5. Schließende Statistik Einführung

Größe: px
Ab Seite anzeigen:

Download "5. Schließende Statistik. 5.1. Einführung"

Transkript

1 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen. Hauptrichtungen: Beschreibung von Daten (Deskription) Generierung von Hypothesen (Exploration) Schluss von den Daten (Stichprobe) auf die Grundgesamtheit stochastisches Modell (für die Verhältnisse in der Grundgesamtheit) } } beschreibende Statistik schließende Statistik Aufgaben der schließenden Statistik: möglichst gute Anpassung eines Modells an die Daten ( die Realität ) durch Schätzung Überprüfung von Modellannahmen (Hypothesen) z.b. über die Verteilungen der Merkmalsausprägungen interessierender Merkmale durch Anwendung von Entscheidungsregeln (z.b. Signifikanztests) auf vorliegende Hypothesen und Daten 1

2 Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) Hauptrichtungen: Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Grundgesamtheit), Erwartungswerte (Durchschnittswerte in der Grundheit) bzw. allg. von Verteilungen interessierender Merkmale in der Grundgesamtheit Testen von Hypothesen über diese Parameter bzw. Verteilungen, d.h. über die Angepasstheit eines Modells und damit schließlich über die interessierenden Verhältnisse in der Grundgesamtheit (Population) Jeder Schluss von einer Teilerhebung (Stichprobe) auf die Grundgesamtheit ist mit Unsicherheiten verbunden. Die wahrscheinlichkeitstheoretischen Modelle ermöglichen es, diese Unsicherheiten zu quantifizieren. Beispiel: GSTAT (Fred Böker, Statistik lernen am PC, Vandenhoeck & Ruprecht 1989) enthält (u.a.) für das Jahr 1974 die Altersverteilung aller Personen, die in diesem Jahr in der BRD gemeldet waren, sowie die Möglichkeit, das Ziehen einer Stichprobe zu simulieren und deren Verteilung mit der tatsächlichen (über Histogramme und Mittelwerte) zu vergleichen. 2

3 5.2. Statistische Grundbegriffe Die Grundgesamtheit (Population) ist die Gesamtmenge von Merkmalsträgern (Objekten) über die man z.b. in den Sozialwissenschaften Aussagen machen möchte. Beispiele: Gesamtbevölkerung der Bundesrepublik, Wähler einer Partei, Studenten einer Fachrichtung,... Interessiert ist man an gewissen Merkmalen, die die Merkmalsträger aufweisen. Beispiele: Geschlecht, Höhe des Einkommens, Zufriedenheit mit der Statistikausbildung Kann die Grundgesamtheit nicht vollständig - durch Einbeziehung aller Merkmalsträger (Totalerhebung) - hinsichtlich der interessierenden Merkmale untersucht werden, so versucht man eine möglichst repräsentative Teilerhebung zu verwenden. Liegen keine gesicherten Kenntnisse über die Struktur der Grundgesamtheit hinsichtlich der interessierenden Merkmale vor, so sichert nur das Zufallsprinzip repräsentative Teilerhebungen. Die einbezogenen n Merkmalsträger werden rein zufällig und unabhängig voneinander ausgewählt ( gezogen ). Dabei hat jeder Merkmalsträger bei jeder Ziehung die gleiche konstante Chance ausgewählt zu werden ( Ziehen mit Zurücklegen ). Die Ziehungsergebnisse beinflussen sich dabei auch nicht gegenseitig. 3

4 Betrachte für ein interessierendes Merkmal die Zufallsgröße X, die die Merkmalsausprägungen - kodiert durch Zahlen - bei einer rein zufälligen Auswahl eines Merkmalsträgers aus der Grundgesamtheit beschreibt, so besitzt sie die i.a. unbekannte Verteilungsfunktion F X der Merkmalsausprägungen dieses Merkmals in der Grundgesamtheit ( zufälliger Bürger ). Das mathematische Modell für das Ziehen einer reinen Zufallsstichprobe ist die mathematische Stichpobe (X 1, X 2,..., X n ) vom Umfang n. X i beschreibt dabei die zufällige Merkmalsausprägung des i-ten ausgewählten Probanden. Nach der Ziehungsvorschrift besitzen alle X i die gleiche Verteilung F X des interessierenden Merkmals in der Grundgesamtheit. Diese Modellvorstellung wird dann zur Berechnung der Unsicherheiten beim Schluß von der Stichprobe auf die Grundgesamtheit verwendet. Das Resultat einer Datenerhebung ist die konkrete Stichprobe (x 1, x 2,..., x n ). x i steht dabei für die registrierte Merkmalsausprägung des i-ten ausgewählten Probanden. Gemäß der Modellvorstellung sind die Daten eine Realisierung einer mathematischen Stichprobe. Beschreibt man also den Ziehungsprozeß einer mathematischen Stichprobe, so verwendet man Zufallsgrößen X, X i, T (große Buchstaben; der Ziehungsprozeß wird unendlich oft wiederholt ) und beschreibt man die Realisierung einer Ziehung, so schreibt man entsprechend x, x i, t (kleine Buchstaben; Ergebnis einer Ziehung ). 4

5 Übliche Sprechweise für Modellannahmen: Die Stichprobe (x 1,..., x n ) entstamme einer nach F X verteilten Grundgesamtheit. Praktisch hat man es stets mit der konkreten Stichprobe (x 1,..., x n ) zu tun, mit deren Hilfe man Informationen über die Population gewinnen will. Die mathematische Stichprobe dient zur wahrscheinlichkeitstheoretischen Begründung der Schlussweisen. Werden mehrere Merkmale registriert oder besteht das Anliegen im Vergleich verschiedener Merkmale bzw. verschiedener Populationen, werden entsprechend bei der Modellbildung verschiedene Zufallsvariablen (X, Y,... ) eingeführt und z.b. bivariat (X, Y ) betrachtet. 5

6 5.3. Stichprobenfunktionen Die Anliegen der schließenden Statistik werden mit Stichprobenfunktionen realisiert. Stichprobenfunktion T, eine Funktion von n Veränderlichen (X 1, X 2,..., X n ) T = T (X 1, X 2,..., X n ) math. Stichpr. Zufallsgröße (x 1, x 2,..., x n ) t = T (x 1, x 2,..., x n ) konkrete Stichpr. Zahl Bemerkungen T bzw. t sind allgemein übliche Bezeichnungen, für spezielle Stichprobenfunktionen sind aber auch andere Bezeichnungen üblich. Beispiel: X = 1 n X i x = 1 n x i n n i=1 Stichprobenfunktionen begegnen uns also als Formeln: Setzen wir die Werte der konkreten Stichprobe ein, kommt eine Zahl t heraus. Setzen wir die Zufallsgrößen der mathematischen Stichprobe ein, kommt eine Zufallsgröße T heraus. t kann als Realisierung der Zufallsvariable T verstanden werden. 6 i=1

7 Schätzungen Betrachtung zweier Beispiele: Schätzung des Durchschnitts (Bsp. 4) bzw. eines Anteils (Bsp. 3) in der Grundgesamtheit Gesucht: Durchschnittsgröße µ der Kinder in der Grundgesamtheit (siehe Bsp. 4): Gegeben: Konkrete Stichprobe.: (x 1,..., x n ) Plausibel: x = 1 n als Schätzung für den Durchschnitt µ in der Grundgesamtheit Wie gut ist diese Schätzung? Dazu: Math. Modell: Zufallsgröße X - Körpergröße eines rein zufällig ausgew. Kindes - also mit der unbekannten Größenverteilung F X mit Durchschnittswert µ (X 1,..., X n ) mathematische Stichprobe (alle X i wie X verteilt) vom Umfang n Die Stichprobenfunktion X = 1 n heißt Punktschätzung für µ, n i=1 n i=1 x i X i x : konkrete Punktschätzung 7

8 Wir wissen: Zentraler Grenzwertsatz: X ist für große n näherungsweise normalverteilt. Also: Weitergehende Untersuchung der Genauigkeit der Schätzung möglich. Z.B. kann die Wahrscheinlichkeit von Abweichungen der Schätzung vom zu schätzenden Durchschnittswert berechnet werden Bemerkung: Allgemein gilt: Sei γ der interessierende Parameter. Berechnet man mit einer Stichprobenfunktion T aus den Werten der konkreten Stichprobe einen Wert für den Parameter γ, so wird dieser Wert ˆγ = t = T (x 1,..., x n ) eine konkrete Punktschätzung und die Zufallsgröße T = T (X 1,..., X n ) eine Punktschätzung für diesen Parameter genannt. Weitere Punktschätzungen, ihre Eigenschaften und Methoden zu ihrer Konstruktion siehe Literatur. Klar ist, dass ein aus einer konkreten Stichprobe berechneter Mittelwert x den zu schätzenden Durchschnittswert µ in der Grundgesamtheit nur sehr selten oder fast nie genau trifft (i.a. ist also x µ). 8

9 Ausweg: Man betrachtet neben Punktschätzungen auch sogenannte Intervallschätzungen (Konfidenzschätzungen, Konfidenzintervalle). Dabei verwendet man das folgende Konstruktionsprinzip: Für eine mathematische Stichprobe ist ein zufälliges Intervall anzugeben, dass den zu schätzenden Parameter - hier den Durchschnittswert µ - mit einer vorgegeben Wahrscheinlichkeit = Konfidenzniveau (1 α) enthält ( überdeckt ). Ist die Verteilung der verwendeten Stichprobenfunktion - hier der arithmetische Mittelwert - bekannt, so lassen sich die Grenzen von Konfidenzintervallen berechnen. Aus der t-verteilung der standardisierten Zufallsgröße X µ S n erhält man z.b. für eine Überdeckungswahrscheinlichkeit von 0.95 = 1 α (α = 0.5 für Nichtüberdeckung ) folgende Vorschrift zur Berechnung eines konkreten Konfidenzintervalles für den unbekannten Durchschnittswert µ der Körpergröße in der Grundgesamtheit: [ x t n 1,1 α 2 s n, x + t n 1,1 α 2 ] s n Dabei ist t n 1,1 α 2 das Quantil der t-verteilung mit n 1 Freiheitsgraden und Quantilsanteil (1 α/2). Für eine Überdeckungswahrscheinlichkeit von 95% und einen Stichprobenumfang n = 200 ergibt sich t 199,0.975 = 1.96 und also in Bsp. 4 mit x = und s = das konkrete Konfidenzintervall [ , ] = [142.7; 144.7]

10 Gesucht: Anteil p der PKW-Benutzer in der Grundgesamtheit (siehe Bsp. 3) Gegeben: Konkrete Stichprobe.: (x 1,..., x n ) Plausibel: Die relative Häufigkeit für das interessierende Ereignis (hier PKW ) f = h n als Schätzung für den Anteil (die Wahrscheinlichkeit) p in der Grundgesamtheit Wie gut ist diese Schätzung? Dazu: Math. Modell: Zufallsgröße X - hat Wert 1 falls PKW genannt wird und ist sonst 0 - also mit der unbekannten Verteilung mit P (X = 1) = p und P (X = 0) = (1 p) (X 1,..., X n ) mathematische Stichprobe (alle X i wie X verteilt) vom Umfang n Die Stichprobenfunktion H n = n i=1 X i n heißt Punktschätzung für p, h/n : konkrete Punktschätzung (! n i=1 x i liefert also die absolute Häufigkeit h) Wir wissen: H = n i=1 X i ist binomialverteilt und nach dem Zentralen Grenzwertsatz für große n näherungsweise normalverteilt. 10

11 Also: Weitergehende Untersuchung der Genauigkeit der Schätzung möglich. Z.B. kann die Wahrscheinlichkeit von Abweichungen der Schätzung vom zu schätzenden Anteilswertwert berechnet werden Klar ist, dass ein aus einer konkreten Stichprobe berechneter Anteilswert h/n den zu schätzenden Anteilswert p in der Grundgesamtheit nur sehr selten oder fast nie genau trifft. (i.a. ist also h/n p). Wieder Ausweg: Man betrachtet neben Punktschätzungen auch Intervallschätzungen Gleiches Konstruktionsprinzip: Für eine mathematische Stichprobe ist ein zufälliges Intervall anzugeben, dass den zu schätzenden Parameter - hier den Anteilswert p - mit einer vorgegeben Wahrscheinlichkeit = Konfidenzniveau (1 α) enthält ( überdeckt ). Ist die Verteilung der verwendeten Stichprobenfunktion - hier der absoluten Häufigkeit - bekannt, so lassen sich die Grenzen von Konfidenzintervallen berechnen. Für größere Stichproben (n > 30) erhält man aus der Normalverteilung z.b. für eine Überdeckungswahrscheinlichkeit von 0.95 = (1 α) (α = 0.5 für Nichtüberdeckung ) folgende Vorschrift zur Berechnung eines konkreten Konfidenzintervalles für den unbekannten Anteilswert p der PKW- Benutzer in der Grundgesamtheit: h n z 1 α 2 h n (1 h n ) n, h n + z 1 α 2 h n (1 h n ) n 11

12 Dabei ist z 1 α 2 das Quantil der standardisierten Normalverteilung mit Quantilsanteil (1 α/2). Für eine Überdeckungswahrscheinlichkeit von 95% und einen Stichprobenumfang n = 100 ergibt sich z = 1.96 und also in Bsp. 3 mit h/n = 53/100 = 0.53 das konkrete Konfidenzintervall [ ] 0.53(1 0.53) 0.53(1 0.53) , = [43.6%; 62.4%] Hinweis: Für die Interpretation von Konfidenzintervallen gilt: Ein konkretes Konfidenzintervall enthält den zu schätzenden Parameter oder es enthält ihn nicht. Die Konstruktion des Konfidenzintervalles sichert aber, dass bei häufiger Wiederholung des Ziehungsvorganges die berechneten Konfidenzintervalle den zu schätzenden Parameter in ca. (1 α)% der Fälle enthalten! 12

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Multicheck Schülerumfrage 2013

Multicheck Schülerumfrage 2013 Multicheck Schülerumfrage 2013 Die gemeinsame Studie von Multicheck und Forschungsinstitut gfs-zürich Sonderauswertung ICT Berufsbildung Schweiz Auswertung der Fragen der ICT Berufsbildung Schweiz Wir

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

Auswertung zur. Hauptklausur Unternehmensbesteuerung. vom 24.02.10. und Ergebnisse der Kundenbefragung

Auswertung zur. Hauptklausur Unternehmensbesteuerung. vom 24.02.10. und Ergebnisse der Kundenbefragung Auswertung zur Hauptklausur Unternehmensbesteuerung vom 24.02.10 Vergleich: Skriptteufel-Absolventen vs. alle Teilnehmer und Ergebnisse der Kundenbefragung In diesem Dokument vergleichen wir die Klausurergebnisse

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Statistik I für Betriebswirte Vorlesung 11

Statistik I für Betriebswirte Vorlesung 11 Statistik I für Betriebswirte Vorlesung 11 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 22. Juni 2012 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle:

Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle: Die neue Aufgabe von der Monitoring-Stelle Das ist die Monitoring-Stelle: Am Deutschen Institut für Menschen-Rechte in Berlin gibt es ein besonderes Büro. Dieses Büro heißt Monitoring-Stelle. Mo-ni-to-ring

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Mitarbeiterbefragung zur Führungsqualität und Mitarbeitermotivation in Ihrem Betrieb

Mitarbeiterbefragung zur Führungsqualität und Mitarbeitermotivation in Ihrem Betrieb Mitarbeiterbefragung zur Führungsqualität und Mitarbeitermotivation in Ihrem Betrieb Einleitung Liebe Chefs! Nutzen Sie die Aktion des Handwerk Magazins, um Ihre Führungsqualitäten zu erkennen. Durch eine

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten

Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@dvz.fh-koeln.de Aufgabe 3.1 Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Alle gehören dazu. Vorwort

Alle gehören dazu. Vorwort Alle gehören dazu Alle sollen zusammen Sport machen können. In diesem Text steht: Wie wir dafür sorgen wollen. Wir sind: Der Deutsche Olympische Sport-Bund und die Deutsche Sport-Jugend. Zu uns gehören

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

2 Lineare Gleichungen mit zwei Variablen

2 Lineare Gleichungen mit zwei Variablen 2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

Eine Bürokratiekostenfolgenabschätzung zum zweiten Gesetz für moderne Dienstleistungen am Arbeitsmarkt im Hinblick auf die Einführung einer Gleitzone

Eine Bürokratiekostenfolgenabschätzung zum zweiten Gesetz für moderne Dienstleistungen am Arbeitsmarkt im Hinblick auf die Einführung einer Gleitzone Eine Bürokratiekostenfolgenabschätzung zum zweiten Gesetz für moderne Dienstleistungen am Arbeitsmarkt im Hinblick auf die Einführung einer Gleitzone Das IWP Institut für Wirtschafts- und Politikforschung

Mehr

Die Beschreibung bezieht sich auf die Version Dreamweaver 4.0. In der Version MX ist die Sitedefinition leicht geändert worden.

Die Beschreibung bezieht sich auf die Version Dreamweaver 4.0. In der Version MX ist die Sitedefinition leicht geändert worden. In einer Website haben Seiten oft das gleiche Layout. Speziell beim Einsatz von Tabellen, in denen die Navigation auf der linken oder rechten Seite, oben oder unten eingesetzt wird. Diese Anteile der Website

Mehr

Statistik II. Statistik II, SS 2001, Seite 1 von 5

Statistik II. Statistik II, SS 2001, Seite 1 von 5 Statistik II, SS 2001, Seite 1 von 5 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

1. Einfuhrung zur Statistik

1. Einfuhrung zur Statistik Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben

Mehr

Bevölkerung mit Migrationshintergrund an der Gesamtbevölkerung 2012

Bevölkerung mit Migrationshintergrund an der Gesamtbevölkerung 2012 Statistische Übersicht inkl. dem Vergleich zwischen und zur (Aus-)Bildungssituation von jungen Menschen mit und ohne Migrationshintergrund 1 in den Bundesländern nach dem Mikrozensus Erstellt im Rahmen

Mehr

my.ohm Content Services Autorenansicht Rechte

my.ohm Content Services Autorenansicht Rechte my.ohm Content Services Autorenansicht Rechte Felizitas Heinebrodt Technische Hochschule Nürnberg Rechenzentrum Kesslerplatz 12, 90489 Nürnberg Version 2 August 2015 DokID: cs-rechte-autor Vers. 2, 18.08.2015,

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Was ist Sozial-Raum-Orientierung?

Was ist Sozial-Raum-Orientierung? Was ist Sozial-Raum-Orientierung? Dr. Wolfgang Hinte Universität Duisburg-Essen Institut für Stadt-Entwicklung und Sozial-Raum-Orientierte Arbeit Das ist eine Zusammen-Fassung des Vortrages: Sozialräume

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr