(K)ein Platz für Experimente? Open Innovation / Open Access, 30. April, 2015

Größe: px
Ab Seite anzeigen:

Download "(K)ein Platz für Experimente? Open Innovation / Open Access, 30. April, 2015"

Transkript

1 (K)ein Platz für Experimente? Open Innovation / Open Access, 30. April, 2015 Prof. Dr. Stefanie Lindstaedt Know-Center GmbH

2 Erkenntnisgewinn durch Experimente 2

3 Design TU Graz 3

4 Learning Factory and TU Graz 4

5 Product Innovation TU Graz 5

6 Big Data Know-Center 6

7 Stärken verbinden 7

8 COMET Kompetenzzentren: Know-Center 8

9 Data-driven Business Geschäftsvorgänge, die auf der automatisierten Gewinnung, Interpretation und Verwertung großer Informations- und Datenmengen (Big Data) beruhen. Vier zentrale Schritte (1) Geeignete Daten/IT Infrastruktur (2) Demokratisiere Data innerhalb des Unternehmens (3) Ermögliche das Experimentieren mit Daten (4) Unterstütze eine Daten-getrieben Kultur 8

10 (5)Experimentiere mit Geschäftsmodellen in Business & Science 10

11 Open Science Data Value Chain? 11

12 Erkenntnisgewinn durch Experimente mit Daten 12

13 SAVE THE DATE: i-know Conference Special Track on Science 2.0 October 21-23, 2015, Graz, Austria Know-Center GmbH

14 Big Data Data unprecedented in its scale and scope in relation to a given phenomenon which allows for the generation of new knowledge. [Oxford Internet Institute, 2014] Erhöhter Erkenntnisgewinn 5

15 Big Data und Data-Driven Business enables Technology (BIG) DATA Data- Driven Business drives 15

16 Data-driven Science Forschungsprozesse, die auf der automatisierten Gewinnung, Interpretation und Verwertung großer Informations- und Datenmengen (Big Data) beruhen. Vier zentrale Schritte (1) Geeignete Daten/IT Infrastruktur (2) Demokratisiere Data über Communities hinweg (3) Ermögliche das Experimentieren mit Daten (4) Unterstütze eine Daten-getrieben Kultur 8

17 Publikationen als Big Data [Price, 1963]

18 ERMÖGLICHE DAS EXPERIMENTIEREN MIT DATEN Know-Center GmbH Research Center for Data-Driven Business and Big Data Analytics 18

19 Overview of a Research Domain based on Usage Data [Kraker, 2013]

20 Extract Facts from Research Papers Link research papers and the facts therein to LOD Extract information from PDFs Tables, figures, structure, references, named entities Integration of LOD concepts into papers 20

21 Make Facts available for Visual Analysis Query Wizard and Vis Wizard: designed for IT-laymen 21

22 UNTERSTÜTZE EINE DATEN-GETRIEBENE KULTUR Know-Center GmbH Research Center for Data-Driven Business and Big Data Analytics 22

23 42-Data 23

24 42-Data Create Data Centric Questions 24

25 42-Data Answering with Data and Insights 25

26 Open Science Data Value Chain?

27

28 Research Processes (in TEL) [Kraker & Lindstaedt, 2011]

29 Know-Center GmbH Das Zentrum 29

30 Unser Angebot Austria s hub for (Big) Data Analytics, Management and Research Data-driven Business for Austrian Industry Big Data Laboratory for Austrian Science and Industry Qualification Program for Data Analysts and Scientists Software and Services for Data Science and Open Science 3

31 Data-driven Business as a Cognitive Computing Challenge Knowledge Discovery Social Computing ANALYTICS FOCUS HUMAN FOCUS Knowledge Visualization Ubiquitous Personal Computing Cognitive Computing Systems interact naturally with humans, learn from their experiences, generate and evaluate evidence-based hypotheses 31

32 Reflektieren Sie für Ihr Unternehmen! Welche Daten werden wo generiert? (intern/extern) Was passiert mit den Daten? Wer verwendet die Daten? Was sind Probleme und Hindernisse? Welchen Wert haben die Daten? Erfolgsgeschichten? 32

33 Big Data & Data-Driven Business BEISPIELE Know-Center GmbH Research Center for Data-Driven Business and Big Data Analytics 33

34 Sensor Stream Analyse In einer Studie sowie in einem Prototyp wurden gängige Daten und Datenanalyse Werkzeuge hinsichtlich ihrer Anwendbarkeit auf große Mengen von Sensordaten (Licht, Feuchtigkeit, Temperatur) evaluiert. Unter Verwendung von Algorithmen wie Drift Detection, Regression, Event Detection und Prediction kann so zum Beispiel die Anwesenheit von Menschen im Raum sowie deren Verhalten über den Tag ermittelt werden. Dies bildet eine Grundlage für Optimierungen und Kostenreduktion in der Gebäudeautomatisierung. 34

35 Modellierung von Straßennetzen Unter der Zuhilfenahme von Big Data Technologien konnte das Volumen und die Komplexität von Straßenkartendaten aus OpenStreetMap deutlich reduziert werden. So wird das Straßennetzwerk als Graph modelliert, bei dem Kreuzungen als Knoten und Straßen als Kanten abgebildet werden. Daraus kann ein Verbindungsgraph erstellt werden, auf welchem der PageRank Algorithmus angewendet wird, um die potentielle Wichtigkeit einzelner Straßen zu berechnen. Dieser Ansatz erzielt ähnliche Ergebnisse wie andere deutlich komplexere Algorithmen. 35

36 Erkenntnisse aus Mobilfunkdaten Zwecks Datenschutz werden Mobilfunkdaten anonymisiert und mit Zufallsereignissen versehen. Solche Ereignisse sind das Senden von SMS, Anrufe oder Datenverbindungen. Unter Verwendung diverser Algorithmen, wie des am Know-Center speziell entwickelten Recursive Look-Ahead Supersonic Filter, können die Daten gefiltert werden und ermöglichen weitergehende neue Erkenntnisse. So können beispielsweise die tatsächlichen Zugabfahrtszeiten auf Korrektheit evaluiert werden. Nur so kann zum Beispiel die richtige Verwendung, Wirkung und Abrechnung öffentlicher Fördergelder sichergestellt werden. 36

37 Skalierbare Empfehlungssysteme Die wachsende Menge an Daten, Systemen und Interaktionen bedarf der Bereitstellung zielgerichteter, kontextabhängiger und relevanter Information. Hierfür werden Recommender (Empfehlungssysteme) verwendet, welche Vorschläge wie z.b. für Produkte, Texte & Dokumente, Begriffe, Experten und Personen berechnen. Die Grundlage bilden üblicherweise Benutzer-Interaktionen mit Systemen wie z.b. Klicks & Views von Produkten, Webseiten, Dateien oder sonstiger Informationen (kollaborativer Ansatz) in Kombination mit inhaltlichen Ähnlichkeiten von z.b. Produktbeschreibungen oder Kundenanfragen (inhaltsbasierter Ansatz). Diese riesige Datenmenge muss mit multiplen Algorithmen in Echtzeit kundenspezifisch verarbeitet werden. Hier bieten wir flexible, skalierbare Dienste auf Basis des eigens entwickelten Recommender Frameworks. 37

38 Big Data Analytics Recommendations Analyses Visualizations Human Intelligent Algorithms Text Uncertainity Changes Data Social Data Sensor Data Activity Traces Analytics Actionable Knowledge Linked Data Scientist in the Loop Computer Models Interfaces Representations 38

39 Industry 4.0 Smart Production & Services BEISPIELE Know-Center GmbH Research Center for Data-Driven Business and Big Data Analytics 39

40 Mobile Informationsbereitstellung MitarbeiterInnen werden durch die Verbindung von aktuellen (mobilen) Technologien mit proaktiver, kontextabhängiger und relevanter Informationsbereitstellung unterstützt. Der Trend geht ganz in Richtung No-Search. Durch das automatische Erfassen der aktuellen Arbeitsumgebung bzw. der aktuellen Aufgabe, kann die Qualität der bereitgestellten Informationen weiter erhöht werden. Die Definition guter Suchbegriffe wird erleichtert oder sogar überflüssig. Fotos, Videos oder sonstiges Fachwissen kann nicht nur schnell erstellt, sondern auch einfach geteilt und mit Orten verknüpft werden. 40

41 Sprachgesteuerte Kommissionierung Durch die Verwendung günstiger, ausgereifter und frei verfügbarer Hardware wie Smartphones können Routineaufgaben teilautomatisiert oder zumindest effektiv unterstützt werden. So kann beispielsweise die Sprachsteuerung auch offline für industrielle Zwecke wie Lagerhaltung und Kommissionierung angewandt werden. Dies verkürzt Arbeitswege, erleichtert den Alltag und ermöglicht neue Anwendungen. 41

42 Visual Analytics Der Mensch ist nach wie vor das Maß aller Dinge bei der Erfassung zusammenhängender Inhalte und visueller Auffälligkeiten. Durch die Aufbereitung riesiger textueller Inhalte und deren visuell sinnvoller Darstellung, können Auffälligkeiten, mögliche Fehlerursachen und Anomalien semi-automatisch berechnet werden und eine weitere Suche durch den Menschen erleichtert werden. 42

43 Kontext-Sensitive Informationsbereitstellung Bestehende Anlagen können mittels günstiger Sensoren intelligenter werden. Beispielsweise können ortsbasierte Informationen zu Maschinen, Arbeitsprozessen, Wartung und Richtlinien punktgenau zur Verfügung gestellt werden. Die Auswahl des Mediums kann ebenfalls entsprechend automatisch erfolgen (Tablet, Ambient Display, Lautsprecher). Weitere Anwendungsszenarien sind Fluchtwegeplanung, Raumüberwachung und vieles mehr. 43

44 Scientific Track Record: Analytics Focus Analyzing and visualizing 1.2 million news articles Indexing and Searching 150 GB of text documents Aligning articles of the two largest German Encyclopediae Extracting entities and facts from 10TB of scientific documents Event visitor modelling for 50 billion records totalling 8TB data Traffic model validation on cell phone data 600 billion records totalling 50TB Know-Center Data Infrastructure reaches 2PB storage and 1024 cores More than ten years of experience in managing, processing, analyzing data Good data scientists understand, in a deep way, that the heavy lifting of cleanup and preparation isn t something that gets in the way of solving the problem: it is the problem. (D.J. Pati, LinkedIn) Analyzing and understanding complex, heterogeneous, unstructured data Data unprecedented in its scale and scope in relation to a given phenomenon which allows for the generation of new knowledge. (Oxford Internet Institute)

45 Scientific Track Record: Human Focus Computer-supported (cooperative) working and learning Work-Integrated Learning Performer Support AVL, Knapp, M+R, Siemens Knowledge Evolution Expert Search AVL Reflective Learning Self Awareness Error Prevention Embedding IT-tools in work processes ensures timely productivity growth Research shows that there are two essential pre-conditions for IT to affect labor productivity: IT investments and managerial innovations. A lag between IT investments and organizational adjustments has meant that productivity improvements have taken a while to show up. The same preconditions that explain the impact of IT in enabling historical productivity growth currently exist for big data. (McKinsey & Company 2011) Networked SMEs (2016)

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 b Wien 08. Juni 2015 Stefanie Lindstaedt, b Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center

Mehr

Thementisch Anwendungsgebiete und

Thementisch Anwendungsgebiete und Thementisch Anwendungsgebiete und b Erfolgsgeschichten KMUs und Big Data Wien 08. Juni 2015 Hermann b Stern, Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center for Data-driven

Mehr

Visual Analytics. Seminar. [Guo, 2006] [Wong, 2006] [Keim, 2006] [Proulx, 2006] [Chang, 2007] [Kosara, 2006]

Visual Analytics. Seminar. [Guo, 2006] [Wong, 2006] [Keim, 2006] [Proulx, 2006] [Chang, 2007] [Kosara, 2006] Seminar Visual Analytics [Guo, 2006] [Keim, 2006] [Wong, 2006] [Proulx, 2006] [Chang, 2007] [Kosara, 2006] Visual Analytics - Definitions Visual analytics is the science of analytical reasoning facilitated

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D

BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D make connections share ideas be inspired BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE Wolfgang Schwab SAS D Copyright 2013, SAS Institute Inc. All rights reserved. BIG DATA: BEDROHUNG ODER CHANCE?

Mehr

Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information

Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information Iryna Gurevych Sprachtechnologie-Feuerwerk: Aktuelle Anwendungsbeispiele und Zukunftsvisionen

Mehr

Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014

Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014 Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014 Digitale Realität Die Welt verändert sich in rasantem Tempo Rom, Petersplatz, März 2013 Franziskus

Mehr

Das Knowledge Grid. Eine Architektur für verteiltes Data Mining

Das Knowledge Grid. Eine Architektur für verteiltes Data Mining Das Knowledge Grid Eine Architektur für verteiltes Data Mining 1 Gliederung 1. Motivation 2. KDD und PDKD Systeme 3. Knowledge Grid Services 4. TeraGrid Projekt 5. Das Semantic Web 2 Motivation Rapide

Mehr

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Jürgen Boiselle, Managing Partner 16. März 2015 Agenda Guten Tag, mein Name ist Teradata Wozu Analytics

Mehr

Austria Regional Kick-off

Austria Regional Kick-off Austria Regional Kick-off Andreas Dippelhofer Anwendungszentrum GmbH Oberpfaffenhofen (AZO) AZO Main Initiatives Andreas Dippelhofer 2 The Competition SPOT THE SPACE RELATION IN YOUR BUSINESS 3 Global

Mehr

Exploring the knowledge in Semi Structured Data Sets with Rich Queries

Exploring the knowledge in Semi Structured Data Sets with Rich Queries Exploring the knowledge in Semi Structured Data Sets with Rich Queries Jürgen Umbrich Sebastian Blohm Institut AIFB, Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 www.kit.ed Overview

Mehr

Wie agil kann Business Analyse sein?

Wie agil kann Business Analyse sein? Wie agil kann Business Analyse sein? Chapter Meeting Michael Leber 2012-01-24 ANECON Software Design und Beratung G.m.b.H. Alser Str. 4/Hof 1 A-1090 Wien Tel.: +43 1 409 58 90 www.anecon.com office@anecon.com

Mehr

Customer-specific software for autonomous driving and driver assistance (ADAS)

Customer-specific software for autonomous driving and driver assistance (ADAS) This press release is approved for publication. Press Release Chemnitz, February 6 th, 2014 Customer-specific software for autonomous driving and driver assistance (ADAS) With the new product line Baselabs

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 2.800.000.000.000.000.000.000 Bytes Daten im Jahr 2012* * Wenn jedes Byte einem Buchstaben entspricht und wir 1000 Buchstaben auf

Mehr

Wie Social Media die Geschäftswelt verändert. Axel Schultze President

Wie Social Media die Geschäftswelt verändert. Axel Schultze President Wie Social Media die Geschäftswelt verändert Axel Schultze President Copyright Xeequa Corp. 2008 Social Media aus der Vogelperspektive Copyright Xeequa Corp. 2008 Fast 10 Jahre Social Media - im Zeitraffer

Mehr

Large Scale Data Management

Large Scale Data Management Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype

Mehr

The purpose of computing is insight, not numbers. Richard Hamming (1915-1998)

The purpose of computing is insight, not numbers. Richard Hamming (1915-1998) + Visual Analytics The purpose of computing is insight, not numbers. Richard Hamming (1915-1998) + Aufbau n Einführung n Historie n Definition n Prozess n Verwandte Gebiete n Praktische Beispiele n IN-SPIRE

Mehr

Privacy-preserving Ubiquitous Social Mining via Modular and Compositional Virtual Sensors

Privacy-preserving Ubiquitous Social Mining via Modular and Compositional Virtual Sensors Privacy-preserving Ubiquitous Social Mining via Modular and Compositional s Evangelos Pournaras, Iza Moise, Dirk Helbing (Anpassung im Folienmaster: Menü «Ansicht» à «Folienmaster») ((Vorname Nachname))

Mehr

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena http://www.im.uni-jena.de Contents I. Learning Objectives II. III. IV. Recap

Mehr

Die Renaissance von Unified Communication in der Cloud. Daniel Jonathan Valik UC, Cloud and Collaboration

Die Renaissance von Unified Communication in der Cloud. Daniel Jonathan Valik UC, Cloud and Collaboration Die Renaissance von Unified Communication in der Cloud Daniel Jonathan Valik UC, Cloud and Collaboration AGENDA Das Program der nächsten Minuten... 1 2 3 4 Was sind die derzeitigen Megatrends? Unified

Mehr

H. Enke, Sprecher des AK Forschungsdaten der WGL

H. Enke, Sprecher des AK Forschungsdaten der WGL https://escience.aip.de/ak-forschungsdaten H. Enke, Sprecher des AK Forschungsdaten der WGL 20.01.2015 / Forschungsdaten - DataCite Workshop 1 AK Forschungsdaten der WGL 2009 gegründet - Arbeit für die

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Data Mining Approaches for Instrusion Detection Espen Jervidalo WS05/06 KI - WS05/06 - Espen Jervidalo 1 Overview Motivation Ziel IDS (Intrusion Detection System) HIDS NIDS Data

Mehr

Semantic Web. Anwendungsbereiche & Entwicklungen. http://www.know-center.at. Dr. Michael Granitzer

Semantic Web. Anwendungsbereiche & Entwicklungen. http://www.know-center.at. Dr. Michael Granitzer Semantic Web Anwendungsbereiche & Entwicklungen Dr. Michael Granitzer - gefördert durch das Kompetenzzentrenprogramm Agenda Die Vision und warum das Semantic Web Sinn macht Grundlagen: Wissensrepräsentation

Mehr

Optimizing Request for Quotation Processes at the Volkswagen Pre-Series Center

Optimizing Request for Quotation Processes at the Volkswagen Pre-Series Center Optimizing Request for Quotation Processes at the Volkswagen Pre-Series Center 28 April 2010 / Agenda 1 Pre-series center 2 Project target 3 Process description 4 Realization 5 Review 6 Forecast 28. April

Mehr

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Software AG Innovation Day 2014 Bonn, 2.7.2014 Dr. Carsten Bange, Geschäftsführer Business Application Research Center

Mehr

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds 3rd JUQUEEN Porting and Tuning Workshop Jülich, 2-4 February 2015 Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds Tobias Schruff, Roy M. Frings,

Mehr

Arbeiten 4.0. Cyber-physikalische Systeme revolutionieren unsere Arbeitswelten und Leitmärkte. Margit Noll Corporate Strategy

Arbeiten 4.0. Cyber-physikalische Systeme revolutionieren unsere Arbeitswelten und Leitmärkte. Margit Noll Corporate Strategy Arbeiten 4.0 Cyber-physikalische Systeme revolutionieren unsere Arbeitswelten und Leitmärkte Margit Noll Corporate Strategy Cyber-physische Systeme bezeichnet den Verbund informatischer, softwaretechnischer

Mehr

Angewandte Forschung zu Datenlebenszyklen in der Helmholtz-Gemeinschaft und darüber hinaus

Angewandte Forschung zu Datenlebenszyklen in der Helmholtz-Gemeinschaft und darüber hinaus Angewandte Forschung zu Datenlebenszyklen in der Helmholtz-Gemeinschaft und darüber hinaus Christopher Jung, KIT (SCC) KIT University of the State of Baden-Wuerttemberg and National Research Center of

Mehr

Industrie 4.0 Berufliche und akademische Aus- und Weiterbildung vor neuen Herausforderungen?

Industrie 4.0 Berufliche und akademische Aus- und Weiterbildung vor neuen Herausforderungen? Industrie 4.0 Berufliche und akademische Aus- und Weiterbildung vor neuen Herausforderungen? Prof. Dr. habil. Christoph Igel Universität des Saarlandes Shanghai Jiao Tong University Deutsches Forschungszentrum

Mehr

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH What is a GEVER??? Office Strategy OXBA How we used SharePoint Geschäft Verwaltung Case Management Manage Dossiers Create and Manage Activities

Mehr

Eine kurze Einführung in die Technologiegrundlage. Future Internet Technologies and Funding for Agri-Food, Logistics, Transport and Manufacturing

Eine kurze Einführung in die Technologiegrundlage. Future Internet Technologies and Funding for Agri-Food, Logistics, Transport and Manufacturing Eine kurze Einführung in die Technologiegrundlage www.finish-project.eu Future Internet Technologies and Funding for Agri-Food, Logistics, Transport and Manufacturing Was ist FIWARE? Future Internet Ware

Mehr

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft BIG DATA: EXPECT THE UNEXPECTED T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft Big Data Ein Wort wie eine Grippeepidemie Quelle: Google Trends Unternehmen werden mit

Mehr

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler Decision Support for Learners in Mash-Up Personal Learning Environments Dr. Hendrik Drachsler Personal Nowadays Environments Blog Reader More Information Providers Social Bookmarking Various Communities

Mehr

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part XI) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Introduction to the diploma and master seminar in FSS 2010. Prof. Dr. Armin Heinzl. Sven Scheibmayr

Introduction to the diploma and master seminar in FSS 2010. Prof. Dr. Armin Heinzl. Sven Scheibmayr Contemporary Aspects in Information Systems Introduction to the diploma and master seminar in FSS 2010 Chair of Business Administration and Information Systems Prof. Dr. Armin Heinzl Sven Scheibmayr Objective

Mehr

BIG DATA Impulse für ein neues Denken!

BIG DATA Impulse für ein neues Denken! BIG DATA Impulse für ein neues Denken! Wien, Januar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust The Age of Analytics In the Age of Analytics, as products and services become

Mehr

Die Zukunft des B2B. Jürgen Weiss, hybris juergen.weiss@hybris.com. 2014 SAP AG or an SAP affiliate company. All rights reserved.

Die Zukunft des B2B. Jürgen Weiss, hybris juergen.weiss@hybris.com. 2014 SAP AG or an SAP affiliate company. All rights reserved. Die Zukunft des B2B Jürgen Weiss, hybris juergen.weiss@hybris.com VIELE MÖGLICHE ZUKUNFTEN Source: Forrester Research, September 2013 Build Seamless Experiences Now Base: 28,686 US online adults (age 18+)

Mehr

Verzeichnisdienste in heterogenen Systemen

Verzeichnisdienste in heterogenen Systemen Verzeichnisdienste in heterogenen Systemen Zielsetzungen Implementierung Aufbau: Active Directory (AD) auf Basis von Windows Server 008 R mit Windows Client(s), Linux Client(s) und einem Linux Server (Dateiserver).

Mehr

Scale-Up oder Scale Out?

Scale-Up oder Scale Out? Scale-Up oder Scale Out? Ein Leben ohne Hindernisse mit dem neuen Speicher-Betriebssystem von NetApp Mathias Riediger System Engineer NetApp ein Portfolio Anbieter! EF-Series E-Series FAS 2220 FAS 2240

Mehr

The Master of Science Entrepreneurship and SME Management

The Master of Science Entrepreneurship and SME Management The Master of Science Entrepreneurship and SME Management 1 WELCOME! 2 Our Business Faculty focus on SME and Innovation. We are accredited from AQAS. Thus, our Master in SME offers a new and innovative

Mehr

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Industrie 4.0 Predictive Maintenance Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Anwendungsfälle Industrie 4.0 Digitales Objektgedächtnis Adaptive Logistik Responsive Manufacturing Intelligenter

Mehr

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Eine Betrachtung im Kontext der Ausgliederung von Chrysler Daniel Rheinbay Abstract Betriebliche Informationssysteme

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung

Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung 1 Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung Wiesbaden 06.11.2013 Ralph Giebel Business Development Mrg Public Sektor EMC Deutschland GmbH ralph.giebel@emc.com 2 Agenda 1) Herausforderungen

Mehr

Software development with continuous integration

Software development with continuous integration Software development with continuous integration (FESG/MPIfR) ettl@fs.wettzell.de (FESG) neidhardt@fs.wettzell.de 1 A critical view on scientific software Tendency to become complex and unstructured Highly

Mehr

Big Data für die Internet Sicherheit

Big Data für die Internet Sicherheit Big Data für die Internet Sicherheit Ralph Kemperdick Hans Wieser Microsoft 1 Mobile-first Data-driven Cloud-first 2 2 3 Messenger Wi nd ow s Liv e 4 5 Anwendung: Das Microsoft Cybercrime Center 6 Betrug

Mehr

Sarmadi@kntu.ac.ir P- hdoroodian@gmail.com. shafaei@kntu.ac.ir BPOKM. 1 Business Process Oriented Knowledge Management

Sarmadi@kntu.ac.ir P- hdoroodian@gmail.com. shafaei@kntu.ac.ir BPOKM. 1 Business Process Oriented Knowledge Management Sarmadi@kntu.ac.ir P- hdoroodian@gmail.com shafaei@kntu.ac.ir -. - 1 Business Process Oriented Knowledge Management 1 -..» «.. 80 2 5 EPC PC C EPC PC C C PC EPC 3 6 ; ; ; ; ; ; 7 6 8 4 Data... 9 10 5 -

Mehr

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG Inhalt Globale und unternehmensspezifische Herausforderungen Von Big Data zu Smart Data Herausforderungen und Mehrwert von Smart Data 2

Mehr

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken Support Technologies based on Bi-Modal Network Analysis H. Agenda 1. Network analysis short introduction 2. Supporting the development of virtual organizations 3. Supporting the development of compentences

Mehr

Exkursion zu Capgemini Application Services Custom Solution Development. Ankündigung für Februar 2013 Niederlassung Stuttgart

Exkursion zu Capgemini Application Services Custom Solution Development. Ankündigung für Februar 2013 Niederlassung Stuttgart Exkursion zu Capgemini Application Services Custom Solution Development Ankündigung für Februar 2013 Niederlassung Stuttgart Ein Nachmittag bei Capgemini in Stuttgart Fachvorträge und Diskussionen rund

Mehr

SOA im Zeitalter von Industrie 4.0

SOA im Zeitalter von Industrie 4.0 Neue Unterstützung von IT Prozessen Dominik Bial, Consultant OPITZ CONSULTING Deutschland GmbH Standort Essen München, 11.11.2014 OPITZ CONSULTING Deutschland GmbH 2014 Seite 1 1 Was ist IoT? OPITZ CONSULTING

Mehr

DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS

DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS Master Seminar Empirical Software Engineering Anuradha Ganapathi Rathnachalam Institut für Informatik Software & Systems Engineering Agenda Introduction

Mehr

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt Organisatorisches Datenorientierte Systemanalyse Unit1: Intro and Basics Gerhard Wohlgenannt Inhalt: Datenorientierte Systemanalyse Umfang: 5 units XX.10.2013 XX.11.2013 09:00-13:30 Uhr Room XXX Infos,

Mehr

SAS TEXT ANALYTICS EVENT

SAS TEXT ANALYTICS EVENT SAS TEXT ANALYTICS EVENT DIENSTAG, 21. APRIL 2015 AGENDA Zeit Inhalt 16:00-16:30 Registrierung & Willkommenskaffee 16:30-16:45 16:45-17:15 17:15-17:45 Begrüssung und Einleitung ins Thema Text Analytics

Mehr

Praktikum Entwicklung von Mediensystemen mit ios

Praktikum Entwicklung von Mediensystemen mit ios Praktikum Entwicklung von Mediensystemen mit ios WS 2011 Prof. Dr. Michael Rohs michael.rohs@ifi.lmu.de MHCI Lab, LMU München Today Heuristische Evaluation vorstellen Aktuellen Stand Software Prototyp

Mehr

Das Daten-Web nutzen Nutzungspotenzial der nächsten Generation des World Wide Web

Das Daten-Web nutzen Nutzungspotenzial der nächsten Generation des World Wide Web Gefördert mit Mitteln des BMWFJ, BMVIT und des Landes Salzburg Das Daten-Web nutzen Nutzungspotenzial der nächsten Generation des World Wide Web 6. SNML-Talk Montag, 17.06.2013 Stiegl-Brauwelt, Salzburg

Mehr

Ingenics Project Portal

Ingenics Project Portal Version: 00; Status: E Seite: 1/6 This document is drawn to show the functions of the project portal developed by Ingenics AG. To use the portal enter the following URL in your Browser: https://projectportal.ingenics.de

Mehr

Industrie 4.0 22.07.2014

Industrie 4.0 22.07.2014 Industrie 4.0 Georg Weissmüller 22.07.2014 Senior Consultant Fertigungsindustrie Agenda Überblick Industrie 4.0/Anwendungsfälle Intelligenter Service Augmented Reality Diskussion 2014 SAP AG or an SAP

Mehr

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Beratung Business Analytics Software Entwicklung Datenmanagement AGENDA Der Kreislauf für die Betrugserkennung

Mehr

Die Rolle von Big Data für RE & FM. Erik Jaspers, Strategy & Innovation, March 2015

Die Rolle von Big Data für RE & FM. Erik Jaspers, Strategy & Innovation, March 2015 Die Rolle von Big Data für RE & FM Erik Jaspers, Strategy & Innovation, March 2015 30-3-2015 Erik Jaspers Product Strategy & Business Innovation erik.jaspers@planonsoftware.com Mitglied des Board of Trustees

Mehr

Big Data bei unstrukturierten Daten. AW1 Vortrag Sebastian Krome

Big Data bei unstrukturierten Daten. AW1 Vortrag Sebastian Krome Big Data bei unstrukturierten Daten AW1 Vortrag Sebastian Krome Agenda Wiederholung Aspekte von Big Data Datenverarbeitungsprozess TextMining Aktuelle Paper Identification of Live News Events Using Twitter

Mehr

Skills Resource Planning

Skills Resource Planning Skills Resource Planning Data Assessment Solutions GmbH Jena, 1.6.2015 Was wir machen Software Consulting Operations Management Skills- und Ressourcen-Management Data Analytics Daten- und Prozessintegration

Mehr

Brandwatch Brunch/ Monitoring-Trends und Tipps

Brandwatch Brunch/ Monitoring-Trends und Tipps Brandwatch Brunch/ Monitoring-Trends und Tipps Susanne Ullrich Head of Marketing DACH, Brandwatch susanne@brandwatch.de @ullrichsusanne 1 #1 Aus Big Data wird Small Data 2 Recap Big data! on drivers for

Mehr

Distributed testing. Demo Video

Distributed testing. Demo Video distributed testing Das intunify Team An der Entwicklung der Testsystem-Software arbeiten wir als Team von Software-Spezialisten und Designern der soft2tec GmbH in Kooperation mit der Universität Osnabrück.

Mehr

Anforderung an Mobile Broadcast aus Sicht des Kunden

Anforderung an Mobile Broadcast aus Sicht des Kunden Anforderung an Mobile Broadcast aus Sicht des Kunden Medientage München 2006 Panel 6.8. University of St. Gallen, Switzerland Page 2 Anforderung an Mobile Broadcast aus Sicht des Kunden. Executive Summary

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

EMC² Global Financial Services

EMC² Global Financial Services EMC² Global Financial Services Partner Bootcamp 10. Juni 2011 Bad Kleinkirchheim Christian Bauer 1 EMC Global Financial Services (GFS) GFS Technology Lifecycle und Finanzierungsprogramme für unsere Partner

Mehr

WIE SIE MIT MULTI-KANALSTRATEGIEN KUNDEN-MEHRWERT SCHAFFEN

WIE SIE MIT MULTI-KANALSTRATEGIEN KUNDEN-MEHRWERT SCHAFFEN WIE SIE MIT MULTI-KANALSTRATEGIEN KUNDEN-MEHRWERT SCHAFFEN Robert Schumacher Customer Intelligence Solution Manager SAS Institute AG, Schweiz AGENDA WIE SIE MIT MULTI-KANALSTRATEGIEN KUNDEN-MEHRWERT SCHAFFEN

Mehr

Background for Hybrid Processing

Background for Hybrid Processing Background for Hybrid Processing Hans Uszkoreit Foundations of LST WS 04/05 Scope Classical Areas of Computational Linguistics: computational morphology, computational syntax computational semantics computational

Mehr

Operational Excellence with Bilfinger Advanced Services Plant management safe and efficient

Operational Excellence with Bilfinger Advanced Services Plant management safe and efficient Bilfinger GreyLogix GmbH Operational Excellence with Bilfinger Advanced Services Plant management safe and efficient Michael Kaiser ACHEMA 2015, Frankfurt am Main 15-19 June 2015 The future manufacturingplant

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

IT in AT. Informatik in Österreich

IT in AT. Informatik in Österreich IT in AT Informatik in Österreich Forschungsstandorte! 7 Universitäten! 83 Studiengänge! 16.671 StudentInnen! 1.296 AbsolventInnen Informatik ist...! männlich: 91,89% Männer im Studiengang Scientific Computing

Mehr

Wird BIG DATA die Welt verändern?

Wird BIG DATA die Welt verändern? Wird BIG DATA die Welt verändern? Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Big Data Entmythisierung von Big Data. Was man über Big Data wissen sollte. Wie

Mehr

BEDIFFERENT ACE G E R M A N Y. aras.com. Copyright 2012 Aras. All Rights Reserved.

BEDIFFERENT ACE G E R M A N Y. aras.com. Copyright 2012 Aras. All Rights Reserved. BEDIFFERENT ACE G E R M A N Y Aras Corporate ACE Germany Communities Welche Vorteile? Rolf Laudenbach Director Aras Community Slide 3 Aras Communities Public Community Projects Forums Blogs Wikis Public

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Institut für angewandte Informationstechnologie (InIT)

Institut für angewandte Informationstechnologie (InIT) School of Engineering Institut für angewandte Informationstechnologie (InIT) We ride the information wave Zürcher Fachhochschule www.init.zhaw.ch Forschung & Entwicklung Institut für angewandte Informationstechnologie

Mehr

TalkIT: Internet Communities Tiroler Zukunftsstiftung Donnerstag, 22. 4. 2010

TalkIT: Internet Communities Tiroler Zukunftsstiftung Donnerstag, 22. 4. 2010 TalkIT: Internet Communities Tiroler Zukunftsstiftung Donnerstag, 22. 4. 2010 Reinhard Bernsteiner MCiT Management, Communication & IT MCI MANAGEMENT CENTER INNSBRUCK Universitätsstraße 15 www.mci.edu

Mehr

#Big Data in #Austria

#Big Data in #Austria Mario Meir-Huber und Martin Köhler #Big Data in #Austria Big Data Herausforderungen und Potenziale 23.6.2014 Vorstellung Studie Studie #BigData in #Austria Start: 1.11.2013 30.04.2014 Projektpartner: IDC

Mehr

Querschnittstechnologien inkl. Geothermie F&E Schwerpunkte und deren Implementierungsstrategie

Querschnittstechnologien inkl. Geothermie F&E Schwerpunkte und deren Implementierungsstrategie Querschnittstechnologien inkl. Geothermie F&E Schwerpunkte und deren Implementierungsstrategie Michael Monsberger AIT Austrian Institute of Technology Themenüberblick (2 Panels) Geothermie Oberflächennahe

Mehr

Seminar für Wirtschaftsinformatiker (Master/Diplom) Sommersemester 2012

Seminar für Wirtschaftsinformatiker (Master/Diplom) Sommersemester 2012 Seminar für Wirtschaftsinformatiker (Master/Diplom) Sommersemester 2012 Lehrstuhl für Wirtschaftsinformatik, insb. Systementwicklung Julius-Maximilians-Universität Würzburg 07.02.2012 Erwerb von Kompetenzen

Mehr

Social Media als Bestandteil der Customer Journey

Social Media als Bestandteil der Customer Journey Social Media als Bestandteil der Customer Journey Gregor Wolf Geschäftsführer Experian Marketing Services Frankfurt, 19.6.2015 Experian and the marks used herein are service marks or registered trademarks

Mehr

Digitale Transformation - Ihre Innovationsroadmap

Digitale Transformation - Ihre Innovationsroadmap Digitale Transformation - Ihre Innovationsroadmap Anja Schneider Head of Big Data / HANA Enterprise Cloud Platform Solutions Group, Middle & Eastern Europe, SAP User Experience Design Thinking New Devices

Mehr

Gegenwart und Zukunft

Gegenwart und Zukunft Gegenwart und Zukunft von Big Data Dieter Kranzlmüller Munich Network Management Team Ludwig Maximilians Universität München (LMU) & Leibniz Rechenzentrum (LRZ) der Bayerischen Akademie der Wissenschaften

Mehr

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at

Mehr

Big Data Herausforderungen für Rechenzentren

Big Data Herausforderungen für Rechenzentren FINANCIAL INSTITUTIONS ENERGY INFRASTRUCTURE, MINING AND COMMODITIES TRANSPORT TECHNOLOGY AND INNOVATION PHARMACEUTICALS AND LIFE SCIENCES Big Data Herausforderungen für Rechenzentren RA Dr. Flemming Moos

Mehr

Maximieren Sie Ihr Informations-Kapital

Maximieren Sie Ihr Informations-Kapital Maximieren Sie Ihr Informations-Kapital Zürich, Mai 2014 Dr. Wolfgang Martin Analyst, Mitglied im Boulder BI Brain Trust Maximieren des Informations-Kapitals Die Digitalisierung der Welt: Wandel durch

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Magento goes into the cloud Cloud Computing für Magento. Referent: Boris Lokschin, CEO

Magento goes into the cloud Cloud Computing für Magento. Referent: Boris Lokschin, CEO Magento goes into the cloud Cloud Computing für Magento Referent: Boris Lokschin, CEO Agenda Über symmetrics Unsere Schwerpunkte Cloud Computing Hype oder Realität? Warum Cloud Computing? Warum Cloud für

Mehr

Company Profile Computacenter

Company Profile Computacenter Company Profile Computacenter COMPUTACENTER AG & CO. OHG 2014 Computacenter an Overview Computacenter is Europe s leading independent provider of IT infrastructure services, enabling users and their business.

Mehr

Social Media trifft Business

Social Media trifft Business Social Media trifft Business Intelligence Social Media Analysis als Teil der Unternehmenssteuerung Tiemo Winterkamp, VP Global Marketing Agenda Social Media trifft Business Intelligence Business Intelligence

Mehr

Was ist Big Data? Versuch einer Positionsbestimmung. Wolfgang Marquardt

Was ist Big Data? Versuch einer Positionsbestimmung. Wolfgang Marquardt Was ist Big Data? Versuch einer Positionsbestimmung Wolfgang Marquardt Vorstandsvorsitzender des Forschungszentrum Jülich 02.06.2015 Jahrestagung des deutschen Ethikrates Ganz sicher auch ein Hype hohe

Mehr

amball business-software SharePoint 2010 think big start small Marek Czarzbon marek@madeinpoint.com

amball business-software SharePoint 2010 think big start small Marek Czarzbon marek@madeinpoint.com amball business-software SharePoint 2010 think big start small Marek Czarzbon marek@madeinpoint.com Agenda Dipl. Inf. Marek Czarzbon marek@madeinpoint.com [Tschaschbon] Software Architekt, Consulting Workflow

Mehr

Prof. Dr. Margit Scholl, Mr. RD Guldner Mr. Coskun, Mr. Yigitbas. Mr. Niemczik, Mr. Koppatz (SuDiLe GbR)

Prof. Dr. Margit Scholl, Mr. RD Guldner Mr. Coskun, Mr. Yigitbas. Mr. Niemczik, Mr. Koppatz (SuDiLe GbR) Prof. Dr. Margit Scholl, Mr. RD Guldner Mr. Coskun, Mr. Yigitbas in cooperation with Mr. Niemczik, Mr. Koppatz (SuDiLe GbR) Our idea: Fachbereich Wirtschaft, Verwaltung und Recht Simple strategies of lifelong

Mehr

Softwareentwicklung & Usability Software Development & Usability

Softwareentwicklung & Usability Software Development & Usability Softwareentwicklung & Usability Software Development & Usability mobile media & communication lab Das m²c-lab der FH Aachen leistet Forschungs- und Entwicklungsarbeiten für individuelle und innovative

Mehr

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Dr. Martin Hebach, Cebit 2015 Senior Solution Architect mhebach@informatica.com Abstract Für Business Intelligence Aufgaben

Mehr

SONAS Projekt OwnCloud Speicher

SONAS Projekt OwnCloud Speicher SONAS Projekt OwnCloud Speicher ITEK-September 2012 Project Timeline Month August September October November December January February March Year 2012 2012 2012 2012 2012 2013 2013 2013 SONAS General

Mehr

SharePoint 2013 The new way to work together

SharePoint 2013 The new way to work together SharePoint 2013 The new way to work together Ihr Experte heute @ustrauss sharepointguru.de 3 SharePoint Conference 2012, Las Vegas Nevada The biggest show on SharePoint ever > 10.000 Teilnehmer aus der

Mehr