Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2"

Transkript

1 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung der äglichen Verkufszhlen eines neu eingeführen Smrphones schläg die Plnungsbeilung von PEAR die Modellfunkion v vor mi v() = e 0,02 mi 0 wobei die Zei in Tgen sei Beginn der Mrkeinführung und v() die m Tg verkufe Anzhl von Smrphones drsell. Die folgende Tbelle zeig, wie viele Smrphones des Modells S2013 nch seiner Mrkeinführung pro Tg verkuf wurden. in Tgen Verkufszhlen in Sück Punke ) Besäigen Sie, dss die Funkion v die äglichen Verkufszhlen des Smrphones S2013 ngenäher wiedergib. 10 In der Anlge is der Grph von v drgesell. b) Beschreiben Sie kurz den Verluf des Grphen quliiv. Inerpreieren Sie druf Bezug nehmend die Enwicklung der Verkufszhlen im Anwendungskonex. Vergleichen Sie ds Modell hinsichlich des Lngzeiverhlens mi einer relisischen Enwicklung der Verkufszhlen. 15 c) Besäigen Sie, dss gil: v'() = e 0,02 (1 0,02) Berechnen Sie, n welchem Tg die meisen Smrphones S2013 verkuf werden, und berechnen Sie die ensprechende Verkufszhl. 15 Hinweis: D us der Abbildung deulich wird, dss der einzige Exrempunk ein Hochpunk is, reich die Unersuchung der nowendigen Bedingung. Eine Smmfunkion V von v h die Gleichung V() = ( 50 e 0, e 0,02 ). 100 d) Ermieln Sie den Wer des Inegrls 0 v() d. Inerpreieren Sie ds Inegrl im gegebenen Anwendungskonex by Srk Verlgsgesellschf mbh & Co. KG

2 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Für die Firm PEAR is es us verschiedenen Gründen sinnvoll, den Produkzyklus (d. h. die Zei vom ersen bis zum lezen verkufen Smrphone) zu begrenzen. Zur Vereinfchung der Prognose der insgesm in den Verkuf gehenden Smrphones S2013 sez die Plnungsbeilung b dem Wendepunk der Verkufszhlenenwicklung eine linere Abnhme der äglichen Verkufszhlen n, d. h. mn ersez b dem Wendepunk der Funkion v den weieren Verluf des Funkionsgrphen durch die Wendengene. Die Koordinen des Wendepunks sind gerunde W( ). e) Besimmen Sie die Gleichung der Wendengene. Zeichnen Sie die Wendengene in ds Koordinensysem in der Anlge. Ermieln Sie den Zeipunk, b dem nch diesem Modell keine Smrphones mehr verkuf werden. Besimmen Sie die Anzhl der Smrphones, die nch diesem Modell b dem Zeipunk w = 100 insgesm noch verkuf werden. 20 Aus Erfhrung weiß die Plnungsbeilung, dss sie die Verkufszhlenfunkion v in regelmäßigen Absänden vriieren muss, um sie n ds sich verändernde Verbrucherverhlen nzupssen. Bereis für ds Nchfolgemodell von dem hier bercheen Smrphone S2013 is dmi zu rechnen, dss schon m 40. Tg ds Verkufszhlenmximum von Smrphones erreich wird. Die Plnungsbeilung verwende den llgemeinen Ansz 1 v () = e( + b ) mi > 0, b 0., b f) Besimmen Sie und b so, dss die neue Verkufszhlenfunkion die Prognose für den Zeipunk und den Wer des Verkufszhlenmximums für ds Nchfolgemodell erfüll. 15 g) Ermieln Sie, welchen Einfluss der Prmeer uf die Lge der Mximlselle von v, b h. Ermieln Sie, welchen Einfluss der Prmeer b (für einen fesen Wer des Prmeers ) uf den Wer des Mximums von v, b h by Srk Verlgsgesellschf mbh & Co. KG

3 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Anlge zur Aufgbe Smrphones Hinweise und Tipps Teilufgbe r Mihilfe einer Punkprobe knn eine Besäigung erfolgen. r Vergleichen Sie die so berechneen Verkufszhlen mi denen in der Tbelle erfssen. Teilufgbe b r Suchen Sie chrkerisische Punke des Grphen wie Nullselle, Hoch- und Tiefpunk (Mximum, Minimum), Wendepunk. r Berchen ds Monoonieverhlen (seigend, fllend) jeweils zwischen zwei Zeibschnien. r Inerpreieren Sie die Verlufseigenschfen im Zusmmenhng mi den Verkufszhlen. r Vergleichen Sie ds Modell bezüglich des Lngzeiverhlens mi einer Enwicklung der Verkufszhlen in der Reliä. Teilufgbe c Besäigung r Besimmen Sie die Ableiungsfunkion v'() mihilfe der Produk- und Keenregel. Zeipunk der mximlen Verkufsmenge und ensprechende Verkufszhl r Zeipunk der mximlen Verkufsmenge und die ensprechende Verkufszhl liegen beim Hochpunk der Funkion v() by Srk Verlgsgesellschf mbh & Co. KG

4 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 r Nowendige Bedingung für die Exisenz des Hochpunkes is, dss v'() = 0 is. r Nch Aufgbensellung is die 2. Ableiung für ds Prüfen der hinreichenden Bedingung v''() < 0 nich erforderlich. r Lösen Sie die Gleichung v'() = 0, Sie erhlen den Zeipunk für die mximle Verkufsmenge r Durch Einsezen des für gefundenen Weres in die Gleichung v() erhlen Sie die mximle Verkufsmenge. Teilufgbe d r Die Smmfunkion is vorgegeben, somi können Sie ds Inegrl berechnen. r Deuen Sie ds Inegrl. Ws sell die Fläche uner der Kurve im Inervll [0; 100] dr? Teilufgbe e Wendengene r Sellen Sie die llgemeine Wendengene in Form einer Gerdengleichung dr. r Die erse Ableiung n einer Selle der Funkion is gleich dem Ansieg m der Tngene in diesem Punk. r Sezen Sie nun m und die Koordinen von W in die Gerdengleichung der Tngene ein. r Geben Sie die Gleichung der Wendengene n und zeichnen diese in ds Koordinensysem ein. Zeipunk, b dem nch diesem Modell keine Smrphones mehr verkuf werden r Wegen der lineren Abnhme der Verkufszhlen liefer die Nullselle der Wendengene w() den gesuchen Zeipunk. r Sezen Sie w() = 0 und besimmen diesen Zeipunk. Anzhl der verkufen Smrphones b dem 100. Tg r Berechnen Sie ds Inegrl über w() in den Grenzen von 100 bis 200. r Alerniv können Sie die Fläche uner der Kurve von w() und der -Achse uch elemenrgeomerisch berechnen ls Flächeninhl des rechwinkligen Dreiecks mi den Eckpunken (100 0); (200 0) und ( ). Teilufgbe f r Bilden Sie die 1. Ableiung von v, b () mihilfe der Produk- und Keenregel. r Besimmen Sie den Prmeer durch Einsezen. r Die hinreichende Bedingung für ein Mximum knn über einen Vorzeichenwechsel von v () geprüf werden. ' 40, b r Besimmen Sie den Prmeer b mihilfe der Angben und geben Sie die Funkionsgleichung v() n by Srk Verlgsgesellschf mbh & Co. KG

5 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Teilufgbe g r In Teilufgbe f hben Sie die 1. Ableiung von v, b (), die us einem Produk beseh, gebilde. r Welcher der beiden Terme führen zur nowendigen Bedingung v ', b () = 0? r Dmi können Sie eine Aussge drüber mchen, welchen Einfluss der Prmeer uf die Mximlselle h. r Mi v, b () können Sie den Einfluss des Prmeers b bei konsnem Wer für uf die Mximlselle mchen. ) v() = e 0,02 Einsezen der -Were: v(0) = e 0,02 0 = 0 Lösung v(10) = e 0,02 10 = v(30) = e 0,02 30 = v(60) = e 0,02 60 = Die in der Tbelle ngegebenen Were können nnähernd mihilfe der Funkion v() besimm werden. b) Zunächs seig der Grph bis zum Hochpunk n, nschließend fäll er und h einen Wendepunk, der ew bei 100 Tgen lieg. Nch dem Wendepunk wird der Grph immer flcher, d. h. sein Gefälle wird immer kleiner und er näher sich der -Achse sympoisch. Ds uf dem Mrk neu eingeführe Smrphone h sehr schnell die mximle Nchfrge erreich (nch ew 50 Tgen). Anschließend nehmen die Verkufszhlen b, bis lezendlich keines mehr verkuf wird. Nchdem eine Säigung des Mrkes eingereen is (bei ew 50 Tgen), nehmen die Verkufszhlen wieder b, ws uch relisisch is. Bei diesem Modell gehen über einen längeren Zeirum die Verkufszhlen der Hndys gegen null, so is z. B. v(800) 1. Ds is unrelisisch. c) Ableien mihilfe der Produkregel und Keenregel: u = , u' = v = e 0,02, v' = 0,02 e 0, v'() = e 0, ( 0,02 e 0,02 ) v'() = e 0,02 (1 0,02) (w. z. z. w) 2013 by Srk Verlgsgesellschf mbh & Co. KG

6 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Zeipunk, zu dem die meisen Smrphones verkuf werden, is der Hochpunk des Grphen der Funkion. Nowendige Bedingung für Exremselle: v'() = e 0,02 (1 0,02) = 0 : D e 0, ,02 = 0 + 0,02 1 = 0,02 : 0,02 = 50 Hinreichende Bedingung muss lu Aufgbensellung nich geprüf werden. Verkufsmenge: v(50) = e 0,02 50 = e v(50) = = ,72 e Am 50. Tg nch der Einführung des Smrphones S2013 werden die meisen verkuf, und zwr c Sück. d) 100 v() d [V()] 100 0,02 0, [ ( 50 e e = = )] 0 0 = [ e 0,02 ( + 50)] = e ( e0 50) 7,5 107 = + 2,5 107 e2 7 7,5 = 10 2, , e2 1, Mi dem Inegrl wird näherungsweise die Anzhl der Smrphones S2013 ermiel, die mi dem mhemischen Modell in den ersen 100 Tgen nch der Mrkeinführung verkuf wurden, hier lso 14,8 Mio. Sück. e) Wendengene w() = m + n Gegebener Wendepunk: W( ) Mi v'() = e 0,02 (1 0,02) is m = v'(100) = 10 e (1 0,02 100) = 1353 e by Srk Verlgsgesellschf mbh & Co. KG

7 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Koordinen von W und m in w() einsezen: = n = + n + e e e 106 n = e Dmi lue die Gleichung für die Wendengene w() = e2 e2 Wendengene einzeichnen: Zeipunk, b dem nch diesem Modell keine Smrphones mehr verkuf werden: Nullselle der Wendengene ergib den gesuchen Zeipunk. w() = = = : = 1353 = 200, Der Verkuf des Smrphones S2013 ende nch ew 200 Tgen by Srk Verlgsgesellschf mbh & Co. KG

8 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Anzhl der Smrphones, die nch diesem Modell b dem Zeipunk W = 100 noch verkuf werden: w() d = ( ) d = = = = ,8 106 Ab dem 100. Tg werden ew 6,8 Millionen Smrphones bis zum 200. Tg verkuf. Alernive Lösung (elemenrgeomerisch): Die Punke (100 0), (200 0) und ( ) bilden ein rechwinkliges Dreieck, für die Fläche dieses Dreiecks gil: A = = , f) ( ) b v, b() e + = mi > 0, b 0 v ', b(40) = 0 v, b(40) = Ableiung v, b () mihilfe der Produk- und Keenregel: u = u' = ( + b ) ' 1 ( + b v ) 1= e v1= e 1 1 ' ( + b) 1 ( + b v ), b () = e e 1 ' ( + b ) v, b () = e ( 1 ) Mi v ', b (40) 0 = ( 40 ) ( ) + b ( + b ) 40 ( ) e 1 = 0 : e 1 = by Srk Verlgsgesellschf mbh & Co. KG

9 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 40 D ( ) + b e 0 Prüfen, ob Mximum vorlieg = = = 40 Die hinreichende Bedingung knn mihilfe Vorzeichenwechsel von geprüf werden: 1 v ' 40 40, b () = < > 40 v ' 40, b () An der Selle = 40 lieg ein Vorzeichenwechsel von Plus nch Minus vor. Somi h v 40, b () n der Selle = 40 ein Mximum. Es gil: v 40, b (40) = ( 1 ) e b = (*) eb 1= : eb 1= 1 :eb 1 1 = 2 eb 1 e1 b= 2 ln (1 b) ln e = ln 2 ln(e) = 1 1 b = ln 2 + b ln 2 b = 1 ln 2 Somi lue die Funkionsgleichung: ( 1 ln 2 v() = e 40 ) Diese knn noch vereinfch werden: 4 ( 1 40 ) ( ln 2) 1 4 ( 1 v() = 10 e e = 10 e 40 ) 2 Bemerkung: 1 Alerniv könne mn die Gleichung (*) ( ) 40 + b e = uch so umformen: e(b 1) = : e(b 1) = 0,5 ln (b 1) ln e = ln 0, by Srk Verlgsgesellschf mbh & Co. KG

10 Hmburg Mhemik Zenrlbiur 2013: Erhöhes Anforderungsniveu Anlysis 2 Wegen ln (e) = 1 b 1 = ln 0,5 b = 1+ ln 0,5 Die Funkionsgleichung lue dnn: 4 ( ) 40 1 ln 0,5 v() = 10 e + + Wegen 1 + ln (0,5) = 1 ln (2) sind beide Funkionsgleichungen idenisch. g) Nowendige Bedingung für ein Mximum is, dss v ', b () = 0. = = folg wegen ( ) + b Aus ' 4 ( ) ( ) + b v, b() 10 e 1 0 e 0. 1 = 0 + = 1 is jedoch nur dnn erfüll, wenn = is. Ds bedeue, dss die Mximl selle bei = lieg. Prüfen, ob bei = ein Mximum lieg, is bei Teilufgbe f erledig, d > 0. Bedeuung Prmeer b in 4 (b ) v, b() = 10 e bei = cons. Es gil: 4 (b ) v, b() = 10 e v 4 b 1, b() = 10 e v 4 1 b, b() = 10 e e Wenn b größer wird, dnn wird uch ds Mximum bei konsnem größer by Srk Verlgsgesellschf mbh & Co. KG

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum www.mhe-ufgben.com Aufgben us Zenrlen Klssenrbeien Mhemik 96-99 (Bden-Würemberg) zu Logrihmen und Wchsum ZK 96 ) Besimme mi Hilfe der Definiion des Logrihmus : ) 6 b) c) d) 0 000 ) Es is 0, 6. Berechne

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Brnch Nchrg Nr. 71 gemäß 10 Verkufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fssung) vom 6. Novemer 2006 zum Unvollsändigen Verkufsprospek vom 31. März 2005 üer Zerifike uf * üer FlexInves

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 04 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 04 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Mhe-Abiur b : Fundus für den Pflichbereich Lösungen) Die Auoren übernehmen keine Grnie für die Richigkei der Lösungen. Auch wurde sicher nich immer der kürzese und elegnese Lösungsweg eingeschlgen. Einfche

Mehr

10 Gewöhnliche Differentialgleichungen

10 Gewöhnliche Differentialgleichungen Mhemik für Physiker III, WS 212/213 Diensg 5.2 $Id: ode.ex,v 1.1 213/2/6 13:25:6 hk Exp $ $Id: picrd.ex,v 1.3 213/2/6 1:22:12 hk Exp $ 1 Gewöhnliche Differenilgleichungen 1.8 Inhomogene linere Differenilgleichungen

Mehr

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10

Analysis: Exponentielles Wachstum Analysis Übungsaufgaben zum Exponentiellen Wachstum zum Einstieg Gymnasium Klasse 10 www.mhe-ufgben.com Anlysis: Eponenielles Wchsum Anlysis Übungsufgben zum Eponeniellen Wchsum zum Einsieg Gymnsium Klsse 1 Alender Schwrz www.mhe-ufgben.com Jnur 214 1 www.mhe-ufgben.com Anlysis: Eponenielles

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

3.2. Flächenberechnungen

3.2. Flächenberechnungen Anlysis Inegrlrechnung.. Flächenerechnungen... Die Flächenfunkion ) Flächenfunkionen ufzeichnen Skizziere zur gegeenen Funkion diejenige Funkion, welche die Fläche unerhl der Funkionskurve miss. Die Flächenfunkion

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t:

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t: Lösungen Abiur Leisungskurs Mhemik www.mhe-schule.de Seie von 9 P Anlysis = R, ² k.. p = + b+, b, R Ableiungen: k' ( ) = = p' = + b Berechnung der Koeffizienen: ; p =.. S : () p' () k' () + b + = b= =

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2 Green-Funkion Wir berchen (z. B.) eine inhomogene linere DGL 2. Ordnung y +y = r() Die llgemeine Lösung mi y() = und y( π 2 ) = (Rndwerufgbe) sez sich us der llgemeinen Lösung der zugehörigen homogenen

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Zusammenfassung: Geraden und Ebenen

Zusammenfassung: Geraden und Ebenen LGÖ Ks M Schuljhr 06/07 Zusmmenfssung: Gerden und Ebenen Inhlsverzeichnis Gerden Gegenseiige Lge von Gerden 4 Ebenen 6 Gegenseiige Lge von Gerden und Ebenen Gegenseiige Lge von Ebenen 5 ür Experen 8 Gerden

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Übungsblatt zu Funktionenscharen

Übungsblatt zu Funktionenscharen Übungsbl zu Funkionenschren Seie von Gnzrionle Funkionen Ohne Inegrlrechnung Bei Funkionenschren Beispiel: f 6 erhäl mn für ein besimmes jeweils eine Funkion: Beispiel: : f : f Diese Funkionen hben Unerschiede,

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg)

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg) Lösung Abiurprüfung 2 Grundkurs (Baden-Würemberg) Analysis, Aufgabe I.1. a) ( x) = 1 [( x)3 9 ( x)]= 1 ( x3 + 9x)= 1 ( x3 9x) = ( x) Somi is (x ) punksymmerisch zum Ursprung. ( x) = 1 (x3 9x)= x(x 2 9)=

Mehr

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funkionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 7 Sand 3. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft KA LK M2 13 18. 11. 05 I. ANALYSIS Leisungsfachanforderungen Für jedes > 0 is eine Funkion f gegeben durch f (x) = x + 1 e x ; x IR. Der Graph von f sei G. a) Unersuche G auf Asympoen, Nullsellen, Exrem-

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

, B liegen. 4. Untersuche die Lage von g und h und bestimme gegebenenfalls den Schnittpunkt:

, B liegen. 4. Untersuche die Lage von g und h und bestimme gegebenenfalls den Schnittpunkt: Lebeziehunen - Lösunen. Prüfen sie ob die Punke A5, B und C : x lieen. A ; B ; C. Prüfen sie ob die Punke A 4, B 4 und C 7 : x lieen. A ; B ; C. Prüfen sie ob die Punke A 4 und B : x x x lieen. A ; B in

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Mehrstufige Spiele mit beobachtbaren Handlungen

Mehrstufige Spiele mit beobachtbaren Handlungen 3. Wiederhole Spiele und kooperives Verhlen Mehrsufige Spiele mi beobchbren Hndlungen Idee: Ds Spiel sez sich us K+ Sufen zusmmen, wobei eine Sufe k us einem Teilspiel mi simulner Whl von Akionen k i beseh

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Lösung Aufgabe.. Skizzier man sich mi Hilfe des GTR drei Schaubilder der Schar (z.b. für =, = und = 4) ergeben sich folgende Skizzen:

Mehr

Universität Passau Lehrstuhl für Finanzierung

Universität Passau Lehrstuhl für Finanzierung Universiä Pssu Lehrsuhl für Finnzierung Nuzenfunkionen und Risikoversion Snd 26..2 Um ds Bernoulli-Prinzi (execed-uiliy-rincile) zu konkreisieren, is die Sezifikion einer (von Neumnn - Morgensern -) Nuzenfunkion

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk 5. Vlue Risk ls Insrumen zur Risikomessung 5.1. Allgemeines zum Vlue Risk Folien: Tnj Dresel, Luz Johnning,. Hns-Peer Burghof 61 5.1 Allgemeines zum Vlue--Risk Der Vlue--Risk einer Einzel- oder Gesmposiion

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

2. Funktionen in der Ökonomie

2. Funktionen in der Ökonomie FHW, ZSEBY, ANALYSIS - - Funktionen in der Ökonomie Beispiele: qudrtische Funktionen, Eponentilfunktion Qudrtische Funktionen Einfchste qudrtische Funktion: y = Allgemeine qudrtische Funktion: y = + b

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Gomory-Hu Bäume. Jens M. Schmidt V-S V-X Jens M. Schmidt

Gomory-Hu Bäume. Jens M. Schmidt V-S V-X Jens M. Schmidt Gomory-Hu Bäume S V-S X V-X Üerlick Flussäquivlene Grphen und Gomory-Hu Bäume Nich-kreuzende Schnie, Symmerische Sumodulre Mengenfunkionen Algorihmus von Gomory und Hu Fluss-äquivlene Grphen Sei G ungeriche

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg)

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg) Lösung Abiurprüfung 1994 Leisungskurs (Baden-Würemberg) Analysis I.1. a) D f = IR / { 1 } f x= = K besiz keine Nullsellen 1x f ' x= 8 1x = 8 K besiz keine Exremsellen senkreche Asymoe : x= 1 waagereche

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder

Mehr

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym)

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym) Ein Kluger dent so viel, dss er eine Zeit zum Reden ht. Ein Dummer redet so viel, dss er eine Zeit zum Denen ht. (Anonym) 6 Gnzrtionle Funtionen 6 Gnzrtionle Funtionen Wir wollen nun uch Funtionen betrchten,

Mehr

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen.

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen. Lebezieunen Lebezieunen Wir wollen nun die eenseiie Le von Punken, Gerden und benen unersucen.. Le eines Punkes bezülic einer Gerden Ds is eine scon beknne Übun. Nics deso roz ier noc einml ein Beispiel.

Mehr

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Knton St.Gllen Bildungsdeprtement St.Gllische Kntonsschulen Gymnsium Aufnhmeprüfung 2016 Mthemtik 1 (ohne Tschenrechner) Duer: 90 Minuten Kndidtennummer: Geburtsdtum: Korrigiert von: Punktzhl/Note: Aufgbe

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr