Computeralgebra in der Lehre am Beispiel Kryptografie

Größe: px
Ab Seite anzeigen:

Download "Computeralgebra in der Lehre am Beispiel Kryptografie"

Transkript

1 Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin

2 Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit öffentlichem Schlüssel Mathematische Grundlagen für RSA Das Kryptografiesystem RSA Das Computeralgebrasystem KASH

3 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice und Bob Einigen sich auf einen geheimen Schlüssel.

4 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice und Bob Einigen sich auf einen geheimen Schlüssel. Alice Verschlüsselt eine Nachricht mit dem geheimen Schlüssel und schickt sie an Bob.

5 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice und Bob Einigen sich auf einen geheimen Schlüssel. Alice Verschlüsselt eine Nachricht mit dem geheimen Schlüssel und schickt sie an Bob. Bob Entschlüsselt die Nachricht mit dem geheimen Schlüssel.

6 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice und Bob Einigen sich auf einen geheimen Schlüssel. Alice Verschlüsselt eine Nachricht mit dem geheimen Schlüssel und schickt sie an Bob. Bob Entschlüsselt die Nachricht mit dem geheimen Schlüssel. Nachteil: Alice und Bob müssen miteinander kommunizieren um sich auf einen geheimen Schlüssel zu einigen, den sie für sichere Kommunikation verwenden.

7 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit öffentlichem Schlüssel Schlüsselverzeichnis Bob Erzeugt öffentlichen und privaten Schlüssel.

8 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit öffentlichem Schlüssel Schlüsselverzeichnis Bobs Schlüssel Bob Erzeugt öffentlichen und privaten Schlüssel. Veröffentlicht den öffentlichen Schlüssel

9 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit öffentlichem Schlüssel Schlüsselverzeichnis Bobs Schlüssel Bob Erzeugt öffentlichen und privaten Schlüssel. Veröffentlicht den öffentlichen Schlüssel Alice Erhält Bobs öffentlichen Schlüssel aus dem Schlüsselverzeichnis.

10 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit öffentlichem Schlüssel Schlüsselverzeichnis Bobs Schlüssel Bob Erzeugt öffentlichen und privaten Schlüssel. Veröffentlicht den öffentlichen Schlüssel Alice Erhält Bobs öffentlichen Schlüssel aus dem Schlüsselverzeichnis. Verschickt eine mit Bobs öffentlichem Schlüssel verschlüsselte Nachricht.

11 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit öffentlichem Schlüssel Schlüsselverzeichnis Bobs Schlüssel Bob Erzeugt öffentlichen und privaten Schlüssel. Veröffentlicht den öffentlichen Schlüssel Alice Erhält Bobs öffentlichen Schlüssel aus dem Schlüsselverzeichnis. Verschickt eine mit Bobs öffentlichem Schlüssel verschlüsselte Nachricht. Bob Entschlüsselt die Nachricht von Alice mit seinem privaten Schlüssel.

12 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Realisierung von Kryptografie mit öffentlichen Schlüsseln Trapdoor Funktionen Können leicht berechnet werden, aber nicht in vertretbarer Zeit invertiert werden. Kennt man aber ein Geheimnis, so kann man die Funktion auch effizient invertieren.

13 Kryptografie Grundlagen RSA KASH mit geheimem mit öffentlichem Schlüssel Realisierung Realisierung von Kryptografie mit öffentlichen Schlüsseln Trapdoor Funktionen Können leicht berechnet werden, aber nicht in vertretbarer Zeit invertiert werden. Kennt man aber ein Geheimnis, so kann man die Funktion auch effizient invertieren. Beispiele Multiplizieren ist sehr viel einfacher als Faktorisieren. In endlichen Strukturen ist Exponenzieren sehr viel einfacher als Wurzeln zu ziehen. In endlichen Strukturen ist Exponenzieren sehr viel einfacher als Logarithmen zu berechnen.

14 Division mit Rest Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Definition Seien a, b N. Dann gibt es q, r N mit a = qb + r und 0 r < b. Die Zahl r heißt Rest der Division von a durch b und wird mit r = a mod b bezeichnet.

15 Division mit Rest Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Definition Seien a, b N. Dann gibt es q, r N mit a = qb + r und 0 r < b. Die Zahl r heißt Rest der Division von a durch b und wird mit r = a mod b bezeichnet. Bemerkung Wenn r = a mod b, dann gibt es q Z mit r a = qb.

16 Division mit Rest Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Definition Seien a, b N. Dann gibt es q, r N mit a = qb + r und 0 r < b. Die Zahl r heißt Rest der Division von a durch b und wird mit r = a mod b bezeichnet. Beispiele

17 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Kleiner Fermatscher Satz Satz Sei p eine Primzahl, dann gilt x p 1 mod p = 1 für alle x {1,..., p 1}.

18 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Kleiner Fermatscher Satz Satz Sei p eine Primzahl, dann gilt x p 1 mod p = 1 für alle x {1,..., p 1}. Beweis (i) Sei 1 a p 1. Wenn x, y {1,..., p 1} mit x y dann ax mod p ay mod p.

19 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Kleiner Fermatscher Satz Satz Sei p eine Primzahl, dann gilt x p 1 mod p = 1 für alle x {1,..., p 1}. Beweis (i) Sei 1 a p 1. Wenn x, y {1,..., p 1} mit x y dann ax mod p ay mod p. Angenommen ax mod p = ay mod p dann a(x y) mod p = 0. Da (p 1) < x y < p 1 folgt x y = 0.

20 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Kleiner Fermatscher Satz Satz Sei p eine Primzahl, dann gilt x p 1 mod p = 1 für alle x {1,..., p 1}. Beweis (i) Sei 1 a p 1. Wenn x, y {1,..., p 1} mit x y dann ax mod p ay mod p. (ii) Sei 1 a p 1. Wegen (i) gilt {1,..., p 1} = {a 1 mod p,..., a (p 1) mod p}. Also p 1 b=1 b mod p = p 1 b=1 ab mod p = ap 1 p 1 b=1 b mod p und damit a p 1 mod p = 1.

21 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Kleiner Fermatscher Satz Satz Sei p eine Primzahl, dann gilt x p 1 mod p = 1 für alle x {1,..., p 1}. Beispiele

22 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Euklidischer Algorithmus Seien r 0, r 1 N mit r 0 > r 1. Bestimme q 2 und 0 < r 2 < r 1 so dass r 0 = q 2 r 1 + r 2.. Bestimme q i+2 und 0 < r i+2 < r i+1 so dass r i = q i+2 r i+1 + r i+2.. Bis zu q m mit r m 1 = q m r m. r m ist größter gemeinsamer Teiler von r 0 und r 1.

23 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Euklidischer Algorithmus Seien r 0, r 1 N mit r 0 > r 1. Bestimme q 2 und 0 < r 2 < r 1 so dass r 0 = q 2 r 1 + r 2.. Bestimme q i+2 und 0 < r i+2 < r i+1 so dass r i = q i+2 r i+1 + r i+2.. Bis zu q m mit r m 1 = q m r m. r m ist größter gemeinsamer Teiler von r 0 und r 1. r m teilt r m 1, r m teilt r m 2,...,r m teilt r 1 und r m teilt r 0. Also ist r m Teiler von r 0 und r 1.

24 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Euklidischer Algorithmus Seien r 0, r 1 N mit r 0 > r 1. Bestimme q 2 und 0 < r 2 < r 1 so dass r 0 = q 2 r 1 + r 2.. Bestimme q i+2 und 0 < r i+2 < r i+1 so dass r i = q i+2 r i+1 + r i+2.. Bis zu q m mit r m 1 = q m r m. r m ist größter gemeinsamer Teiler von r 0 und r 1. r m teilt r m 1, r m teilt r m 2,...,r m teilt r 1 und r m teilt r 0. Also ist r m Teiler von r 0 und r 1. Ein gemeinsamer Teiler t von r 0 und r 1 teilt auch r i für i m. Also teilt jeder gemeinsame Teiler von r 0 und r 1 sie Zahl r m.

25 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Euklidischer Algorithmus Seien r 0, r 1 N mit r 0 > r 1. Bestimme q 2 und 0 < r 2 < r 1 so dass r 0 = q 2 r 1 + r 2.. Bestimme q i+2 und 0 < r i+2 < r i+1 so dass r i = q i+2 r i+1 + r i+2.. Bis zu q m mit r m 1 = q m r m. r m ist größter gemeinsamer Teiler von r 0 und r 1. r m teilt r m 1, r m teilt r m 2,...,r m teilt r 1 und r m teilt r 0. Also ist r m Teiler von r 0 und r 1. Ein gemeinsamer Teiler t von r 0 und r 1 teilt auch r i für i m. Also teilt jeder gemeinsame Teiler von r 0 und r 1 sie Zahl r m. Daher ist r m der grösste gemeinsame Teiler von r 0 und r 1.

26 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Euklidischer Algorithmus Seien r 0, r 1 N mit r 0 > r 1. Bestimme q 2 und 0 < r 2 < r 1 so dass r 0 = q 2 r 1 + r 2.. Bestimme q i+2 und 0 < r i+2 < r i+1 so dass r i = q i+2 r i+1 + r i+2.. Bis zu q m mit r m 1 = q m r m. r m ist größter gemeinsamer Teiler von r 0 und r 1. Es gibt b, c Z mit br 0 + cr 1 = r m = ggt(r 0, r 1 ). r 2 = r 0 q 1 r 1, r 3 = r 1 q 2 r 2 = (1 + q 1 q 2 )r 1 q 2 r 0,... Also läßt sich r m als Linearkombination vom r 0 und r 1 darstellen.

27 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Euklidischer Algorithmus Seien r 0, r 1 N mit r 0 > r 1. Bestimme q 2 und 0 < r 2 < r 1 so dass r 0 = q 2 r 1 + r 2.. Bestimme q i+2 und 0 < r i+2 < r i+1 so dass r i = q i+2 r i+1 + r i+2.. Bis zu q m mit r m 1 = q m r m. r m ist größter gemeinsamer Teiler von r 0 und r 1. Es gibt b, c Z mit br 0 + cr 1 = r m = ggt(r 0, r 1 ). Zu a, n N mit ggt(a, n) = 1 bestimme b Z mit ba mod n = 1. Es gibt b, c Z mit ba + cn = 1, also ba = 1 cn und ba mod n = 1.

28 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Chinesischer Restsatz Chinesischer Restsatz Seien a, b, p, q N mit ggt(p, q) = 1, 0 a < p und 0 b < q. Es gibt ein modulo pq eindeutig bestimmtes x N mit x mod p = a und x mod q = b.

29 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Chinesischer Restsatz Chinesischer Restsatz Seien a, b, p, q N mit ggt(p, q) = 1, 0 a < p und 0 b < q. Es gibt ein modulo pq eindeutig bestimmtes x N mit x mod p = a und x mod q = b. Existenz Bestimme c, d N mit qc mod p = 1 und pd mod q = 1. Setze x = acq + bdp mod pq. Dann x mod p = a und x mod q = b.

30 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Chinesischer Restsatz Chinesischer Restsatz Seien a, b, p, q N mit ggt(p, q) = 1, 0 a < p und 0 b < q. Es gibt ein modulo pq eindeutig bestimmtes x N mit x mod p = a und x mod q = b. Existenz Bestimme c, d N mit qc mod p = 1 und pd mod q = 1. Setze x = acq + bdp mod pq. Dann x mod p = a und x mod q = b. Eindeutigkeit Zu jeder der pq Kombinationen von 0 a < p und 0 b < q gibt es ein x. Es gibt pq Zahlen mit 0 x < pq also ist x eindeutig.

31 Kryptografie Grundlagen RSA KASH mod Fermat Euklid Chinesischer Restsatz Chinesischer Restsatz Chinesischer Restsatz Seien a, b, p, q N mit ggt(p, q) = 1, 0 a < p und 0 b < q. Es gibt ein modulo pq eindeutig bestimmtes x N mit x mod p = a und x mod q = b. Existenz Bestimme c, d N mit qc mod p = 1 und pd mod q = 1. Setze x = acq + bdp mod pq. Dann x mod p = a und x mod q = b. Beispiel

32 RSA Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges 1977 von Ron Rivest, Adi Shamir und Len Adleman erfunden.

33 RSA Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges 1977 von Ron Rivest, Adi Shamir und Len Adleman erfunden. RSA war das erste Kryptosystem mit offentlichem Schlüssel und ist noch heute das am weitesten verbreitete.

34 RSA Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges 1977 von Ron Rivest, Adi Shamir und Len Adleman erfunden. RSA war das erste Kryptosystem mit offentlichem Schlüssel und ist noch heute das am weitesten verbreitete. Einsatzgebiete Homebanking und e-commerce, SSL/TLS und IPSec, automatische Softwareupdates, Chipkarten und Reisepässe.

35 RSA Grundlagen Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges Satz Seien p, q Primzahlen mit ggt(p, q) = 1. Für alle a {0,..., pq 1} gilt a 1+c(p 1)(q 1) mod pq = a.

36 RSA Grundlagen Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges Satz Seien p, q Primzahlen mit ggt(p, q) = 1. Für alle a {0,..., pq 1} gilt a 1+c(p 1)(q 1) mod pq = a. Beweis (i) p teilt a, ggt(a, q) = 1. Nach dem kleinen Fermatschen Satz gilt a (q 1) mod q = 1. Also a 1+c(p 1)(q 1) mod q = a.

37 RSA Grundlagen Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges Satz Seien p, q Primzahlen mit ggt(p, q) = 1. Für alle a {0,..., pq 1} gilt a 1+c(p 1)(q 1) mod pq = a. Beweis (i) p teilt a, ggt(a, q) = 1. Nach dem kleinen Fermatschen Satz gilt a (q 1) mod q = 1. Also a 1+c(p 1)(q 1) mod q = a. Weiterhin folgt aus a mod p = 0, dass a 1+c(p 1)(q 1) mod p = 0.

38 RSA Grundlagen Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges Satz Seien p, q Primzahlen mit ggt(p, q) = 1. Für alle a {0,..., pq 1} gilt a 1+c(p 1)(q 1) mod pq = a. Beweis (i) p teilt a, ggt(a, q) = 1. Nach dem kleinen Fermatschen Satz gilt a (q 1) mod q = 1. Also a 1+c(p 1)(q 1) mod q = a. Weiterhin folgt aus a mod p = 0, dass a 1+c(p 1)(q 1) mod p = 0. Nach dem chinesische Restsatz ist a 1+c(p 1)(q 1) mod pq eindeutig bestimmt. Daher a 1+c(p 1)(q 1) mod pq = a.

39 RSA Grundlagen Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges Satz Seien p, q Primzahlen mit ggt(p, q) = 1. Für alle a {0,..., pq 1} gilt a 1+c(p 1)(q 1) mod pq = a. Beweis (i) p teilt a, ggt(a, q) = 1. (ii) ggt(a, pq) = 1. Nach dem kleinen Fermatschen Satz gilt: a 1+c(p 1)(q 1) mod p = a und a 1+c(p 1)(q 1) mod q = a. Die Aussage folgt wiederum mit dem chinesischen Restsatz.

40 RSA Grundlagen Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges Satz Seien p, q Primzahlen mit ggt(p, q) = 1. Für alle a {0,..., pq 1} gilt a 1+c(p 1)(q 1) mod pq = a. Beispiel

41 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Beschreibung Schlüsselverzeichnis Bob Findet zwei große Primzahlen p und q Wählt e N mit ggt ( e, (p 1)(q 1) ) = 1. Berechnet d mit ed mod (p 1)(q 1) = 1.

42 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Beschreibung Schlüsselverzeichnis Bobs Schlüssel: (n, e). Bob Findet zwei große Primzahlen p und q Wählt e N mit ggt ( e, (p 1)(q 1) ) = 1. Berechnet d mit ed mod (p 1)(q 1) = 1. Veröffentlicht e und n = pq.

43 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Beschreibung Schlüsselverzeichnis Bobs Schlüssel: (n, e). Bob Findet zwei große Primzahlen p und q Wählt e N mit ggt ( e, (p 1)(q 1) ) = 1. Berechnet d mit ed mod (p 1)(q 1) = 1. Veröffentlicht e und n = pq. Alice

44 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Beschreibung Schlüsselverzeichnis Bobs Schlüssel: (n, e). Bob Findet zwei große Primzahlen p und q Wählt e N mit ggt ( e, (p 1)(q 1) ) = 1. Berechnet d mit ed mod (p 1)(q 1) = 1. Veröffentlicht e und n = pq. Alice Verschlüsselt Nachricht m zu x = m e mod n.

45 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Beschreibung Schlüsselverzeichnis Bobs Schlüssel: (n, e). Alice Verschlüsselt Nachricht m zu x = m e mod n. Bob Findet zwei große Primzahlen p und q Wählt e N mit ggt ( e, (p 1)(q 1) ) = 1. Berechnet d mit ed mod (p 1)(q 1) = 1. Veröffentlicht e und n = pq. Bob Entschlüsselt die Nachricht mittels x d mod n = m.

46 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Beschreibung Schlüsselverzeichnis Bobs Schlüssel: (n, e). Alice Verschlüsselt Nachricht m zu x = m e mod n. Bob Findet zwei große Primzahlen p und q Wählt e N mit ggt ( e, (p 1)(q 1) ) = 1. Berechnet d mit ed mod (p 1)(q 1) = 1. Veröffentlicht e und n = pq. Bob Entschlüsselt die Nachricht mittels x d mod n = m. Bemerkung Nach Satz gilt für 0 m < n = pq x d mod n = (m e ) d mod n = m ed mod n = m da ed mod (p 1)(q 1) = 1.

47 RSA Sicherheit Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges Die Sicherheit von RSA hängt davon ab ob schnellere Faktorisierungsalgorithmen entdeckt werden, schnellere Computer gebaut werden.

48 RSA Challenges Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges Die Firma RSA hat Preise für die Faktorisierung von ganzen Zahlen in für das RSA Kryptosystem relevanter Größenordnung ausgelobt.

49 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Challenges Die Firma RSA hat Preise für die Faktorisierung von ganzen Zahlen in für das RSA Kryptosystem relevanter Größenordnung ausgelobt. RSA-140 Die Zahl RSA-140 (140 Dezimalstellen) ist Sie wurde 1999 zerlegt in die Primfaktoren und Der Preis betrug US$. Die Faktorisierung dauerte 8,9 CPU Jahre.

50 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Challenges Die Firma RSA hat Preise für die Faktorisierung von ganzen Zahlen in für das RSA Kryptosystem relevanter Größenordnung ausgelobt. RSA-640 Die Zahl RSA-640 (193 Dezimalstellen) ist Sie wurde 2005 zerlegt in die Primfaktoren und Der Preis betrug US$. Die Faktorisierung dauerte GHz-Opteron-CPU Jahre.

51 Kryptografie Grundlagen RSA KASH RSA Grundlagen Beschreibung Sicherheit Challenges RSA Challenges Die Firma RSA hat Preise für die Faktorisierung von ganzen Zahlen in für das RSA Kryptosystem relevanter Größenordnung ausgelobt. RSA-1024 Die Zahl RSA-1024 (309 Dezimalstellen) ist Der ausgelobte Preis beträgt US$.

52 Kryptografie Grundlagen RSA KASH Funktionalität Verfügbarkeit KASH Funktionalität Das an der TU Berlin entwickelte Computeralgebrasystem KASH enthält unter anderem: Langzahlarithmetik für ganze und rationale Zahlen, Fließkommazahlen mit beliebiger Präzision, Funktionen für lineare Algebra, Arithmetik mit Polynomen und Funktionen für viele andere algbraische Strukturen.

53 Kryptografie Grundlagen RSA KASH Funktionalität Verfügbarkeit KASH Funktionalität Das an der TU Berlin entwickelte Computeralgebrasystem KASH enthält unter anderem: Langzahlarithmetik für ganze und rationale Zahlen, Fließkommazahlen mit beliebiger Präzision, Funktionen für lineare Algebra, Arithmetik mit Polynomen und Funktionen für viele andere algbraische Strukturen. Durch die einfache Programmierung in einer Pascal ähnlichen Programmiersprache mit funktionalen Elementen lassen sich Algorithmen schnell ausprobieren.

54 Kryptografie Grundlagen RSA KASH Funktionalität Verfügbarkeit KASH Verfügbarkeit KASH läuft unter den folgenden Betriebsystemen Linux/x86 MacOS X/PowerPC MS Windows/x86 KASH ist frei verfügbar und kann heruntergeladen werden von kant

55 Kryptografie Grundlagen RSA KASH Funktionalität Verfügbarkeit KASH Verfügbarkeit KASH läuft unter den folgenden Betriebsystemen Linux/x86 MacOS X/PowerPC MS Windows/x86 KASH ist frei verfügbar und kann heruntergeladen werden von kant Vielen Dank

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Über das Hüten von Geheimnissen

Über das Hüten von Geheimnissen Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien

Mehr

Verschlüsselung. Chiffrat. Eve

Verschlüsselung. Chiffrat. Eve Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Public-Key Verschlüsselung

Public-Key Verschlüsselung Public-Key Verschlüsselung Björn Thomsen 17. April 2006 Inhaltsverzeichnis 1 Einleitung 2 2 Wie funktioniert es 2 3 Vergleich mit symmetrischen Verfahren 3 4 Beispiel: RSA 4 4.1 Schlüsselerzeugung...............................

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel: RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar

Mehr

Zur Sicherheit von RSA

Zur Sicherheit von RSA Zur Sicherheit von RSA Sebastian Petersen 19. Dezember 2011 RSA Schlüsselerzeugung Der Empfänger (E) wählt große Primzahlen p und q. E berechnet N := pq und ϕ := (p 1)(q 1). E wählt e teilerfremd zu ϕ.

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere

Mehr

1. Asymmetrische Verschlüsselung einfach erklärt

1. Asymmetrische Verschlüsselung einfach erklärt 1. Asymmetrische Verschlüsselung einfach erklärt Das Prinzip der asymmetrischen Verschlüsselung beruht im Wesentlichen darauf, dass sich jeder Kommunikationspartner jeweils ein Schlüsselpaar (bestehend

Mehr

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09 Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3

Mehr

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002 Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /

Mehr

Erste Vorlesung Kryptographie

Erste Vorlesung Kryptographie Erste Vorlesung Kryptographie Andre Chatzistamatiou October 14, 2013 Anwendungen der Kryptographie: geheime Datenübertragung Authentifizierung (für uns = Authentisierung) Daten Authentifizierung/Integritätsprüfung

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Gabor Wiese Universität Regensburg Kryptographie mit elliptischen Kurven p. 1 Problemstellung Kryptographie mit elliptischen Kurven p. 2 Problemstellung Caesar Kryptographie

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

Elliptische Kurven in der Kryptographie

Elliptische Kurven in der Kryptographie Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

3 Das RSA-Kryptosystem

3 Das RSA-Kryptosystem Stand: 15.12.2014 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Das RSA-Kryptosystem RSA: Erfunden von Ronald L. Rivest, Adi Shamir und Leonard Adleman, 1977. (Ein ähnliches Verfahren

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel 4 RSA und PGP Im Juni 1991 wurde das Programm PGP (für pretty good privacy ) von Phil Zimmermann ins Internet gestellt. Es ermöglichte jedermann, e-mails derart gut zu verschlüsseln, dass nicht einmal

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? FRANZ PAUER, FLORIAN STAMPFER (UNIVERSITÄT INNSBRUCK) 1. Einleitung Eine natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler hat. Im Lehrplan der Seundarstufe

Mehr

Probabilistische Primzahlensuche. Marco Berger

Probabilistische Primzahlensuche. Marco Berger Probabilistische Primzahlensuche Marco Berger April 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 4 1.1 Definition Primzahl................................ 4 1.2 Primzahltest...................................

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13.

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13. Von Cäsar bis RSA Chiffrierung von der 1. bis zur 8. Klasse Dr. Anita Dorfmayr Universität Wien Lehrerfortbildungstag der ÖMG Wien, 13. April 2007 Gliederung Einführung Geschichte Zielsetzungen der Kryptografie

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Einfache kryptographische Verfahren

Einfache kryptographische Verfahren Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme Faktorisierung Stefan Büttcher stefan@buettcher.org 1 Definition. (RSA-Problem) Gegeben: Ò ÔÕ, ein RSA-Modul mit unbekannten Primfaktoren

Mehr

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems Paul-Klee-Gymnasium Facharbeit aus der Mathematik Thema: Asymmetrische Verschlüsselungsverfahren am Beispiel des RSA-Kryptosystems Verfasser : Martin Andreas Thoma Kursleiter : Claudia Wenninger Abgegeben

Mehr

Leichte-Sprache-Bilder

Leichte-Sprache-Bilder Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

Das RSA-Kryptosystem

Das RSA-Kryptosystem www.mathematik-netz.de Copyright, Page 1 of 12 Das RSA-Kryptosystem Um dieses Dokument verstehen zu können benötigt der Leser nur grundlegende Kenntnisse der Algebra und ein gewisses mathematisches Verständnis.

Mehr

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008 RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile

Mehr

Sicherheit von hybrider Verschlüsselung

Sicherheit von hybrider Verschlüsselung Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Einführung in die verschlüsselte Kommunikation

Einführung in die verschlüsselte Kommunikation Einführung in die verschlüsselte Kommunikation Loofmann AFRA Berlin 25.10.2013 Loofmann (AFRA Berlin) Creative Common BY-NC-SA 2.0 25.10.2013 1 / 37 Ziele des Vortrages Wie funktioniert Verschlüsselung?

Mehr

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May Kryptologie Verschlüsselungstechniken von Cäsar bis heute Inhalt Was ist Kryptologie Caesar Verschlüsselung Entschlüsselungsverfahren Die Chiffrierscheibe Bestimmung der Sprache Vigenére Verschlüsselung

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Digitale Signaturen. Sven Tabbert

Digitale Signaturen. Sven Tabbert Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009 19. Mai 2009 Einleitung Problemstellung Beispiel: RSA Teiler von Zahlen und Periode von Funktionen Klassischer Teil Quantenmechanischer Teil Quantenfouriertransformation Algorithmus zur Suche nach Perioden

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Thunderbird Portable + GPG/Enigmail

Thunderbird Portable + GPG/Enigmail Thunderbird Portable + GPG/Enigmail Bedienungsanleitung für die Programmversion 17.0.2 Kann heruntergeladen werden unter https://we.riseup.net/assets/125110/versions/1/thunderbirdportablegpg17.0.2.zip

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr