18. Dynamisches Programmieren

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "18. Dynamisches Programmieren"

Transkript

1 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus Lösungen zu Telproblemen. Lösungen zu Telproblemen werden ncht rekursv gelöst. Lösungen zu Telproblemen werden teratv begnnend mt den Lösungen der klensten Telprobleme berechnet (bottom-up). Datenstrukturen und Algorthmen 8. Dynamsches Programmeren

2 Dynamsches Programmeren (2) Wrd häufg angewandt, wenn rekursver Ansatz Lösungen zu mmer weder denselben Telproblemen lösen wrd. Lernen dre Bespele kennen: Längste gemensame Telfolge, optmale Suchbäume, Rucksackproblem. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 2

3 Längste gemensame Telfolge () Seen X ( x, K,x ) und Y = ( y, K, ) = m yn zwe Telfolgen, wobe x,y A für en endlches Alphabet A. Dann hesst Y Telfolge von X, wenn es aufstegend sorterte Indzes, K, gbt mt x = y für =, K, n. n Bespel: Y=(B,C,A,C) st Telfolge von,,, X=(A,B,A,C,A,B,C). Wähle ( ) ( 2,4,5,7 ) = Snd X,Y,Z Folgen über A, so hesst Z gemensame Telfolge von X und Y, wenn Z Telfolge sowohl von X als auch von Y st. Bespel: Z=(B,C,A,C) st gemensame Telfolge von X=(A,B,A,C,A,B,C) und Y=(B,A,C,C,A,B,B,C). Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 3

4 Längste gemensame Telfolge (2) Z hesst längste gemensame Telfolge von X und Y, wenn Z gemensame Telfolge von X und Y st und es kene andere gemensame Telfolge von X und Y gbt, de größere Länge als Z bestzt. Bespel: Z=(B,C,A,C) st ncht längste gemensame Telfolge von X=(A,B,A,C,A,B,C) und Y=(B,A,C,C,A,B,B,C). Denn (B,A,C,A,C) st ene längere gemensame Telfolge von X und Y. Bem Problem Längste-Gemensame-Telfolge (LCS) snd als Engabe zwe Telfolgen X = ( x, K,xm ) und Y = ( y, K, yn ) gegeben. Gesucht st dann ene längste gemensame Telfolge von X und Y. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 4

5 Bespel längste gemensame Telfolge Folge X A B C B D A B Folge Y B D C A B A Folge X A B C B D A B Folge Y B D C A B A Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 5

6 Struktur von LCS = K m ene belebge Folge. Für = 0,, K,m st der -te Präfx von X defnert als X = ( x, K, x ). Der -te Präfx von besteht also aus den ersten Symbolen von X. Der 0-te Präfx st de leere Folge. Defnton 8.: Se X ( x,,x ) Satz 8.2: Seen X ( x, K,xm ) und Y = ( y, K, yn ) Folgen und se Z ( z, K, ) = belebge = z k ene längste gemensame Telfolge von X und Y. Dann glt. Ist x m = yn, dann st z k = xm = yn und Zk st ene längste gemensame Telfolge von Xm und Yn. 2. Ist xm yn und zk xm, dann st Z ene längste gemensame Telfolge von X m und Y. 3. Ist xm yn und zk yn, dann st Z ene längste gemensame Telfolge von X und Y. n Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 6

7 Rekurson für Länge von LCS Lemma 8.3: Se [, ] c de Länge ener längsten gemensamen Telfolge des -ten Präfx X von X und des -ten Präfx Y von Y. Dann glt: c [, ] = c[, ] +, max{ c[, ],c[, ] } 0,, falls = 0 oder falls, > 0 und x falls, > 0 und x = 0 = y y. [ ] Beobachtung: Rekursve Berechnung der c, würde zu Berechnung mmer weder derselben Werte führen. Deses st neffzent. Berechnen daher de Werte c[, ] teratv, nämlch zelenwese. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 7

8 Berechnung der Werte c[,] ( X,Y) ( X) ( Y) LCS Length m length 2 n length 3 for 0 to m 4 do c[,0] 0 5 for 0 to n 6 do c[ 0, ] 0 7 for to m 8 do for to n 9 do f x = y 0 then c b, 2 else f return b,c [, ] c[, ] + [ " " c[ -, ] c[, ] then c[, ] c[, ] b[, ] " " else c[, ] c[, ] b[, " " [ ] b, spechert Informatonen zur späteren Berechnung ener längsten gemensamen Telfolge. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 8

9 Bespeltabellen c[,] und b[,] y B D C A B A 0 x A 2 B 3 C 4 B 5 D 6 A 7 B Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 9

10 Berechnung von LCS aus c und b ( ) Prnt - LCS b,x,, f = 0 = 0 2 then return 3 f b[, ] = " " 4 then Prnt - LCS b,x, 5 prnt x 6 else f b[, ] = " " 7 then Prnt - LCS b,x, 8 else Prnt - LCS b,x,, ( -, -) ( -, ) ( -) Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 0

11 Laufzet von LCS-Length und LCS-Prnt Lemma 8.4: Algorthmus LCS-Length hat Laufzet O(nm), wenn de Folgen X,Y Länge n und m haben. Lemma 8.5: Algorthmus LCS-Prnt hat Laufzet O(n+m), wenn de Folgen X,Y Länge n und m haben. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren

12 Berechnung von LCS aus c,b - Illustraton y B D C A B A 0 x A 2 B 3 C 4 B 5 D 6 A 7 B Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 2

13 Dynamsches Programmeren - Struktur. Bestmme rekursve Struktur ener optmalen Lösung. 2. Entwerfe rekursve Methode zur Bestmmung des Werts ener optmalen Lösung. 3. Transformere rekursv Methode n ene teratve (bottom-up) Methode zur Bestmmung des Werts ener optmalen Lösung. 4. Bestmmen aus dem Wert ener optmalen Lösung und n 3. ebenfalls berechneten Zusatznformatonen ene optmale Lösung. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 3

14 Optmale bnäre Suchbäume () Gegeben st Folge K ( k, K, ) k < = k n mt k < kn, K,pn; q0,q, K,qn mt sowe Werte p 0 < L, Bedeutung der p, q : Nach Schlüssel k wrd mt Wahrschenlchket p gesucht. Nach enem ncht, k wrd mt Wahrschenlchket q gesucht. Dabe se k und =. k + exsterenden Schlüssel m offenen Intervall ( ) 0 = k n + Repräsenteren ncht exsterende Schlüssel m k, + durch dummy Schlüssel, = 0,, K, n. Intervall ( ) k n = n + p q =. = 0 d Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 4

15 Optmale bnäre Suchbäume (2) Gesucht st bnärer Suchbaum Aufwand pro Suche mnmert. n [ ] = ( depth ( k ) + ) p + ( depth ( d ) + ) E Suchaufwand = T, der erwarteten Hat k oder d Tefe t m Suchbaum T, so st der Aufwand für ene Suche nach k bzw. d genau t+. depth ( ) ( ) Se T k, depth T d Tefe von Schlüssel k bzw. n enem Suchbaum T. Dann st erwarteter Aufwand ener Suche n T gegeben durch T n = 0 T d q = + n = depth T n ( k ) p + deptht ( d ) = 0 q Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 5

16 Nützlche Verallgemenerung Verlangen ncht mehr, dass de Werte p, K,p ; q,q, K,q 0 ene Wahrschenlchketsver- n 0 n telung blden. Erlauben also p q. n = n + Wollen aber weterhn Suchbaum für de Schlüssel k, K,, so dass de Summe k n n = mnmert wrd. Nennen dese Summe trotzdem erwarteten Suchaufwand. = 0 ( deptht ( k ) + ) p + ( deptht ( d ) + ) n = 0 q Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 6

17 Erwarteter Suchaufwand Bespele () p 0,5 0,0 0,05 0,0 0,20 q 0,05 0,0 0,05 0,05 0,05 0,0 k 2 k k 4 d0 d k3 k5 d2 d3 d d 4 5 Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 7

18 Erwarteter Suchaufwand Bespele (2) Knoten k k 2 k 3 k 4 k 5 d 0 d d 2 d 3 d 4 d 5 Tefe Wahrschenlchket 0,5 0,0 0,05 0,0 0,20 0,05 0,0 0,05 0,05 0,05 0,0 Betrag 0,30 0,0 0,5 0,20 0,60 0,5 0,30 0,20 0,20 0,20 0,40 Erwarteter Suchaufwand: 2,80 Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 8

19 Erwarteter Suchaufwand Bespele (3) p 0,5 0,0 0,05 0,0 0,20 q 0,05 0,0 0,05 0,05 0,05 0,0 k 2 Erwarteter Suchaufwand: 2,75 k k 5 d0 d k 4 d 5 k 3 d 4 d d 2 3 Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 9

20 Struktur optmaler Lösung Satz 8.5: Se T en optmaler Suchbaum für de Schlüsselfolge K = ( k, K, k n ) mt Wahrschenlchketen p, K,pn; q0,q, K, qn. Enthält T den Telbaum T mt den Schlüsseln k, K, k, dann st T n optmaler Suchbaum für de Schlüssel k, K, k. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 20

21 Se [, ] Rekursve optmale Lösung () e der erwartete Suchaufwand für enen optmalen Suchbaum mt Schlüsseln k, K, k. Ist k r Wurzel enes optmalen Suchbaums für de Schlüssel k, K, k, so glt [, ] = p + e[,r ] + w[,r ] + e[ r +, ] + w[ r, ]. e r + Dabe st [, ] : = + w p k q. k= k= k Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 2

22 Rekursve optmale Lösung (2) Es glt : [ ] = p + w[,r ] + w[ r +, ] w, [ ] = p + q + w[, ]. w, Damt dann r [, ] = e[,r ] + e[ r +, ] w[, ]. e + Schleßlch folgt [ ] e, = mn r q, { e[,r ] + e[ r +, ] + w[, ] }, falls falls = -. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 22

23 Berechnung der Werte e[,] ( p,q,n) Optmal BST for to n + 2 do e[, -] q 3 w[, -] q 4 for l to n 5 do for to n - l + 6 do + l 7 e, 8 w, 9 for r to 0 do t e,r f t < 2 then 3 4 return e, root [ ] [ ] w[, ] + p [ ] root, spechert Informatonen zur späteren Berechnung enes optmalen Suchbaums + q [ ] + e[ r +, ] + w[, ] e[, ] e [, ][ t root, ] r Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 23

24 Laufzet von Optmal-BST Satz 8.7: Optmal-BST hat be ener Folge von n 3 Schlüsseln Laufzet O n. ( ) Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 24

25 Bespel für Optmal-BST p 0,5 0,0 0,05 0,0 0,20 q 0,05 0,0 0,05 0,05 0,05 0,0 e w ,75 2 4,00 2,75 2, ,70 0,80 3,25,20, ,55 0,50 0,60 4 0,90 0,70 0,60 0,90 5 0,45 0,35 0,30 0, ,45 0,40 0,25 0,30 0,50 0,30 0,25 0,5 0,20 0, ,05 0,0 0,05 0,05 0,05 0,0 0,05 0,0 0,05 0,05 0,05 0,0 6 root Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 25

26 Dynamsches Programmeren - Struktur. Bestmme rekursve Struktur ener optmalen Lösung. 2. Entwerfe rekursve Methode zur Bestmmung des Werts ener optmalen Lösung. 3. Transformere rekursv Methode n ene teratve (bottom-up) Methode zur Bestmmung des Werts ener optmalen Lösung. 4. Bestmmen aus dem Wert ener optmalen Lösung und n 3. ebenfalls berechneten Zusatznformatonen ene optmale Lösung. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 26

27 0/-Rucksackproblem und dynamsches Programmeren Gegeben snd n Gegenstände g, K, g n mt Werten v, K, v n und Gewchten w, K, wn. Außerdem st ene Gewchtsschranke G gegeben. Zulässge Lösungen snd Zahlen a, K,a 0, mt D.h. eder Gegenstand muss entweder vollständg oder überhaupt ncht genommen werden. Gesucht st ene zulässge Lösung mt möglchst großem Gesamtwert n = a w G. n = a v n. { } Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 27

28 Struktur ener optmalen Lösung Defneren für =,,n und Z den Wert g, x als das mnmale Gesamtgewcht ener Telmenge der ersten Gegenstände mt Gesamtwert mndestens x. x [ ] Lemma 8.8: Der optmale Wert opt für ene Instanz des 0/-Rucksackproblems st gegeben durch max { x : g[ n, x] G} Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 28

29 Rekursve optmale Lösung Lemma 8.9: Für alle =0,,n und alle ganzzahlgen x glt: g[, x] : = mn 0,, { g[, x], w + g[, x v ]}, falls x 0 falls x > 0, = falls, x > 0 0 Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 29

30 Berechnung der Werte g[,v] bs zum Optmum Optmal Knapsack x 0 for 0 to n whle [ ] [ ] do g,x g n,x 0 G do x x + g 0,x [ ] 8 do g,x 9 f 0 return x - ( w, v, G) for to n [ ] g[, x] w + g[,max{x - v,0} ] < g[,x] then g[,x] w + g[,max{x - v,0}] Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 30

31 Bespel für Optmal-Knapsack v w x Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 3

32 Laufzet von Optmal-Knapsack Lemma 8.9: Be n Gegenständen hat Optmal-Knapsack Laufzet O ( n opt), wobe opt der Wert ener optmalen Lösung st. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 32

33 Dynamsches Programmeren - Struktur. Bestmme rekursve Struktur ener optmalen Lösung. 2. Entwerfe rekursve Methode zur Bestmmung des Werts ener optmalen Lösung. 3. Transformere rekursv Methode n ene teratve (bottom-up) Methode zur Bestmmung des Werts ener optmalen Lösung. 4. Bestmmen aus dem Wert ener optmalen Lösung und n 3. ebenfalls berechneten Zusatznformatonen ene optmale Lösung. Datenstrukturen und Algorthmen 8. Dynamsches Programmeren 33

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

2. Klausur zur Vorlesung Algorithmen II Wintersemester 2012/2013

2. Klausur zur Vorlesung Algorithmen II Wintersemester 2012/2013 2. Klausur zur Vorlesung Algorthmen II Wntersemester 202/203 Her Aufkleber mt Name und Matrkelnummer anbrngen Vorname: Nachname: Matrkelnummer: Beachten Se: Brngen Se den Aufkleber mt Ihrem Namen und Matrkelnummer

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen 1 Systematserung der Verznsungsarten 2 Jährlche Verznsung 3 Unterjährge Verznsung 4 Stetge Verznsung 5 Aufgaben zur Znsrechnung 1. Systematserung der Verznsungsarten a d g Jährlche Verznsung nfache Znsen

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Chair of Software Engineering

Chair of Software Engineering 1 2 Enführung n de Programmerung Bertrand Meyer Vorlesung 13: Contaner-Datenstrukturen Letzte Bearbetung 1. Dezember 2003 Themen für dese Vorlesung 3 Contaner-Datenstrukturen 4 Contaner und Genercty Enthalten

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Dskrete Mathematk Chrstna Kohl Georg Moser Oleksandra Panasuk Chrstan Sternagel Vncent van Oostrom Insttut für Informatk @ UIBK Sommersemester 2017 Zusammenfassung der letzten LVA ene Telmenge

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Modul 1: Einführung und Wahrscheinlichkeitsrechnung

Modul 1: Einführung und Wahrscheinlichkeitsrechnung Modul : Enführung und Wahrschenlchketsrechnung Informatonstheore Dozent: Prof. Dr. M. Gross E-mal: grossm@nf.ethz.ch Assstenten: Danel Cottng, Rchard Keser, Martn Wcke, Cyrl Flag, Andrea Francke, Jonas

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr