Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Größe: px
Ab Seite anzeigen:

Download "Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2"

Transkript

1 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung der äglichen Verkufszhlen eines neu eingeführen Smrphones schläg die Plnungsbeilung von PEAR die Modellfunkion v vor mi v() = e 0,02 mi 0 wobei die Zei in Tgen sei Beginn der Mrkeinführung und v() die m Tg verkufe Anzhl von Smrphones drsell. Die folgende Tbelle zeig, wie viele Smrphones des Modells S2013 nch seiner Mrkeinführung pro Tg verkuf wurden. in Tgen Verkufszhlen in Sück Punke ) Besäigen Sie, dss die Funkion v die äglichen Verkufszhlen des Smrphones S2013 ngenäher wiedergib. 10 In der Anlge is der Grph von v drgesell. b) Beschreiben Sie kurz den Verluf des Grphen quliiv. Inerpreieren Sie druf Bezug nehmend die Enwicklung der Verkufszhlen im Anwendungskonex. Vergleichen Sie ds Modell hinsichlich des Lngzeiverhlens mi einer relisischen Enwicklung der Verkufszhlen. 15 c) Besäigen Sie, dss gil: v'() = e 0,02 (1 0,02) Berechnen Sie, n welchem Tg die meisen Smrphones S2013 verkuf werden, und berechnen Sie die ensprechende Verkufszhl. 15 Hinweis: D us der Abbildung deulich wird, dss der einzige Exrempunk ein Hochpunk is, reich die Unersuchung der nowendigen Bedingung. Eine Smmfunkion V von v h die Gleichung V() = ( 50 e 0, e 0,02 ). 100 d) Ermieln Sie den Wer des Inegrls 0 v() d. Inerpreieren Sie ds Inegrl im gegebenen Anwendungskonex by Srk Verlgsgesellschf mbh & Co. KG

2 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Für die Firm PEAR is es us verschiedenen Gründen sinnvoll, den Produkzyklus (d. h. die Zei vom ersen bis zum lezen verkufen Smrphone) zu begrenzen. Zur Vereinfchung der Prognose der insgesm in den Verkuf gehenden Smrphones S2013 sez die Plnungsbeilung b dem Wendepunk der Verkufszhlenenwicklung eine linere Abnhme der äglichen Verkufszhlen n, d. h. mn ersez b dem Wendepunk der Funkion v den weieren Verluf des Funkionsgrphen durch die Wendengene. Die Koordinen des Wendepunks sind gerunde W( ). e) Besimmen Sie die Gleichung der Wendengene. Zeichnen Sie die Wendengene in ds Koordinensysem in der Anlge. Ermieln Sie den Zeipunk, b dem nch diesem Modell keine Smrphones mehr verkuf werden. Besimmen Sie die Anzhl der Smrphones, die nch diesem Modell b dem Zeipunk w = 100 insgesm noch verkuf werden. 20 Aus Erfhrung weiß die Plnungsbeilung, dss sie die Verkufszhlenfunkion v in regelmäßigen Absänden vriieren muss, um sie n ds sich verändernde Verbrucherverhlen nzupssen. Bereis für ds Nchfolgemodell von dem hier bercheen Smrphone S2013 is dmi zu rechnen, dss schon m 40. Tg ds Verkufszhlenmximum von Smrphones erreich wird. Die Plnungsbeilung verwende den llgemeinen Ansz 1 v () = e( + b ) mi > 0, b 0., b f) Besimmen Sie und b so, dss die neue Verkufszhlenfunkion die Prognose für den Zeipunk und den Wer des Verkufszhlenmximums für ds Nchfolgemodell erfüll. 15 g) Ermieln Sie, welchen Einfluss der Prmeer uf die Lge der Mximlselle von v, b h. Ermieln Sie, welchen Einfluss der Prmeer b (für einen fesen Wer des Prmeers ) uf den Wer des Mximums von v, b h by Srk Verlgsgesellschf mbh & Co. KG

3 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Anlge zur Aufgbe Smrphones Hinweise und Tipps Teilufgbe r Mihilfe einer Punkprobe knn eine Besäigung erfolgen. r Vergleichen Sie die so berechneen Verkufszhlen mi denen in der Tbelle erfssen. Teilufgbe b r Suchen Sie chrkerisische Punke des Grphen wie Nullselle, Hoch- und Tiefpunk (Mximum, Minimum), Wendepunk. r Berchen ds Monoonieverhlen (seigend, fllend) jeweils zwischen zwei Zeibschnien. r Inerpreieren Sie die Verlufseigenschfen im Zusmmenhng mi den Verkufszhlen. r Vergleichen Sie ds Modell bezüglich des Lngzeiverhlens mi einer Enwicklung der Verkufszhlen in der Reliä. Teilufgbe c Besäigung r Besimmen Sie die Ableiungsfunkion v'() mihilfe der Produk- und Keenregel. Zeipunk der mximlen Verkufsmenge und ensprechende Verkufszhl r Zeipunk der mximlen Verkufsmenge und die ensprechende Verkufszhl liegen beim Hochpunk der Funkion v() by Srk Verlgsgesellschf mbh & Co. KG

4 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 r Nowendige Bedingung für die Exisenz des Hochpunkes is, dss v'() = 0 is. r Nch Aufgbensellung is die 2. Ableiung für ds Prüfen der hinreichenden Bedingung v''() < 0 nich erforderlich. r Lösen Sie die Gleichung v'() = 0, Sie erhlen den Zeipunk für die mximle Verkufsmenge r Durch Einsezen des für gefundenen Weres in die Gleichung v() erhlen Sie die mximle Verkufsmenge. Teilufgbe d r Die Smmfunkion is vorgegeben, somi können Sie ds Inegrl berechnen. r Deuen Sie ds Inegrl. Ws sell die Fläche uner der Kurve im Inervll [0; 100] dr? Teilufgbe e Wendengene r Sellen Sie die llgemeine Wendengene in Form einer Gerdengleichung dr. r Die erse Ableiung n einer Selle der Funkion is gleich dem Ansieg m der Tngene in diesem Punk. r Sezen Sie nun m und die Koordinen von W in die Gerdengleichung der Tngene ein. r Geben Sie die Gleichung der Wendengene n und zeichnen diese in ds Koordinensysem ein. Zeipunk, b dem nch diesem Modell keine Smrphones mehr verkuf werden r Wegen der lineren Abnhme der Verkufszhlen liefer die Nullselle der Wendengene w() den gesuchen Zeipunk. r Sezen Sie w() = 0 und besimmen diesen Zeipunk. Anzhl der verkufen Smrphones b dem 100. Tg r Berechnen Sie ds Inegrl über w() in den Grenzen von 100 bis 200. r Alerniv können Sie die Fläche uner der Kurve von w() und der -Achse uch elemenrgeomerisch berechnen ls Flächeninhl des rechwinkligen Dreiecks mi den Eckpunken (100 0); (200 0) und ( ). Teilufgbe f r Bilden Sie die 1. Ableiung von v, b () mihilfe der Produk- und Keenregel. r Besimmen Sie den Prmeer durch Einsezen. r Die hinreichende Bedingung für ein Mximum knn über einen Vorzeichenwechsel von v () geprüf werden. ' 40, b r Besimmen Sie den Prmeer b mihilfe der Angben und geben Sie die Funkionsgleichung v() n by Srk Verlgsgesellschf mbh & Co. KG

5 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Teilufgbe g r In Teilufgbe f hben Sie die 1. Ableiung von v, b (), die us einem Produk beseh, gebilde. r Welcher der beiden Terme führen zur nowendigen Bedingung v ', b () = 0? r Dmi können Sie eine Aussge drüber mchen, welchen Einfluss der Prmeer uf die Mximlselle h. r Mi v, b () können Sie den Einfluss des Prmeers b bei konsnem Wer für uf die Mximlselle mchen. ) v() = e 0,02 Einsezen der -Were: v(0) = e 0,02 0 = 0 Lösung v(10) = e 0,02 10 = v(30) = e 0,02 30 = v(60) = e 0,02 60 = Die in der Tbelle ngegebenen Were können nnähernd mihilfe der Funkion v() besimm werden. b) Zunächs seig der Grph bis zum Hochpunk n, nschließend fäll er und h einen Wendepunk, der ew bei 100 Tgen lieg. Nch dem Wendepunk wird der Grph immer flcher, d. h. sein Gefälle wird immer kleiner und er näher sich der -Achse sympoisch. Ds uf dem Mrk neu eingeführe Smrphone h sehr schnell die mximle Nchfrge erreich (nch ew 50 Tgen). Anschließend nehmen die Verkufszhlen b, bis lezendlich keines mehr verkuf wird. Nchdem eine Säigung des Mrkes eingereen is (bei ew 50 Tgen), nehmen die Verkufszhlen wieder b, ws uch relisisch is. Bei diesem Modell gehen über einen längeren Zeirum die Verkufszhlen der Hndys gegen null, so is z. B. v(800) 1. Ds is unrelisisch. c) Ableien mihilfe der Produkregel und Keenregel: u = , u' = v = e 0,02, v' = 0,02 e 0, v'() = e 0, ( 0,02 e 0,02 ) v'() = e 0,02 (1 0,02) (w. z. z. w) 2013 by Srk Verlgsgesellschf mbh & Co. KG

6 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Zeipunk, zu dem die meisen Smrphones verkuf werden, is der Hochpunk des Grphen der Funkion. Nowendige Bedingung für Exremselle: v'() = e 0,02 (1 0,02) = 0 : D e 0, ,02 = 0 + 0,02 1 = 0,02 : 0,02 = 50 Hinreichende Bedingung muss lu Aufgbensellung nich geprüf werden. Verkufsmenge: v(50) = e 0,02 50 = e v(50) = = ,72 e Am 50. Tg nch der Einführung des Smrphones S2013 werden die meisen verkuf, und zwr c Sück. d) 100 v() d [V()] 100 0,02 0, [ ( 50 e e = = )] 0 0 = [ e 0,02 ( + 50)] = e ( e0 50) 7,5 107 = + 2,5 107 e2 7 7,5 = 10 2, , e2 1, Mi dem Inegrl wird näherungsweise die Anzhl der Smrphones S2013 ermiel, die mi dem mhemischen Modell in den ersen 100 Tgen nch der Mrkeinführung verkuf wurden, hier lso 14,8 Mio. Sück. e) Wendengene w() = m + n Gegebener Wendepunk: W( ) Mi v'() = e 0,02 (1 0,02) is m = v'(100) = 10 e (1 0,02 100) = 1353 e by Srk Verlgsgesellschf mbh & Co. KG

7 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Koordinen von W und m in w() einsezen: = n = + n + e e e 106 n = e Dmi lue die Gleichung für die Wendengene w() = e2 e2 Wendengene einzeichnen: Zeipunk, b dem nch diesem Modell keine Smrphones mehr verkuf werden: Nullselle der Wendengene ergib den gesuchen Zeipunk. w() = = = : = 1353 = 200, Der Verkuf des Smrphones S2013 ende nch ew 200 Tgen by Srk Verlgsgesellschf mbh & Co. KG

8 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Anzhl der Smrphones, die nch diesem Modell b dem Zeipunk W = 100 noch verkuf werden: w() d = ( ) d = = = = ,8 106 Ab dem 100. Tg werden ew 6,8 Millionen Smrphones bis zum 200. Tg verkuf. Alernive Lösung (elemenrgeomerisch): Die Punke (100 0), (200 0) und ( ) bilden ein rechwinkliges Dreieck, für die Fläche dieses Dreiecks gil: A = = , f) ( ) b v, b() e + = mi > 0, b 0 v ', b(40) = 0 v, b(40) = Ableiung v, b () mihilfe der Produk- und Keenregel: u = u' = ( + b ) ' 1 ( + b v ) 1= e v1= e 1 1 ' ( + b) 1 ( + b v ), b () = e e 1 ' ( + b ) v, b () = e ( 1 ) Mi v ', b (40) 0 = ( 40 ) ( ) + b ( + b ) 40 ( ) e 1 = 0 : e 1 = by Srk Verlgsgesellschf mbh & Co. KG

9 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 40 D ( ) + b e 0 Prüfen, ob Mximum vorlieg = = = 40 Die hinreichende Bedingung knn mihilfe Vorzeichenwechsel von geprüf werden: 1 v ' 40 40, b () = < > 40 v ' 40, b () An der Selle = 40 lieg ein Vorzeichenwechsel von Plus nch Minus vor. Somi h v 40, b () n der Selle = 40 ein Mximum. Es gil: v 40, b (40) = ( 1 ) e b = (*) eb 1= : eb 1= 1 :eb 1 1 = 2 eb 1 e1 b= 2 ln (1 b) ln e = ln 2 ln(e) = 1 1 b = ln 2 + b ln 2 b = 1 ln 2 Somi lue die Funkionsgleichung: ( 1 ln 2 v() = e 40 ) Diese knn noch vereinfch werden: 4 ( 1 40 ) ( ln 2) 1 4 ( 1 v() = 10 e e = 10 e 40 ) 2 Bemerkung: 1 Alerniv könne mn die Gleichung (*) ( ) 40 + b e = uch so umformen: e(b 1) = : e(b 1) = 0,5 ln (b 1) ln e = ln 0, by Srk Verlgsgesellschf mbh & Co. KG

10 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Wegen ln (e) = 1 b 1 = ln 0,5 b = 1+ ln 0,5 Die Funkionsgleichung lue dnn: 4 ( ) 40 1 ln 0,5 v() = 10 e + + Wegen 1 + ln (0,5) = 1 ln (2) sind beide Funkionsgleichungen idenisch. g) Nowendige Bedingung für ein Mximum is, dss v ', b () = 0. = = folg wegen ( ) + b Aus ' 4 ( ) ( ) + b v, b() 10 e 1 0 e 0. 1 = 0 + = 1 is jedoch nur dnn erfüll, wenn = is. Ds bedeue, dss die Mximl selle bei = lieg. Prüfen, ob bei = ein Mximum lieg, is bei Teilufgbe f erledig, d > 0. Bedeuung Prmeer b in 4 (b ) v, b() = 10 e bei = cons. Es gil: 4 (b ) v, b() = 10 e v 4 b 1, b() = 10 e v 4 1 b, b() = 10 e e Wenn b größer wird, dnn wird uch ds Mximum bei konsnem größer by Srk Verlgsgesellschf mbh & Co. KG

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Brnch Nchrg Nr. 71 gemäß 10 Verkufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fssung) vom 6. Novemer 2006 zum Unvollsändigen Verkufsprospek vom 31. März 2005 üer Zerifike uf * üer FlexInves

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Übungsblatt zu Funktionenscharen

Übungsblatt zu Funktionenscharen Übungsbl zu Funkionenschren Seie von Gnzrionle Funkionen Ohne Inegrlrechnung Bei Funkionenschren Beispiel: f 6 erhäl mn für ein besimmes jeweils eine Funkion: Beispiel: : f : f Diese Funkionen hben Unerschiede,

Mehr

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk 5. Vlue Risk ls Insrumen zur Risikomessung 5.1. Allgemeines zum Vlue Risk Folien: Tnj Dresel, Luz Johnning,. Hns-Peer Burghof 61 5.1 Allgemeines zum Vlue--Risk Der Vlue--Risk einer Einzel- oder Gesmposiion

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe.. Skizzier man sich mi Hilfe des GTR drei Schaubilder der Schar (z.b. für =, = und = 4) ergeben sich folgende Skizzen:

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Mehrstufige Spiele mit beobachtbaren Handlungen

Mehrstufige Spiele mit beobachtbaren Handlungen 3. Wiederhole Spiele und kooperives Verhlen Mehrsufige Spiele mi beobchbren Hndlungen Idee: Ds Spiel sez sich us K+ Sufen zusmmen, wobei eine Sufe k us einem Teilspiel mi simulner Whl von Akionen k i beseh

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Der Zusammenhang zwischen Investitionsentscheidung, Finanzierung und steuerlichem Totalerfolg

Der Zusammenhang zwischen Investitionsentscheidung, Finanzierung und steuerlichem Totalerfolg Universiä Augsburg Prof. Dr. Hns Ulrich Buhl Kernkompeenzzenrum Finnz- & Informionsmngemen Lehrsuhl für BWL, Wirschfsinformik, Informions- & Finnzmngemen Diskussionsppier WI-7 Der Zusmmenhng zwischen Invesiionsenscheidung,

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Ohne Anspruch auf Vollständigkeit!!!

Ohne Anspruch auf Vollständigkeit!!! Mhemik Veuch eine Zummenfung de Abiu-Soffe Ohne Anpuch uf Volländigkei!!! ANALYSIS: Funkionuneuchung Funkionen: gnzionle Funkionen b e-funkionen c igonomeiche Funkionen Tngenen- und Nomlenbeimmung Okuven

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Ein Multiagentensystem zur Verhandlungsautomatisierung in elektronischen Märkten

Ein Multiagentensystem zur Verhandlungsautomatisierung in elektronischen Märkten Ein Muligenensysem zur Verhndlungsuomisierung in elekronischen Märken Von der Fkulä Mschinenbu der Universiä Sugr zur Erlngung der Würde eines Dokor-Ingenieurs (Dr.-Ing.) genehmige Abhndlung vorgeleg von

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11 Reder für den Einstz in der Wiederholungsphse im Mthemtikunterricht der Jhrgngsstufe Anhng zur schriftlichen Husrbeit zur Zweiten Sttsprüfung für ds Lehrmt n öffentlichen Schulen von Andres Rschke Vorwort

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Formelsammlung Lineare Regelungstechnik

Formelsammlung Lineare Regelungstechnik Formelsmmlung Linere Regelungsechnik Dniel Winz Ervin Mzlgić Dominik Imhof 5. Okober 205 0:23 2 Über diese Arbei Dies is ds Ergebnis einer Zusmmenrbei uf Bsis freier Texe ersell von Sudierenden der Fchhochschule

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

Beispiel-Abiturprüfung. Fach Mathematik

Beispiel-Abiturprüfung. Fach Mathematik Beispiel-Abiturprüfung in den Bildungsgängen des Berufskollegs. Leistungskurs Fch Mthemtik Fchbereich Technik mthe_lk_tech_beispielufg09_0085.doc Seite von 9 Konstruktionsmerkmle der Aufgbe rten Aufgbe

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Inaugural-Dissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften mit dem Thema

Inaugural-Dissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften mit dem Thema Inugurl-Disserion zur Erlngung des kdemischen Grdes eines Dokors der Wirschfswissenschfen mi dem Them Rechnungswesenorieniere Unernehmensbewerung Einsz und Eignung der kennzhlenorienieren Fundmenlnlyse

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Nachtrag Nr. 93 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständiger Verkaufsprospekt

Nachtrag Nr. 93 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständiger Verkaufsprospekt Nachrag Nr. 93 a gemäß 10 Verkaufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fassung) vom 27. Okoer 2006 zum Unvollsändiger Verkaufsprospek vom 31. März 2005 üer Zerifikae auf * ezogen auf opzins

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Kreis und Kreisteile. - Aufgaben Teil 2 -

Kreis und Kreisteile. - Aufgaben Teil 2 - - Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

FKOM Applikationen mit 6LoWPAN

FKOM Applikationen mit 6LoWPAN FKOM Applikaionen mi 6LoWPAN IPv6 LowPower Wireless Personal Area Nework ) RAVEN-LCD-IO-Board-Prooyp Vorlesung FKOM 10.10.2011 Dipl. Inf. ( FH ) Sefan Konrah 6LoWPAN ( IPv6 LowPower Wireless Personal Area

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis 2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt

Mehr

Bewertung von Versicherungsrisiken mittels des Äquivalenznutzenprinzips

Bewertung von Versicherungsrisiken mittels des Äquivalenznutzenprinzips Bewerung von Versicherungsrisiken miels des Äquivalenznuzenprinzips Diplomarbei zur Erlangung des akademischen Grades Diplom-Wirschafsmahemaiker der Fakulä für Mahemaik und Wirschafswissenschafen der Universiä

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung:

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung: mi RAM- und Flash- peicherbänken Abb. (L- Nr. 2.600) Auf einen Blick: 16 peicheradressen für prachaufzeichnung: - bis zu 8 Bänke im RAM- peicher (flüchig) - bis zu 8 Bänke im Flash- peicher (permanen)

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

2.1 Produktion und Wirtschaftswachstum - Das BIP

2.1 Produktion und Wirtschaftswachstum - Das BIP 2.1 Produkion und Wirschafswachsum - Das BIP DieVolkswirschafliche Gesamrechnung(VGR)is das Buchführungssysem des Saaes. Sie wurde enwickel, um die aggregiere Wirschafsakiviä zu messen. Die VGR liefer

Mehr

Faktor 4x Short Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Short Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Shor Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN / Common Code Fakor 4x Shor DAXF Index 11617870 / CBSDX DE000CZ33BA7 / CZ33BA Bezugswer üblicherweise der an der Maßgeblichen

Mehr

PPS-Auswahl und -einsatz - weniger ist mehr!

PPS-Auswahl und -einsatz - weniger ist mehr! Prof. Dr.-Ing. Wilhelm Dangelmaier Einleiung Die eine Aussage dieser Überschrif is: Auswahlprozesse für die Produkionsplanung und -seuerung laufen nich immer so ab, dass schließlich das geeigneese Sysem

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

REX und REXP. - Kurzinformation -

REX und REXP. - Kurzinformation - und P - Kurzinformaion - July 2004 2 Beschreibung von Konzep Anzahl der Were Auswahlkrierien Grundgesamhei Subindizes Gewichung Berechnung Basis Berechnungszeien Gewicheer Durchschniskurs aus synheischen

Mehr

Faktor 4x Short Natural Gas II Zertifikat (SVSP-Produktcode: 2300)

Faktor 4x Short Natural Gas II Zertifikat (SVSP-Produktcode: 2300) Fakor 4x Shor Naural Gas II Zerifika (SVSP-Produkcode: 2300) KAG Hinweis Emienin: Raing: Zerifikaear: SVSP-Code Verbriefung: Die Werpapiere sind keine Kollekivanlage im Sinne des schweizerischen Bundesgesezes

Mehr

MEA DISCUSSION PAPERS

MEA DISCUSSION PAPERS Ale und neue Wege zur Berechnung der Renenabschläge Marin Gasche 01-2012 MEA DISCUSSION PAPERS mea Amaliensr. 33_D-80799 Munich_Phone+49 89 38602-355_Fax +49 89 38602-390_www.mea.mpisoc.mpg.de Ale Nummerierung:

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

XING Events. Kurzanleitung

XING Events. Kurzanleitung XING Events Kurznleitung 00 BASIC nd PLUS Events 2 Die Angebotspkete im Überblick Wählen Sie zwischen zwei Pketen und steigern Sie jetzt gezielt den Erfolg Ihres Events mit XING. Leistungen Event BASIS

Mehr