Data Warehouse Grundlagen

Größe: px
Ab Seite anzeigen:

Download "Data Warehouse Grundlagen"

Transkript

1 Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015

2 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Firmen und beziehen sich auf Eintragungen in den USA oder USA-Warenzeichen. Weitere Logos und Produkt- oder Handelsnamen sind eingetragene Warenzeichen oder Warenzeichen der jeweiligen Unternehmen. Kein Teil dieser Dokumentation darf ohne vorherige schriftliche Genehmigung der weitergegeben oder benutzt werden. Die besitzt folgende Geschäftsstellen Adressen der Westernmauer D Paderborn Tel.: (+49) / An der alten Ziegelei 5 D Münster Tel.: (+49) / Welser Straße 9 D Gersthofen Tel.: (+49) / Kreuzberger Ring 13 D Wiesbaden Tel.: (+49) / Wikingerstraße D Köln Tel.: (+49) / Internet: Seite 2 Version: 2.10

3 Inhaltsverzeichnis 1 Einführung Geschichtliches Motivation Hintergrund Ist-Situation Modernes Informationssystem Was ist ein Data Warehouse? Multiple Datenquellen Unternehmensspezifisch skalierbar Universelle Abfragen möglich Hochleistungsplattform für Reporting Analysen (Vergangenheit/Zukunft) Ziele Gründe für ein separates DWH Abgrenzung zu OLTP Abgrenzung zu OLTP-Anfragen Abgrenzung zu OLTP-Daten Abgrenzung zu OLTP-Anwender Abgrenzung zu OLTP - Zusammenfassung Definition Definition nach Inmon Themenorientierung Integrierte Datenbasis Persistente Datenbasis Chronologisierte Daten Anwendungsgebiete Multidimensionales Datenmodell Überblick Normalisierung Überblick Normalisierung von Daten Redundanzen Normalform Normalform Normalform Normalform Zusammenfassung Normalformen Kennzahlen Additive Kennzahlen Semi-Additive Kennzahlen Nicht-Additive Kennzahlen Dimensionen Eigenschaften von Dimensionen Einfache Hierarchie Parallele Hierarchie Aufbau Dimensionstabelle Beispiel Beispiel Junk Dimension Junk Dimension Beispiel Fakten- und Dimensionstabellen Aufbau Faktentabelle Varianten von Fakten Ereignis Fakt Snapshot Fakt Beispiel Faktentabelle DWH Datenmodelle Version: 2.10 Seite 3

4 2.6.1 Starschema Vor- und Nachteile Abfragen im Starschema Snow Flake Schema Schematische Darstellung Vorteile Nachteile Abfragen im Snow Flake Schema Mischformen Galaxy Schema - Überblick Slowly Changing Dimensions Slowly Changing Dimension Anwendungsbereiche Slowly Changing Dimensions - Fachlicher Schlüssel Typ 1 keine Historierung Typ 2 Historisierung Typ 2 Ablaufprinzip Typ 2 Beispiel Typ 3 Teilweise Historisierung Designprozess Überblick Beispiel Grundlagen der Architektur Überblick Architekturschichten Schematischer Aufbau ETL-Tools Staging Area Landing Area Cleansing Area Metadaten Core Data Warehouse Data Marts Überblick Extraktarten Vorteile Data Mart Arten Abhängige Data Marts Unabhängige Data Marts Virtuelle Data Marts Entwurf eines Data Warehouse Systems Vorgehensmodell Modellierungsschritte Analyse des Informationssystems / Anforderungsanalyse Informationsbedarfsanalyse Analysemodell / Prozessmodell Objektmodell Konzeptioneller Entwurf Beispiel MERM Diagramm Logischer Entwurf Technische Implementierung Test Softwareauswahl Auswahlkriterien Marktrecherche Bewertung der Auswahl Kosten der Software Speicherstrukturen Seite 4 Version: 2.10

5 5.1 Überblick ROLAP MOLAP HOLAP DOLAP Multidimensional Expressions (MDX) Befüllung Überblick ETL-Tool Monitoring Quellsystem Überblick Triggerbasiert Replikationsbasiert Zeitstempelbasierte Monitoringstrategie Log-basierte Monitoringstrategie Snapshot-basierte Monitoringstrategie Extraktionsstrategien Staging Area Überblick Ausprägungen Cleansing Area Transformation Ursache von fehlerhaften Daten Überblick Filterung Überblick Klassen Beispiele Harmonisierung Aggregation Anreicherung Laden Data Mart Deploymentprozess Deploymentprozess Aufbau der Testdatenbank Deploymentprozess ETL Prozesse Entwickeln Deploymentprozess Testen Deploymentprozess Deployment auf Produktion Multidimensionale Operatoren OLAP Operatoren Standard Operatoren Bewegen im Multidimensionalen Datenmodell Pivotierung/Rotation Roll-up/Drill-down Beispiel Drill Across Drill Through Slice/Dice Slice Dice Split / Merge Beispiel Reporting Frontend Tools Verteilung der Anwender Dashboard Statische Reports Version: 2.10 Seite 5

6 8.5 Dynamische Berichte Ad-Hoc Berichte Data Mining Auswahl Reporting Tool Datenbankoptimierung Überblick Laden von Daten Überblick Einzelsatzverarbeitung Lade Tool Beispiel Oracle Beispiel DB Beispiel Informix Partitionierung Überblick Range Partitionierung List Partitionierung Hash Partitionierung Komprimierung Datenbank Caches Blockgröße Seitengröße Reservierter Freiplatz bei der Tabellenerstellung Referenzielle Integrität Materialisierte Sichten und Tabellen Merge Anweisung Beispiel Parallelisierung Spaltenorientierte Speicherung und In-Memory-Funktionalität Überblick Beispiel Oracle Beispiel DB Hardwareoptimierungen Big Data Größe ist relativ Potential Wirkprinzipien Die 3 V s Velocity (Geschwindigkeit) Volume (Datenmengen) Variety (Vielfalt) Big Data ist nicht nur ein Tool Big Data in Aktion Übungen / Lösungen Übungen Normalisierung von Daten Multidimensionales Datenmodell Snowflakeschema Befüllung Lösungen Normalisierung von Daten Multidimensionales Datenmodell Snowflakeschema Befüllung Anhang- ETL Tools Anhang- Reporting Tools Seite 6 Version: 2.10

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

IBM DB2 für Linux/Unix/Windows Monitoring und Tuning

IBM DB2 für Linux/Unix/Windows Monitoring und Tuning IBM DB2 für Linux/Unix/Windows Monitoring und Tuning Seminarunterlage Version: 4.05 Version 4.05 vom 9. Februar 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt-

Mehr

IBM Informix Tuning und Monitoring

IBM Informix Tuning und Monitoring Seminarunterlage Version: 11.01 Copyright Version 11.01 vom 25. Juli 2012 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

IT-Projektcontrolling

IT-Projektcontrolling Seminarunterlage Version: 3.02 Version 3.02 vom 20. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Oracle Backup und Recovery mit RMAN

Oracle Backup und Recovery mit RMAN Oracle Backup und Recovery mit RMAN Seminarunterlage Version: 12.04 Copyright Version 12.04 vom 16. Juli 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt-

Mehr

IBM Informix SQL. Seminarunterlage. Version 11.04 vom

IBM Informix SQL. Seminarunterlage. Version 11.04 vom Seminarunterlage Version: 11.04 Version 11.04 vom 27. April 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

MySQL Administration. Seminarunterlage. Version 3.02 vom

MySQL Administration. Seminarunterlage. Version 3.02 vom Seminarunterlage Version: 3.02 Version 3.02 vom 23. Oktober 2014 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

PHP Programmierung. Seminarunterlage. Version 1.02 vom

PHP Programmierung. Seminarunterlage. Version 1.02 vom Seminarunterlage Version: 1.02 Version 1.02 vom 27. August 2013 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Oracle Backup und Recovery

Oracle Backup und Recovery Seminarunterlage Version: 11.05 Version 11.05 vom 27. Mai 2010 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Oracle Cloud Control. Seminarunterlage. Version 12.03 vom

Oracle Cloud Control. Seminarunterlage. Version 12.03 vom Seminarunterlage Version: 12.03 Version 12.03 vom 1. Oktober 2013 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Linux Hochverfügbarkeits-Cluster

Linux Hochverfügbarkeits-Cluster Seminarunterlage Version: 5.05 Version 5.05 vom 23. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Tomcat Konfiguration und Administration

Tomcat Konfiguration und Administration Tomcat Konfiguration und Administration Seminarunterlage Version: 8.01 Version 8.01 vom 4. Februar 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Oracle Capacity Planning

Oracle Capacity Planning Seminarunterlage Version: 2.03 Version 2.03 vom 8. Juli 2014 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen oder

Mehr

WebSphere Application Server Installation

WebSphere Application Server Installation WebSphere Application Server Installation und Administration Seminarunterlage Version: 3.04 Copyright Version 3.04 vom 16. Mai 2013 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte

Mehr

Linux Cluster mit Pacemaker und Heartbeat 3

Linux Cluster mit Pacemaker und Heartbeat 3 Linux Cluster mit Pacemaker und Heartbeat 3 Seminarunterlage Version: 5.04 Copyright Version 5.04 vom 13. Juni 2012 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle

Mehr

Apache HTTP Server Administration

Apache HTTP Server Administration Seminarunterlage Version: 11.04 Copyright Version 11.04 vom 9. Januar 2014 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

IBM Informix Dynamic Server Hochverfügbarkeits-Technologien unter Unix

IBM Informix Dynamic Server Hochverfügbarkeits-Technologien unter Unix 2 IBM Informix Dynamic Server Hochverfügbarkeits-Technologien unter Unix Version: 11.02 ORDIX Seminarunterlagen einfach. gut. geschult. Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte

Mehr

Java Performance Tuning

Java Performance Tuning Seminarunterlage Version: 5.04 Version 5.04 vom 16. Januar 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

JSP und Servlet Programmierung

JSP und Servlet Programmierung Seminarunterlage Version: 5.02 Copyright Version 5.02 vom 1. März 2013 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Oracle AWR und ASH Analyse und Interpretation

Oracle AWR und ASH Analyse und Interpretation Oracle AWR und ASH Analyse und Interpretation Seminarunterlage Version: 2.02 Version 2.02 vom 11. März 2013 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl

C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl Ein Seminar der DWH academy Seminar C09 Einsatz SAP BW im Vergleich zur Best-of-Breed- Produktauswahl Befasst man sich im DWH mit der Auswahl

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Oracle Datenbankadministration Grundlagen

Oracle Datenbankadministration Grundlagen Oracle Datenbankadministration Grundlagen Seminarunterlage Version: 12.02 Version 12.02 vom 14. April 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

OLAP mit dem SQL-Server

OLAP mit dem SQL-Server Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3 vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2

Mehr

Oracle Weblogic Administration Grundlagen

Oracle Weblogic Administration Grundlagen Oracle Weblogic Administration Grundlagen Seminarunterlage Version: 1.07 Version 1.07 vom 14. September 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Oracle Datenbankprogrammierung mit PL/SQL Grundlagen

Oracle Datenbankprogrammierung mit PL/SQL Grundlagen Oracle Datenbankprogrammierung mit PL/SQL Grundlagen Seminarunterlage Version: 12.05 Version 12.05 vom 29. Januar 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt-

Mehr

Inhaltsverzeichnis. vii.

Inhaltsverzeichnis. vii. vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt 2 1.2 OLTP versus OLAP 4 1.2.1 OLAP-versus OLTP-Transaktionen 5 1.2.2 Vergleich von OLTP und OLAP 6 1.2.3 Abgrenzung: DBMS-Techniken

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 6. Übung Juni 2015 Agenda Hinweise zur Klausur Zusammenfassung OPAL Übungen / Kontrollfragen

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 24. Juni 2014 Agenda Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen

Mehr

Administration und Konfiguration für JBOSS

Administration und Konfiguration für JBOSS Administration und Konfiguration für JBOSS Seminarunterlage Version: 2.03 Version 2.03 vom 7. Mai 2012 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Analytic mit Oracle BI relational oder besser multidimensional? 8. Oracle BI & DWH Konferenz, 20.03.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein

Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein 1 Definitionen 1.1 Datenbank Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert Integriert, selbstbeschreibend, verwandt 1.2 Intension/Extension Intension: Menge der Attribute Extension:

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI

erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI Detlef Apel Wolfgang Behme Rüdiger Eberlein Christian Merighi Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte 3., überarbeitete und erweiterte Auflage Edition TDWI rä

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

Hetero-Homogene Data Warehouses

Hetero-Homogene Data Warehouses Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Data Warehousing mit Oracle

Data Warehousing mit Oracle Data Warehousing mit Oracle Business Intelligence in der Praxis von Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker 1. Auflage Hanser München 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN

Mehr

1 Einführung 1 1.1 SAP Business Information Warehouse... 3. 1.1.1 BW Version 3.0...5. Architekturplanung... 9

1 Einführung 1 1.1 SAP Business Information Warehouse... 3. 1.1.1 BW Version 3.0...5. Architekturplanung... 9 vii 1 Einführung 1 1.1 SAP Business Information Warehouse... 3 1.1.1 BW Version 3.0...5 Architekturplanung.................................... 9 2 BW-Basissystem 11 2.1 Client/Server-Architektur... 12

Mehr

Inhaltsübersicht...IX Inhaltsverzeichnis...XI Abbildungsverzeichnis...XVII Tabellenverzeichnis... XXIII Abkürzungsverzeichnis...

Inhaltsübersicht...IX Inhaltsverzeichnis...XI Abbildungsverzeichnis...XVII Tabellenverzeichnis... XXIII Abkürzungsverzeichnis... Inhaltsübersicht...IX Inhaltsverzeichnis...XI Abbildungsverzeichnis...XVII Tabellenverzeichnis... XXIII Abkürzungsverzeichnis... XXV 1 Einführung... 1 1.1 Problemstellung... 1 1.2 Zielsetzung... 3 1.3

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

ENTERBRAIN Reporting & Business Intelligence

ENTERBRAIN Reporting & Business Intelligence Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format.

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format. Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH Gerd Schandert, Neuss den 18.03.2014 Agenda 1. Vorstellung Auftraggeber 2. Förderung allgemein 3. Schichten im Data Warehouse 4.

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Datenqualität erfolgreich steuern

Datenqualität erfolgreich steuern Edition TDWI Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte von Detlef Apel, Wolfgang Behme, Rüdiger Eberlein, Christian Merighi 3., überarbeitete und erweiterte Auflage

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

Data Warehouse und Data Mining

Data Warehouse und Data Mining Data Warehouse und Data Mining Marktführende Produkte im Vergleich von Dr. Heiko Schinzer, Carsten Bange und Holger Mertens 2., völlig überarbeitete und erweiterte Auflage -. - Verlag Franz Vahlen München

Mehr

Modellierung von OLAP- und Data- Warehouse-Systemen

Modellierung von OLAP- und Data- Warehouse-Systemen Andreas Totok Modellierung von OLAP- und Data- Warehouse-Systemen Mit einem Geleitwort von Prof. Dr. Burkhard Huch Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

Aufgabe 1: [Logische Modellierung]

Aufgabe 1: [Logische Modellierung] Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines

Mehr

Solaris Virtualisierung mit ZFS und Container (Zonen)

Solaris Virtualisierung mit ZFS und Container (Zonen) Solaris Virtualisierung mit ZFS und Container (Zonen) Seminarunterlage Version: 2.07 Version 2.07 vom 3. Januar 2017 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt-

Mehr

Performanceaspekte in der SAP BI Modellierung

Performanceaspekte in der SAP BI Modellierung Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen

Mehr

Sachindex. Array-Speicherung, 159 Attribut dimensionales, 48 Auswahl kostenbasierte, 232

Sachindex. Array-Speicherung, 159 Attribut dimensionales, 48 Auswahl kostenbasierte, 232 Sachindex abgeleitete Partitionierung, 168 abhängiger Data Mart, 37 Ableitbarkeit, 238, 244, 250 Ableiten, 31 Achse MDX, 146 Achsenspezifikation, 146 Ad-hoc-Reporting, 274 ADAPT, 54 Aggregatfunktion, 245

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Sachindex B + -Baum, 185 R -Baum, 207 R a-baum, 207 R + -Baum, 206 abgeleitete Partitionierung, 154 abhängiger Data Mart, 35 Ableitbarkeit,

Mehr

Nach Data Warehousing kommt Business Intelligence

Nach Data Warehousing kommt Business Intelligence Nach Data Warehousing kommt Business Intelligence Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Business Intelligence, Data Warehouse Zusammenfassung Data Warehouse bedeutet, dass operative

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Data Warehouse (DWH) / (Business Intelligence, BI )

Data Warehouse (DWH) / (Business Intelligence, BI ) Data Warehouse (DWH) / (Business Intelligence, BI ) Begriffsbildung: Ein Data Warehouse ist eine themenorientierte, integrierte, zeitabhängige, nichtflüchtigedatenbank fürdie Unterstützung von Managemententscheidungen

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Best Practices im Business-Reporting: So kombiniert man Hyperion Intelligence mit dem OWB. Referent: Jens Wiesner, Systemberater, MT AG

Best Practices im Business-Reporting: So kombiniert man Hyperion Intelligence mit dem OWB. Referent: Jens Wiesner, Systemberater, MT AG Best Practices im Business-Reporting: So kombiniert man Hyperion Intelligence mit dem OWB Referent: Jens Wiesner, Systemberater, MT AG MT AG managing technology Key-facts: 1994: Gründung als MT Software

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

Data Warehousing Grundbegriffe und Problemstellung

Data Warehousing Grundbegriffe und Problemstellung Data Warehousing Grundbegriffe und Problemstellung Dr. Andrea Kennel, Trivadis AG, Glattbrugg, Schweiz Andrea.Kennel@trivadis.com Schlüsselworte Data Warehouse, Cube, Data Mart, Bitmap Index, Star Queries,

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

Inhaltsverzeichnis. Teil I Datenmodell 5

Inhaltsverzeichnis. Teil I Datenmodell 5 ix 1 Einleitung 1 Teil I Datenmodell 5 2 Grundlagen 7 2.1 Semantische Aspekte der Modellierung....................... 7 2.2 Zeilenbasierte Speicherstrukturen........................... 9 2.2.1 Star-Schema....................................

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

Präsentation der Bachelorarbeit

Präsentation der Bachelorarbeit Präsentation der Bachelorarbeit Einrichtung einer BI-Referenzumgebung mit Oracle 11gR1 Jörg Bellan Hochschule Ulm Fakultät Informatik Institut für Betriebliche Informationssysteme 15. Oktober 2009 Agenda

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

SAP HANA als In-Memory-Datenbank-Technologie für ein Enterprise Data Warehouse

SAP HANA als In-Memory-Datenbank-Technologie für ein Enterprise Data Warehouse www.osram-os.com SAP HANA als In-Memory-Datenbank-Technologie für ein Enterprise Data Warehouse Oliver Neumann 08. September 2014 AKWI-Tagung 2014 Light is OSRAM Agenda 1. Warum In-Memory? 2. SAP HANA

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

disy Cadenza in der LDB

disy Cadenza in der LDB disy Cadenza in der LDB Claus Hofmann + disy Informationssysteme ++ Erbprinzenstraße 4 12 ++ D-76133 Karlsruhe ++ www.disy.net + Agenda Kurzvorstellung disy Architektur FIS-W/LDB Einführung in disy Cadenza

Mehr

Seminar C16 - Datenmodellierung für SAP BW

Seminar C16 - Datenmodellierung für SAP BW C16: Datenmodellierung für SAP BW Ein Seminar der DWH academy Seminar C16 - Datenmodellierung für SAP BW Dieses Seminar soll einen umfassenden Einblick in die Datenmodellierung beim Einsatz von SAP BW

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr