K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom

Größe: px
Ab Seite anzeigen:

Download "K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom"

Transkript

1 Übungsaufgaben 12. Übung SS 18: Woche vom Stochastik VI: Zufallsvektoren; Funktionen von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow vanselow/... (SS18).html Klausurtermin Mathe III: Montag, 6.8., Uhr

2 Achtung(!): Tutoren gesucht! Für Mathematik I (und III) für MW ab WS 18/19 Vergütung nach den üblichen Tarifen Bewerbungen an (mündlich, schriftlich, ): Dr. Guntram Scheithauer: Willersbau, Zi.: C 317 Tel.: ( ) 32002; Fax: guntram.scheithauer@tu-dresden.de

3 Die 2-dimensionale Gleichverteilung Rechteck B = [a, b] [c, d] B = (b a)(d c), Dichtefunktion: 1 (b a)(d c) (x, y) [a, b] [c, d] f(x, y) =, speziell: 0 sonst. 0 x, y 0 1 (x, y) [0, 1] 2 xy (x, y) [0, 1] 2 f(x, y) = F (x, y) = x y > 1, x (0, 1) 0 sonst y x > 1, y (0, 1) 1 x, y > 1.

4 Die Randverteilungen der 2D-Gleichverteilung sind jeweils eindimensionale Gleichverteilungen: Für x [a, b] gilt (f X (x) = 0, x / [a, b], da f(x, y) = 0 für x / [a, b]) f X (x) = f(x, y)dy = d c dy (b a)(d c) = 1 b a. Das ist die Dichte einer 1D-Gleichverteilung! Analog gilt: f Y (y) = 1 d c, für y [c, d], f Y (y) = 0, für y / [c, d]. Damit gilt insgesamt: f XY (x, y) = f X (x) f Y (y), (x, y) R 2, d.h. (siehe Folie zu Unabhängigkeit), die Komponenten X und Y einer 2D-Gleichverteilung sind immer unabhängig!

5 Wdhlg.: Momente von Zufallsvekt. (X, Y ) (n=2) Erwartungswerte der Komponenten X bzw. Y E(X) = E(Y ) = ξf(ξ, η) dξdη = ηf(ξ, η) dξdη = ξf X (ξ)dξ ηf Y (η)dη Def Momente m pq und zentrale Momente µ pq m pq = E(X p Y q ) = µ pq = E( X E(X) p Y E(Y ) q ) = ξ p η q f(ξ, η) dξdη ξ E(X) p η E(Y ) q f(ξ, η) dξdη

6 Erwartungswerte der 2D-Gleichvertlg. b d xdxdy E(X) = m 10 = a c (b a)(d c) = Analog: E(Y ) = m 01 = b d a c b a xdx b a d dy c d c }{{} =1 = a+b 2 ydxdy (b a)(d c) =... = c+d 2 Die ersten Momente der 2D-Gleichverteilung sind die Erwartungswerte der Komponenten (vgl. auch die Def.). Analog gilt m 20 = E(X 2 ), m 02 = E(Y 2 ), µ 20 = D 2 (X), µ 02 = D 2 (Y ), und b d cov(x, Y ) = µ 11 = a c (x a+b c+d 2 )(y 2 )dxdy (b a)(d c) = 0 Die Unkorreliertheit der Komponenten einer 2D-Gleichverteilung ist (natürlich) eine Folgerung aus ihrer Unabhängigkeit.

7 Wdhlg.: Kovarianzmatrix; Korrelationskoeffiz. Def Ist (X 1, X 2,..., X n ) ein n-dimensionaler Zufallsvektor, so heißt k jl = E{[X j E(X j )][X l E(X l )]} = cov(x j, X l ) die Kovarianz der Zufallsgrößen X j, X l (1 j, k n). Die Matrix (k jl ) heißt Kovarianzmatrix. Die mit den Standardabweichungen normierten Kovarianzen nennt man Korrelationskoeffizienten: ρ jl = cov(x j, X l ) D(Xj ) D(X l ) = cov(x j, X l ) σ j σ l (1 j, l n). Definition (unkorrelierte Zufallsgrößen) Sei (X, Y ) ein zufälliger Vektor. Die Zufallsgrößen X und Y heißen unkorreliert, wenn ihr Korrelationskoeffizient ρ(x, Y ) (und damit auch cov(x, Y )) verschwindet.

8 Wdhlg.: Unabhängigkeit von ZG Def : Sei (X 1, X 2,..., X n ) ein zufälliger Vektor, F (x 1, x 2,..., x n ) sei seine Verteilungsfunktion, und F 1 (x 1 ), F 2 (x 2 ),..., F n (x n ) seien die eindimensionalen Randverteilungen. Man nennt die Zufallsgrößen X 1, X 2,..., X n unabhängig, wenn für beliebige x 1, x 2,..., x n gilt: F (x 1, x 2,..., x n ) = F 1 (x 1 )F 2 (x 2 )... F n (x n ). Für stetige ZG: Stetige ZG sind genau dann unabhängig, wenn die Dichte Produkt der Randdichten ist: F (x, y) = F X (x)f Y (y) f(x, y) = f X (x)f Y (y) Satz: Die Unabhängigkeit der ZG (X, Y ) impliziert ihre Unkorreliertheit, d.h., F (x, y) = F X (x)f Y (y) cov(x, Y ) = ρ(x, Y ) = 0

9 Die zweidimensionale Normalverteilung I Def : (X, Y ) ist 2D-normalverteilt, wenn die Dichte gegeben ist durch (σ X > 0, σ Y > 0, ρ ( 1, 1)) f(x, y) = a(x, y) = 1 2πσ X σ Y 1 ρ 2 e a(x,y) 1 2(1 ρ 2 ) [(x m X σ X ) 2 2ρ x m X σ X y m Y σ Y +( y m Y σ Y ) 2 ]. Randverteilungen: X N(m X, σ 2 X), Y N(m y, σ 2 Y ). Die Komponenten X und Y sind also normalverteilt mit E(X) = m X, D 2 (X) = σ 2 X, E(Y ) = m Y, D 2 (Y ) = σ 2 Y. Für das zentrierte gemischte Moment 2. Ordnung gilt µ 11 = cov(x, Y ) = ρ σ X σ Y ρ(x, Y ) = ρ.

10 Die zweidimensionale Normalverteilung II Skalierung auf Standard-NV (2D): X = X m X σ X, Y = Y m Y σ Y, (X, Y ) NV mit m X = m Y = 0, σ X = σ y = 1. ρ(x, Y ) = ρ f X Y (x, y) = Satz: Bei normalverteilten ZG gilt: 1 2π 1 ρ x 2 2ρxy+y 2 2 e 2(1 ρ 2 ) Unabhängigkeit Unkorreliertheit ρ = 0 Denn bei ρ = 0 gilt immer (unabhängig von der Reskalierung) f XY (x, y)= (x m 1 X ) 2 (y m 1 Y ) 2 2σ e X 2 2σ e Y 2 2πσX 2πσY =f X (x) f Y (y).

11 Funktionen/Summen von ZG Gegeben: Zufallsvektor (X, Y ) neue ZG Z = g(x, Y ) Frage(n): Verteilung bzw. statistische Parameter von Z? E(Z) = g(ξ, η)f(ξ, η) dξdη. speziell Summen von ZG(allgemeingültig!): E(a 1 X + a 2 Y ) = a 1 E(X) + a 2 E(Y ), aber: i.a. D 2 (X + Y ) = D 2 X + D 2 Y + 2ρ(X, Y )σ X σ Y Für unabhängige ZG gilt jedoch: E(XY )=EXEY, D 2 (a 1 X +a 2 Y )=a 2 1D 2 X +a 2 2D 2 Y

12 Summen identisch verteilter unabhängiger ZG X 1,.., X n identisch verteilte ZG, unabhängig (wichtig für Statistik), mit EX i = µ, D 2 X i = σ 2 < Z n = n i=1 X i. E(Z n ) = nex = nµ, D 2 Z n = nd 2 X = nσ 2 X n = Z n n E X n = µ, D 2 Xn = nσ2 n 2 Z n - Summe; Xn - statistischer Mittelwert. = σ2 n I.a. andere Verteilung; Sonderfall: X i (identisch, unabh.) normalverteilt Summe (Mittelwert) wieder normalverteilt X i N(µ, σ 2 ) Z n N(nµ, nσ 2 ) X n N(µ, σ2 n )

13 Das schwache Gesetz der großen Zahlen Satz: Sei X 1, X 2,..., X n,.. eine Folge identisch verteilter unabhängiger ZG vom Typ X (i.i.d. - englisch: identically independently distributed) mit EX i = µ, D 2 X i = σ 2, i = 1,.., n,... Dann gilt für alle ε > 0 lim P ( X n µ ε) = 1, ( X stoch. n µ) n d.h., das statistische Mittel konvergiert im Sinn der Wkt. (stochastisch) gegen den (einheitlichen) Erwartungswert µ aller Zufallsgrößen der Folge. Anwendung: Konvergenz der relativen Häufigkeit H n (A) gegen P (A) = p für A Z

14 Satz (Zentraler Grenzwertsatz von Lindeberg und Levy) {X 1, X 2,... } sei eine Folge unabhängiger Zufallsgrößen, die sämtlich dieselbe Verteilungsfunktion haben. Es sei E(X i ) = µ und V ar(x i ) = σ 2 > 0 (i = 1, 2,... ). Weiter sei Z n = n i=1 X i, X n = 1 n Z n. Dann gilt für jedes x ], [ lim P {Z n nµ n σ n oder dazu äquivalent < x} = 1 2π x e 1 2 ξ2 dξ = Φ(x) lim P { X n µ n σ < x} = 1 x n 2π e 1 2 ξ2 dξ = Φ(x). Interpret.: Ȳ n = X n µ n, P ( Ȳ n < x) = F n (x) Φ(x), x σ Die (standardisierte) ZG Ȳn ist asymptotisch N(0, 1)-verteilt(!)

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom Übungsaufgaben 11. Übung SS 18: Woche vom 25. 6. 29. 6. 2016 Stochastik V: ZG; Momente von ZG; Zufallsvektoren Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 13: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 13: Woche vom Übungsaufgaben 11. Übung SS 13: Woche vom 24. 6. 13-28. 6. 2013 Stochastik V: ZG Momente von ZG; Grenzverteilungssätze Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 14. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 14. Übung SS 18: Woche vom Übungsaufgaben 14. Übung SS 18: Woche vom 16. 7. 20. 7. 2018 Stochastik VIII: Statistik; Konf.-interv.; Tests Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 10. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 10. Übung SS 18: Woche vom Übungsaufgaben 10. Übung SS 18: Woche vom 18. 6. 22. 6. 2016 Stochastik IV: ZG (diskret + stetig); Momente von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0 Beispiel: Zweidimensionale Normalverteilung I Beispiel: Zweidimensionale Normalverteilung II Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale multivariate Normalverteilung Spezifikation am

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II Statistik II 1. Ergänzungen zur Wahrscheinlichkeitstheorie Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 1. Ergänzungen zur

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Übungsrunde 10, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien,

Übungsrunde 10, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien, Übungsrunde, Gruppe 2 LVA 7.369, Übungsrunde, Gruppe 2, 9..27 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 9..27 Anmerkung: Viele dieser Lösungsvorschläge stammen aus dem Informatik-Forum, Subforum

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Die Gamma-Verteilung 13.12.212 Diese Verteilung dient häufig zur Modellierung der Lebensdauer von langlebigen Industriegüstern. Die Dichte

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

Übungsrunde 11, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien,

Übungsrunde 11, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien, 1 4.36 Übungsrunde 11, Gruppe 2 LVA 17.369, Übungsrunde 1, Gruppe 2, 16.1.27 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 16.1.27 1.1 Angabe Die logische Struktur eines Systems bestehend aus drei

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Institut für Statistik der LMU. FORMELSAMMLUNG 2003 zur STOCHASTIK FÜR BIOINFORMATIKER

Institut für Statistik der LMU. FORMELSAMMLUNG 2003 zur STOCHASTIK FÜR BIOINFORMATIKER Institut für Statistik der LMU FORMELSAMMLUNG 2003 zur STOCHASTIK FÜR BIOINFORMATIKER 2003 2003 Inhaltsverzeichnis 1 Elementare Wahrscheinlichkeitsrechnung 1 1.1 Die Axiome von Kolmogorov...........................

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Kapitel 12 Erwartungswert und Varianz

Kapitel 12 Erwartungswert und Varianz Kapitel 12 Erwartungswert und Varianz Vorlesung Wahrscheinlichkeitsrechnung I vom 4/10. Juni 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 12.1 Der Erwartungswert Der Erwartungswert einer Zufallsvariablen

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

K. Eppler, Inst. f. Num. Mathematik Abschlußklausur

K. Eppler, Inst. f. Num. Mathematik Abschlußklausur Abschlußklausur Termin Klausur Mathematik III f. MW: M0., 6.08. 2018, Beginn 8.00 (7.50) Uhr, Zugelassene Hilfsmittel: Eine Formelsammlung lt. Liste (s. homepage) und 2 Blatt Din A4 eigene Notizen Nicht

Mehr

Einführung in die angewandte Stochastik

Einführung in die angewandte Stochastik Einführung in die angewandte Stochastik Fabian Meyer 5. April 2018 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 3 1.1 Definitionen................................... 3 1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung,

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Vorlesung 7b. Der Zentrale Grenzwertsatz

Vorlesung 7b. Der Zentrale Grenzwertsatz Vorlesung 7b Der Zentrale Grenzwertsatz 1 Zentraler Grenzwertsatz (Tschebyscheff) Die standardisierte Summe von unabhängigen, identisch verteilten R-wertigen Zufallsvariablen konvergiert in Verteilung

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Stochastik. Frank Eckert und. Thomas Huppertz Letzte Änderung:

Stochastik. Frank Eckert und. Thomas Huppertz Letzte Änderung: Stochastik getext von Frank Eckert Frank.Eckert@post.rwth-aachen.de und Thomas Huppertz thuppert@fh-niederrhein.de Letzte Änderung: 4.Juli.2000 INHALTSVERZEICHNIS Inhaltsverzeichnis Kombinatorische Grundformeln

Mehr

Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen

Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D.

Mehr

Wiederholung Analysis

Wiederholung Analysis Wiederholung Analysis F( x) sei Stammfunktion zu f( x) f( x) dx = F( x) F ( x) = f( x) Bestimmtes Integral b a f ( x) dx = F( b) F( a) Uneigentliche Integrale x x x f() t 0 F( x) = f() t dt ist monoton

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 7. Vorlesung - 2018 Bemerkung: Sei X = X 1,..., X n Zufallsvektor. Der n dimensionale Vektor EX = EX 1,..., EX n ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N0, 1. X, Y sind die Koordinaten

Mehr

2. Zufallsvektoren. Zufallsvektoren allgemein. Diskreter Fall. Multivariate Verteilungsfunktion. Stetige Zufallsvektoren

2. Zufallsvektoren. Zufallsvektoren allgemein. Diskreter Fall. Multivariate Verteilungsfunktion. Stetige Zufallsvektoren 2 Zufallsvektoren 2. Zufallsvektoren Zufallsvektoren allgemein Diskreter Fall Multivariate Verteilungsfunktion Stetige Zufallsvektoren Unabhängigkeit von Zufallsvariablen Korrelationskoeffizienten Dr.

Mehr

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen Kapitel 9 Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen 9 Definitionen, Eigenschaften Wir betrachten jetzt p Zufallsvariablen X, X 2,, X p Alle Definitionen, Notationen und Eigenschaften

Mehr

Stochastik Musterlösung 7

Stochastik Musterlösung 7 ETH Zürich HS 216 RW, D-MATL, D-MAVT Prof. Dr. Martin Schweizer Koordinator Calypso Herrera Stochastik Musterlösung 7 1. a) Es sind folgende zwei Eigenschaften zu zeigen: f X,Y (x, y) für alle (x, y) R

Mehr

Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

Beispiel: Zweidimensionale Normalverteilung I

Beispiel: Zweidimensionale Normalverteilung I 10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

4 MEHRDIMENSIONALE VERTEILUNGEN

4 MEHRDIMENSIONALE VERTEILUNGEN 4 MEHRDIMENSIONALE VERTEILUNGEN 4.14 Stochastische Vektoren 1. Der Merkmalraum des stochastischen Vektors (X, Y ) sei M = R 2. Betrachten Sie die folgenden Ereignisse und ihre Wahrscheinlichkeiten: A 1

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 7. Mai 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 5 Version: 30. April

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

2.Tutorium Multivariate Verfahren

2.Tutorium Multivariate Verfahren 2.Tutorium Multivariate Verfahren - Multivariate Verteilungen - Hannah Busen: 27.04.2015 und 04.05.2015 Nicole Schüller: 28.04.2015 und 05.05.2015 Institut für Statistik, LMU München 1 / 21 Gliederung

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr Poisson-Prozess Wir hatten bei der Diskussion der geometrischen und der Poisson-Verteilung festgestellt: Wenn der zeitliche Abstand der Treffer geometrisch verteilt ist, so ist ihre Anzahl in einer festen

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2004 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2004ss/ds/index.html.de 18. Juni 2004 Exponentialverteilung als Grenzwert der geometrischen

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Zusammenfassung Stochastik I + II

Zusammenfassung Stochastik I + II Zusammenfassung Stochastik I + II Stephan Kuschel Vorlesung von Dr. Nagel Stochastik I: WS 007/08 Stochastik II: SS 008 zuletzt aktualisiert: 7. Juli 009 Da diese Zusammenfassung den Menschen, die sie

Mehr

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript Wahrscheinlichkeitsrechnung Sommersemester 2008 Kurzskript Version 1.0 S. Döhler 1. Juli 2008 In diesem Kurzskript sind Begriffe und Ergebnisse aus der Lehrveranstaltung zusammengestellt. Außerdem enthält

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr