenmanagement Kein Prozess ohne Daten Prozess- und Datenmanagement Kein Prozess ohne Daten Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Prozess- und Datenmanagement Erfolgreiche Unternehmen sind Prozessorientiert.

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Soziale Netzwerke im Unternehmen Aktuelle Trends und Entwicklungen. Dr. Raphael Volz Arbeitskreis Wissensmanagement FZI, Karlsruhe 13.11.

Soziale Netzwerke im Unternehmen Aktuelle Trends und Entwicklungen. Dr. Raphael Volz Arbeitskreis Wissensmanagement FZI, Karlsruhe 13.11. Soziale Netzwerke im Unternehmen Aktuelle Trends und Entwicklungen Dr. Raphael Volz Arbeitskreis Wissensmanagement FZI, Karlsruhe 13.11.2008 Wir begleiten Sie von der Idee zum fertigen Produkt Integration

Mehr

Big Data Projekte richtig managen!

Big Data Projekte richtig managen! Big Data Projekte richtig managen! Stuttgart, Oktober 2014 Praktische Herausforderungen eines Big Data Projektes Definition: Was ist Big Data? Big data is a collection of data sets so large and comple

Mehr

Big Data Herausforderungen für Rechenzentren

Big Data Herausforderungen für Rechenzentren FINANCIAL INSTITUTIONS ENERGY INFRASTRUCTURE, MINING AND COMMODITIES TRANSPORT TECHNOLOGY AND INNOVATION PHARMACEUTICALS AND LIFE SCIENCES Big Data Herausforderungen für Rechenzentren RA Dr. Flemming Moos

Mehr

!"#$"%&'()*$+()',!-+.'/',

!#$%&'()*$+()',!-+.'/', Soziotechnische Informationssysteme 5. Facebook, Google+ u.ä. Inhalte Historisches Relevanz Relevante Technologien Anwendungsarchitekturen 4(5,12316,7'.'0,!.80/6,9*$:'0+$.;.,&0$'0, 3, Historisches Facebook

Mehr

GridMate The Grid Matlab Extension

GridMate The Grid Matlab Extension GridMate The Grid Matlab Extension Forschungszentrum Karlsruhe, Institute for Data Processing and Electronics T. Jejkal, R. Stotzka, M. Sutter, H. Gemmeke 1 What is the Motivation? Graphical development

Mehr

SARA 1. Project Meeting

SARA 1. Project Meeting SARA 1. Project Meeting Energy Concepts, BMS and Monitoring Integration of Simulation Assisted Control Systems for Innovative Energy Devices Prof. Dr. Ursula Eicker Dr. Jürgen Schumacher Dirk Pietruschka,

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Complex Hosting. Whitepaper. Autor.: Monika Olschewski. Version: 1.0 Erstellt am: 14.07.2010. ADACOR Hosting GmbH

Complex Hosting. Whitepaper. Autor.: Monika Olschewski. Version: 1.0 Erstellt am: 14.07.2010. ADACOR Hosting GmbH Complex Hosting Autor.: Monika Olschewski Whitepaper Version: 1.0 Erstellt am: 14.07.2010 ADACOR Hosting GmbH Kaiserleistrasse 51 63067 Offenbach am Main info@adacor.com www.adacor.com Complex Hosting

Mehr

EXASOL Anwendertreffen 2012

EXASOL Anwendertreffen 2012 EXASOL Anwendertreffen 2012 EXAPowerlytics Feature-Architektur EXAPowerlytics In-Database Analytics Map / Reduce Algorithmen Skalare Fkt. Aggregats Fkt. Analytische Fkt. Hadoop Anbindung R LUA Python 2

Mehr

Standardsoftware. Prozessarchitektur. Prof. Dr. Bernhard Schiefer 3-1

Standardsoftware. Prozessarchitektur. Prof. Dr. Bernhard Schiefer 3-1 Standardsoftware Prozessarchitektur Prof. Dr. Bernhard Schiefer 3-1 Arbeitsteilung der Prozesse "SAP Services" Message Dialog Verbuchung V M D A B Batch 12 11 1 10 2 9 3 8 4 7 6 5 B SAP-Dispatcher Spool

Mehr

Wie Amazon mit Hilfe von Technologie und Daten erfolgreich ist Startup Firmen in Deutschland und weltweit haben Agilität, Innovation und globale

Wie Amazon mit Hilfe von Technologie und Daten erfolgreich ist Startup Firmen in Deutschland und weltweit haben Agilität, Innovation und globale Wie Amazon mit Hilfe von Technologie und Daten erfolgreich ist Startup Firmen in Deutschland und weltweit haben Agilität, Innovation und globale Reichweite in ihrer DNA. Was sind ihre Erfolgskriterien,

Mehr

Abschluss Einblick und Ausblick

Abschluss Einblick und Ausblick Abschluss Einblick und Ausblick Prof. Dr. T. Kudraß 1 Benutzer Komponenten eines DBMS (Überblick) I/O-Prozessor Output-Generierung Parser für selbst. oder eingebettete Kommandos Precompiler Autorisierungs-Kontrolle

Mehr

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 2.800.000.000.000.000.000.000 Bytes Daten im Jahr 2012* * Wenn jedes Byte einem Buchstaben entspricht und wir 1000 Buchstaben auf

Mehr

Cloud Computing. IM-Briefing 3.12.2009

Cloud Computing. IM-Briefing 3.12.2009 Cloud Computing IM-Briefing 3.12.2009 Cloud Computing IM-Breefing 3.12.2009 Fragestellung Was ist eine Cloud Vergangenheit, Gegenwart Motivation - Treiber Technische Ausprägungen Anwendungsfälle Abhängigkeit

Mehr

Magento goes into the cloud Cloud Computing für Magento. Referent: Boris Lokschin, CEO

Magento goes into the cloud Cloud Computing für Magento. Referent: Boris Lokschin, CEO Magento goes into the cloud Cloud Computing für Magento Referent: Boris Lokschin, CEO Agenda Über symmetrics Unsere Schwerpunkte Cloud Computing Hype oder Realität? Warum Cloud Computing? Warum Cloud für

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Big Data. Hype oder Chance? Sebastian Kraubs

Big Data. Hype oder Chance? Sebastian Kraubs Big Data Hype oder Chance? Sebastian Kraubs Heute reden alle über Big Data Quellen: http://blogs.sybase.com/sybaseiq/2011/09/big-data-big-opportunity/ und McKinsey Studie 2011 Anwendungen Daten Technologien

Mehr

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 b Wien 08. Juni 2015 Stefanie Lindstaedt, b Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center

Mehr

Big & Smart Data. bernard.bekavac@htwchur.ch

Big & Smart Data. bernard.bekavac@htwchur.ch Big & Smart Data Prof. Dr. Bernard Bekavac Schweizerisches Institut für Informationswissenschaft SII Studienleiter Bachelor of Science in Information Science bernard.bekavac@htwchur.ch Quiz An welchem

Mehr

Oracle Database 10g Die RAC Evolution

Oracle Database 10g Die RAC Evolution Oracle Database 10g Die RAC Evolution Markus Michalewicz BU Database Technologies ORACLE Deutschland GmbH 2 Page 1 www.decus.de 1 RAC-Revolution, RAC-Evolution & Computing Oracle8i mit OPS Oracle9i Rel.

Mehr

Der Cloud-Dienst Windows Azure

Der Cloud-Dienst Windows Azure Der Cloud-Dienst Windows Azure Master-Seminar Cloud Computing Wintersemester 2013/2014 Sven Friedrichs 07.02.2014 Sven Friedrichs Der Cloud-Dienst Windows Azure 2 Gliederung Einleitung Aufbau und Angebot

Mehr

Azure Machine Learning

Azure Machine Learning Azure Machine Learning Alexander Wechsler Wechsler Consulting GmbH & Co. KG Was ist Machine Learning? Technologie zur Vorhersage Ermittlung von Wahrscheinlichkeiten mit Hilfe von Mustern in großen Datenmengen

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Neue Ansätze der Softwarequalitätssicherung

Neue Ansätze der Softwarequalitätssicherung Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik

Mehr

Big Data & Big Business

Big Data & Big Business Big Data & Big Business Wolfgang Nimführ Big Data & DWH Community Leader, Information Agenda Executive Consultant IBM Software Group Europe Big Data ein Hype? Searches for "big data" on Gartner's website

Mehr

Was ist Big Data? Versuch einer Positionsbestimmung. Wolfgang Marquardt

Was ist Big Data? Versuch einer Positionsbestimmung. Wolfgang Marquardt Was ist Big Data? Versuch einer Positionsbestimmung Wolfgang Marquardt Vorstandsvorsitzender des Forschungszentrum Jülich 02.06.2015 Jahrestagung des deutschen Ethikrates Ganz sicher auch ein Hype hohe

Mehr

Vertriebssteuerung & Kundenmanagement bei Finanzinstituten. 1. Dezember 2010, Frankfurt am Main

Vertriebssteuerung & Kundenmanagement bei Finanzinstituten. 1. Dezember 2010, Frankfurt am Main Vertriebssteuerung & Kundenmanagement bei Finanzinstituten 1. Dezember 2010, Frankfurt am Main Erweitern Sie Ihre Analyse auch um unstrukturierte Daten: mehr Einblicke, bessere Entscheidungen! Unsere Agenda

Mehr

Efficient Design Space Exploration for Embedded Systems

Efficient Design Space Exploration for Embedded Systems Diss. ETH No. 16589 Efficient Design Space Exploration for Embedded Systems A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Sciences presented by

Mehr

Hadoop. Simon Prewo. Simon Prewo

Hadoop. Simon Prewo. Simon Prewo Hadoop Simon Prewo Simon Prewo 1 Warum Hadoop? SQL: DB2, Oracle Hadoop? Innerhalb der letzten zwei Jahre hat sich die Datenmenge ca. verzehnfacht Die Klassiker wie DB2, Oracle usw. sind anders konzeptioniert

Mehr

Big Data und Oracle bringen die Logistik in Bewegung

Big Data und Oracle bringen die Logistik in Bewegung OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln

Mehr

Der Weg zum datengetriebenen Unternehmen

Der Weg zum datengetriebenen Unternehmen Der Weg zum datengetriebenen Unternehmen Big Data als Chance und Herausforderung mainit Keynote 25.9.2014 Alexander Kagoshima Alexander Kagoshima Data Scientist Big Data Trend Wachsende Daten 40.000 Quelle:

Mehr

MapReduce in der Praxis

MapReduce in der Praxis MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation

Mehr

Was ist Windows Azure? (Stand Juni 2012)

Was ist Windows Azure? (Stand Juni 2012) Was ist Windows Azure? (Stand Juni 2012) Windows Azure Microsofts Cloud Plattform zu Erstellung, Betrieb und Skalierung eigener Cloud-basierter Anwendungen Cloud Services Laufzeitumgebung, Speicher, Datenbank,

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Mit Big Data zum Touchpoint- übergreifenden Echtzeit- Kundendialog

Mit Big Data zum Touchpoint- übergreifenden Echtzeit- Kundendialog Mit Big Data zum Touchpoint- übergreifenden Echtzeit- Kundendialog Big Data im Marke

Mehr

FuturistGerd.com Die nächsten 5 Jahre in Business, Medien und Wirtschaft: Liechtenstein und die digitale Transformation.

FuturistGerd.com Die nächsten 5 Jahre in Business, Medien und Wirtschaft: Liechtenstein und die digitale Transformation. FuturistGerd.com Die nächsten 5 Jahre in Business, Medien und Wirtschaft: Liechtenstein und die digitale Transformation @gleonhard Wenn wir die Zukunft besser verstehen - Vorausblick entwickeln - können

Mehr

Digital Economy in a Digital Society

Digital Economy in a Digital Society Digital Economy in a Digital Society Wirtschaftsforum 02.09.15 Olten 16:40-17:20 OVR B135 Eingebettetes Video, Dauer : 2'11'' Digital Economy in a Digital Society Wirtschaftsforum 02.09.15 Olten 16:40-17:20

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

BIG DATA HYPE ODER CHANCE

BIG DATA HYPE ODER CHANCE BIG DATA HYPE ODER CHANCE 1 Fuchs Dominik 16.05.2014 Fahrplan 2 Begriff Big Data Die 3 V s Fallbeispiel Google Was? Wie? Womit? Fazit & Ausblick in die Zukunft Der Begriff Big Data 3 Datenmengen, die zu

Mehr

HP ConvergedSystem Technischer Teil

HP ConvergedSystem Technischer Teil HP ConvergedSystem Technischer Teil Rechter Aussenverteidiger: Patrick Buser p.buser@smartit.ch Consultant, SmartIT Services AG Linker Aussenverteidiger: Massimo Sallustio massimo.sallustio@hp.com Senior

Mehr

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG Inhalt Globale und unternehmensspezifische Herausforderungen Von Big Data zu Smart Data Herausforderungen und Mehrwert von Smart Data 2

Mehr

SAP HANA eine Plattform für innovative Anwendungen

SAP HANA eine Plattform für innovative Anwendungen SAP HANA eine Plattform für innovative Anwendungen Top Intelligence: Big Data & SAP HANA Zürich, Frankfurt, Hamburg, München, Mülheim/R Februar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder

Mehr

What's new in NetBackup 7.0 What's new in Networker 7.6. best Open Systems Day April 2010. Unterföhring

What's new in NetBackup 7.0 What's new in Networker 7.6. best Open Systems Day April 2010. Unterföhring What's new in NetBackup 7.0 What's new in Networker 7.6 best Open Systems Day April 2010 Unterföhring Marco Kühn best Systeme GmbH marco.kuehn@best.de Agenda NetBackup 7.0 Networker 7.6 4/26/10 Seite 2

Mehr