Kapitel 15 Lineare Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "Kapitel 15 Lineare Gleichungssysteme"

Transkript

1 Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27

2 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem LGS) Ein (reelles) lineares Gleichungssystem (LGS) mit n Variablen x 1, x 2,..., x n und m Gleichungen hat folgende Gestalt a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a m1 x 1 + a m2 x a mn x n = b m mit a ij, b j R für 1 i n und 1 j m. Die a ij nennen wir die Koeffizienten des LGS und die b j nennen wir die rechte Seite des LGS. Das LGS heißt homogen, wenn die rechte Seite verschwindet. Mathematischer Vorkurs TU Dortmund Seite 2 / 27

3 Kapitel 15 Lineare Gleichungssysteme Kurzschreibweise: Statt der Form in 15.1 benutzen wir auch die etwas kompaktere Schreibweise a 11 a a 1n b 1 a 21 a a 2n b 2 oder noch kompakter (A b).... a m1 a m2... a mn b m a 11 a a 1n b 1 a 21 a a 2n b 2 mit A := und b :=..... a m1 a m2... a mn b m Mathematischer Vorkurs TU Dortmund Seite 3 / 27

4 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 [cont.] Die Lösungsmenge des LGS (A b) bezeichnen wir mit L(A, b) := { (x 1,..., x n ) R n (x 1,..., x n ) löst (A b) } Satz 15.2 (Gauß-Operationen) Die folgenden Operationen verändern die Lösungsmenge eines LGS nicht: 1. Multiplizieren einer Zeile mit einer Zahl a Vertauschen von Zeilen. 3. Addition eines Vielfachen einer Zeile zu einer anderen Zeile. 4. Vertauschen von Spalten Achtung: Wenn man Punkt 4. anwendet, muss man sich merken, welche Variable zu welcher Spalte gehört! Mathematischer Vorkurs TU Dortmund Seite 4 / 27

5 Kapitel 15 Lineare Gleichungssysteme Satz 15.3 (Gauß-Algorithmus) Es sei (A b) ein lineares Gleichungssystem, dann kann man durch geeignete Gauß-Operationen erreichen, dass das LGS die folgende Form bekommt: j1 j2 jk jk+1 jn c 1 c 2. c k c k+1. c m Dabei gibt j l an, dass diese Spalte zur j l -ten Variablen gehört. Mathematischer Vorkurs TU Dortmund Seite 5 / 27

6 Kapitel 15 Lineare Gleichungssysteme Praktische Durchführung des Gauß-Algorithmus: Step1 Wir versuchen durch 3.(Tausch von Zeilen), 4.(Tausch von Spalten) und 1.(Skalierung einer Zeile) eine 1 in die obere linke Ecke zu bekommen. (Ist dies nicht möglich, dann endet der Algorithmus, denn die Koeffizienten, mit denen man diesen Schritt gestartet hat, sind alle Null.) Step2 Durch Anwenden von 2.(Addition von Zeilen) erzeugen wir Nullen unterhalb und oberhalb dieser 1. Step3 Wir beginnen nun wieder mit Step1. Allerdings wenden wir ihn auf das kleinere System an, das wir durch Löschen der ersten Spalte und ersten Zeile erhalten. Mathematischer Vorkurs TU Dortmund Seite 6 / 27

7 Kapitel 15 Lineare Gleichungssysteme Definition 15.4 (Rang eines LGS) Es sei (A b) ein LGS. Die Zahl k aus der Endgestalt des Gauß-Algorithmus nennt man den Rang des LGS. Satz 15.5 Es sei (A b) ein LGS vom Rang k. Der Gauß-Algorithmus liefert die folgenden Fälle für die Lösungsmenge L(A, b): 1 Ist mindestens eine der Zahlen c k+1,..., c m ungleich Null, so ist L(A, b) =. 2 Im Fall k = n = m ist das System eindeutig lösbar und es gilt L(A, b) = {(x 1,..., x n ) x j1 = c 1, x j2 = c 2,..., x jn = c n }. 3 Für k < n und c k+1 =... = c m = 0 ist, können die n k Variablen x jk+1,..., x jn als freie Parameter gewählt werden. Damit sind die Werte x j1,..., x jk für jede Wahl der Parameter eindeutig bestimmt. Man sagt: Die Lösungsmenge L(A, b) ist (n k)-dimensional. Mathematischer Vorkurs TU Dortmund Seite 7 / 27

8 Kapitel 15 Lineare Gleichungssysteme Beispiel : Wir lösen das LGS oder 2x 1 + 6x 2 + 2x 4 = 10 x 1 + 3x 2 + x 3 + 2x 4 = 7 3x 1 + 9x 2 + 4x 3 = 16 3x 1 + 9x 2 + x 3 + x 4 = Mathematischer Vorkurs TU Dortmund Seite 8 / 27

9 Kapitel 15 Lineare Gleichungssysteme 1.) Vertausche Z1 und Z2. x 1 x 2 x 3 x ) Addiere ( 2) Z1 zu Z2, dann ( 3) Z1 zu Z3 und ( 3) Z1 zu Z4. x 1 x 2 x 3 x Mathematischer Vorkurs TU Dortmund Seite 9 / 27

10 Kapitel 15 Lineare Gleichungssysteme 3.) Vertausche S2 und S4. x 1 x 4 x 3 x ) Addiere Z2 zu Z1, dann ( 3) Z2 zu Z3 und ( 1) Z2 zu Z3. Dann multipliziere Z2 mit 1 2. x 1 x 4 x 3 x Mathematischer Vorkurs TU Dortmund Seite 10 / 27

11 Kapitel 15 Lineare Gleichungssysteme 5.) Multipliziere Z3 mit 1 7, addiere ( 1) Z3 zu Z2, dann Z3 zu Z1. x 1 x 4 x 3 x Dies ist nun die Endform des Gauß-Algorithmus, aus dem wir die Lösung ablesen. Der Rang des LGS ist k = 3 und als freien Parameter wählen wir x 2. Mathematischer Vorkurs TU Dortmund Seite 11 / 27

12 Kapitel 15 Lineare Gleichungssysteme Wir schreiben die Gleichungen noch einmal aus: und es gilt x 1 + 3x 2 = 4 x 4 = 1 x 3 = 1, L(A, b) = { (x 1, x 2, x 3, x 4 ) R 4 x 1 = 4 3x 2, x 3 = 1, x 4 = 1 } Setzen wir x 2 = t für den Parameter, so schreiben wir auch x L(A, b) = x 2 x 3 = t 1 0 t R x Mathematischer Vorkurs TU Dortmund Seite 12 / 27

13 Kapitel 16 Vektoren Mathematischer Vorkurs TU Dortmund Seite 13 / 27

14 In Kapitel 1 haben wir das Kreuzprodukt von Mengen eingeführt. Und zwar sind für eine Menge M die Elemente aus M n := } M. {{.. M } genau n-mal die n-tupel (m 1, m 2,..., m n ) mit m j M. (vgl. Definition 1.5). Das nutzen wir aus und definieren: Definition 16.1 (Vektoren im Zahlenraum) Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen, also ein Element aus R n. Wir schreiben die Komponenten eines Vektors in eine Spalte: v 1 v 2 v =. v n (Manchmal benutzen wir die platzsparende Schreibweise v = (v 1, v 2,..., v n ) T, wobei das T andeutet, dass wir eigentlich einen Spaltenvektor meinen). Mathematischer Vorkurs TU Dortmund Seite 14 / 27

15 Mit Vektoren kann man auch rechnen: Definition 16.2 (Rechnen mit Vektoren) Man kann zwei Vektoren v =. und w =. v 1 v n v 1 + w 1 addieren, gemäß v + w =.. v n + w n v 1 w 1 w n miteinander Man kann einen Vektor v =. und eine reelle Zahl α R αv 1 miteinander multiplizieren, gemäß α v =.. αv n v n Mathematischer Vorkurs TU Dortmund Seite 15 / 27

16 Wir beschränken uns in der kommenden Betrachtung auf R 2 (obwohl alles auch im Höherdimensionalen richtig bleibt). Bemerkung 16.3 (Vektoren und Geometrie) Wir identifizieren einen Vektor a = ( a 1 a 2 ) mit dem Pfeil OA, der den Ursprung O der Ebene mit den Punkt A = (a 1, a 2 ) verbindet. Sei b ein weiterer Vektor mit zugehörigem Punkt B = (b 1, b 2 ) und α R. Die Addition a + b entspricht dem Pfeil OC, wobei der Punkt C wie folgt konstruiert wird: Verschiebe den Pfeil OB so, dass sein Anfang in A liegt. Dann zeigt das Ende dieses verschobenen Pfeils auf den Punkt C. Mathematischer Vorkurs TU Dortmund Seite 16 / 27

17 Mathematischer Vorkurs TU Dortmund Seite 17 / 27

18 Bemerkung 16.3 [cont.] Die Multiplikation α a entspricht dem Pfeil OD, wobei der Punkt D wie folgt konstruiert wird: Ist α 0, so entspricht die Richtung des Pfeils OD der von OA und die Länge des Pfeils OD ist gegeben durch die Länge des Pfeils OA multipliziert mit α. Ist α < 0 so kehrt sich die Richtung um, aber die Länge ist die gleiche wie im ersten Fall. Mathematischer Vorkurs TU Dortmund Seite 18 / 27

19 Satz 16.3 (Rechenregeln für Vektoren) Es seien u, v und w Vektoren und α und β seien reelle Zahlen, dann gilt: 1. v + w = w + v. 2. u + ( v + w) = ( u + v) + w. 3. Es gibt einen Nullvektor 0 mit v + 0 = 0 + v = v. 4. Zu v gibt es einen Vektor v mit v + ( v) = α (β v) = (αβ) v v = v. 7. (α + β) v = α v + β v. 8. α ( v + w) = α v + α w Bemerkung zu 3.:... nämlich 0 := (0, 0,..., 0) T. Bemerkung zu 4.:... nämlich v := ( 1) v = ( v 1,..., v n ) T. Mathematischer Vorkurs TU Dortmund Seite 19 / 27

20 Das Ergebnis aus Satz 16.3 verallgemeinern wir nun und definieren: Definition 16.4 (Vektorraum) Ein (reeller) Vektorraum ist eine Menge V mit einer Addition und einer Multiplikation mit reellen Zahlen (skalare Multiplikation), die die Eigenschaften 1. bis 8. aus dem vorigen Satz 16.3 haben. Mathematischer Vorkurs TU Dortmund Seite 20 / 27

21 Satz 16.5 (Beispiele für Vektorräumen) 1 R n ist ein Vektorraum. 2 Es sei M eine Menge und Abb(M,R) die Menge aller Abbildungen von M nach R. Durch geeignete (nämlich punktweise) Addition und skalare Multiplikation wird Abb(M, R) zu einem Vektorraum. 3 Es bezeichne R n [x] die Menge der Polynome mit Grad kleiner oder gleich n. Dann ist dies mit geeigneter Addition und skalarer Multiplikation ein Vektorraum. Bemerkung: Wegen R n [x] Abb(R,R) ist 3. ein Unterbeispiel von 2. Da man Vektoren im R n als Abbildungen von {1,..., n} nach R interpretieren kann, ist auch 1. ein Unterbeispiel von 2. Mathematischer Vorkurs TU Dortmund Seite 21 / 27

22 Definition 16.5 (Linearkombination) Es seien v 1,..., v n Elemente des Vektorraums V. Eine Summe der Form α 1 v 1 + α 2 v α n v n heißt Linearkombination und die Zahlen α j R heißen Koeffizienten der Linearkombination. Beispiele: 1. Es ist 3x 5 + 4x x eine Linearkombination der Vektoren x 5, x 3, x R 5 [x] mit den Koeffizienten 3, 4 und 12. ) ( 6 2. Der Vektor 4 R 3 ist eine Linearkombination der Vektoren 2 ( ) ( ) ( ) , 1 und 0 mit Koeffizienten 6, 4 und Mathematischer Vorkurs TU Dortmund Seite 22 / 27

23 Definition 16.6 (Lineare Abhängigkeit) Die Vektoren v 1,..., v n des Vektorraums V heißen linear abhängig, wenn es Zahlen α 1,..., α n R gibt, die nicht alle Null sind, so dass aber die Linearkombination α 1 v 1 + α 2 v α n v n = 0 ist. Sie heißen linear unabhängig, wenn sie nicht linear abhängig sind. Folgerung 16.7 Die Vektoren v 1,... v n sind genau dann linear unabhängig, wenn die Gleichung α 1 v 1 + α 2 v α n v n = 0 (als Gleichung für die Zahlen α 1,..., α n ) nur die Lösung α 1 =... = α n = 0 hat. Mathematischer Vorkurs TU Dortmund Seite 23 / 27

24 Beispiele: Die Vektoren u = 2, v = 7, w = 0 R 3 sind linear abhängig, denn es gilt 4 u + ( 1) v + ( 2) w = 0. ( ) ( ) Die Vektoren v =, w = R sind linear unabhängig, denn { } α+ 2β = 0 α v + β w = 0 ist gleichbedeutend mit dem LGS 2α+ β = 0 und dies hat die eindeutige Lösung α = β = 0 (vgl. Kapitel 18). 3. Die Vektoren 2x und 3x in R 3 [x] sind linear abhängig und die Vektoren x 3 und x 2 in R 3 [x] sind linear unabhängig. Mathematischer Vorkurs TU Dortmund Seite 24 / 27

25 Bemerkung v V ist genau dann linear abhängig, wenn v = 0. 2 Die lineare Abhängigkeit zweier Vektoren v, w R 3 ist gleichbedeutend mit jeweils a) v und w liegen auf einer Geraden durch den Nullpunkt, und b) je einer der Vektoren ist ein Vielfaches des anderen. 3 Die lineare Abhängigkeit dreier Vektoren u, v, w R 3 ist gleichbedeutend mit jeweils a) u, v und w liegen in einer Ebene durch den Nullpunkt, und b) mindestens einer der Vektoren ist eine Linearkombination der anderen beiden. Mathematischer Vorkurs TU Dortmund Seite 25 / 27

26 Weitere wichtige Begriffe und Bemerkungen Der Spann der Vektoren v 1,..., v k V ist die Menge aller Linearkombinationen dieser Vektoren. (Das ist auch für eine beliebige Menge von Vektoren erklärt). 2. Der Spann erfüllt die Punkte die einen Vektorraum definieren, ist also selber einer (vgl. Definition 16.4 und Satz 16.3). 3. Lässt sich jedes Element von V eindeutig(!) als Linearkombination der Vektoren v 1,..., v k V darstellen, dann nennt man { v 1,..., v k } eine Basis von V. 4. Die Elemente einer Basis sind linear unabhängig. Mathematischer Vorkurs TU Dortmund Seite 26 / 27

27 Speziell für das Rechnen im R n heißt das 5. n Vektoren des R n sind genau dann linear unabhängig, wenn sie eine Basis bilden. 6. Die Standardbasis des R n besteht aus den kanonischen Einheitsvektoren e 1 = , e 2 = ,..., e n = Mathematischer Vorkurs TU Dortmund Seite 27 / 27

Kapitel 14 Lineare Gleichungssysteme

Kapitel 14 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 83 / 246 Kapitel 4 Lineare Gleichungssysteme Definition 4. (Lineares Gleichungssystem LGS)

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 17 Vektoren Kapitel 15 Vektoren Mathematischer Vorkurs TU Dortmund Seite 13 / 17 Vektoren 151 Denition: Vektoren im Zahlenraum

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Kapitel 10 Komplexe Zahlen

Kapitel 10 Komplexe Zahlen Komplexe Zahlen Kapitel 10 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite 94 / 112 Komplexe Zahlen Die komplexen Zahlen entstehen aus den reellen Zahlen, indem eine neues Element i (in der Elektrotechnik

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

2 Vektorräume und Gleichungssysteme

2 Vektorräume und Gleichungssysteme 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum Definition 21 Seien K = (K, +, ) ein Körper, V eine Menge und

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

6 Lineare Algebra. 6.1 Einführung

6 Lineare Algebra. 6.1 Einführung 6 Lineare Algebra 6.1 Einführung Die lineare Algebra ist für die Wirtschaftswissenschaften von zentraler Bedeutung. Einerseits liefert sie die theoretischen und praktischen Grundlagen für das Lösen linearer

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018 HM II Tutorium 5 Lucas Kunz 22. Mai 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Wiederholung Lineare Gleichungsysteme................... 2 1.2 Wiederholung: Kern einer Abbildung..................... 3 1.3

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Lineare Gleichungssysteme (LGS)

Lineare Gleichungssysteme (LGS) Prof Dr M Helbig LA Vorlesung Lineare Gleichungssysteme (LGS) Fragen? LGS - Begriffe Definition a) Ein lineares Gleichungssystem (LGS) in den Unbekannten x 1,, x n mit Koeffizienten a ij R ( 1 i m, 1 j

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

2.5 Gauß-Jordan-Verfahren

2.5 Gauß-Jordan-Verfahren 2.5 Gauß-Jordan-Verfahren Definition 2.5.1 Sei A K (m,n). Dann heißt A in zeilenreduzierter Normalform, wenn gilt: [Z1] Der erste Eintrag 0 in jeder Zeile 0 ist 1. [Z2] Jede Spalte, die eine 1 nach [Z1]

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14052018 (Teil 1) 7 Mai 2018 Steven Köhler mathe@stevenkoehlerde mathestevenkoehlerde 2 c 2018 Steven Köhler 7 Mai 2018 Matrizen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Das Spatprodukt 25. Insbesondere ist das Spatprodukt in jedem Faktor linear. a 1 = aa 2 + ba 3

Das Spatprodukt 25. Insbesondere ist das Spatprodukt in jedem Faktor linear. a 1 = aa 2 + ba 3 Das Spatprodukt 25 (Sp 4) (aa, b, c) a(a, b, c) Insbesondere ist das Spatprodukt in jedem Faktor linear Montag,3 November 23 Satz 92 Drei Vektoren,, Spatprodukt (,, ) ist sind genau dann linear abhängig,

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

2.2 Lineare Gleichungssysteme

2.2 Lineare Gleichungssysteme Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns anschließend mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h.

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

TEIL II LINEARE ALGEBRA

TEIL II LINEARE ALGEBRA TEIL II LINEARE ALGEBRA 1 Kapitel 10 Lineare Gleichungssysteme 101 Motivation Sei K ein fest gewählter Körper (zb K = R, C, Q, F p ) Betrachten das lineare Gleichungssystem (L) α 11 x 1 + α 12 x 2 + +

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik Dr. Thomas Zehrt Vektorräume und Rang einer Matrix Inhaltsverzeichnis Lineare Unabhängigkeit. Äquivalente Definition.............................

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Einführung I Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 007 (Stand: 007, 4:9 Uhr) Wie viel Kilogramm Salzsäure der Konzentration % muss

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

2.4 Matrizen und Lineare Abbildungen

2.4 Matrizen und Lineare Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 73 2.4 Matrizen und Lineare Abbildungen Zum Schluss von Abschnitt 2.2 hatten wir Matrizen eingeführt, und zwar im Zusammenhang mit der abgekürzten Schreibweise

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Martin Gubisch Lineare Algebra I WS 27/28 Definition (a ij ) 1 j n 1 i n heiÿt eine m n-matrix mit Komponenten a ij K Dabei bezeichnet i den Zeilenindex und j den Spaltenindex

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER 206 STEFAN GESCHKE Inhaltsverzeichnis Einleitung 3 Literatur 3. Lineare Gleichungssysteme

Mehr

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER 208 STEFAN GESCHKE Inhaltsverzeichnis Einleitung 3 Literatur 3. Lineare Gleichungssysteme

Mehr

2.2 Lineare Gleichungssysteme

2.2 Lineare Gleichungssysteme Lineare Algebra 2016/17 c Rudolf Scharlau 67 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n = b a 2 x + a 22 x 2 +...

Mehr

Vektoren - Lineare Abhängigkeit

Vektoren - Lineare Abhängigkeit Vektoren - Lineare Abhängigkeit Linearkombination Eine Linearkombination ist ein Ausdruck r a + r a +... Dabei nennt man die (reellen) Zahlen r i auch Koeffizienten. Lineare Abhängigkeit Wenn ein Vektor

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr