Astroteilchenphysik I

Größe: px
Ab Seite anzeigen:

Download "Astroteilchenphysik I"

Transkript

1 Astroteilchenphysik I Wintersemester 2013/14 Vorlesung # 10, Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - Abschirm-Methoden gegen externe Strahlung: aktiv & passiv - Zerfallsketten: die vier primordialen a-ketten - Radon KIT University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

2 Signal & Untergrund Suche nach seltenen Prozessen (0nßß, solare n s, CDM) erfordert - Signalrate: < 1 Ereignis / 100 kg pro Jahr - stringente Materialselektion (keine a,ß,g-emitter) ß - Reduktion von myon-induzierten Prozessen ß - Abschirmung ß-Emitter g-emitter a-emitter Spaltung Neutronen aus Myon- Reaktionen

3 Myonrate (Myonen/m 2 /Jahr) Untergrundlabore 10 6 Myonrate und Abschirmtiefe 10 5 Sandford flach WIPP Soudan LNGS Kamioka Baksan LSM - Myon- Abschirmung durch Fels 10 2 SNOLAB CJPL 10 1 DUSEL Homestake (tief) Tiefe (m Wasseräquivalent) Standardfels r = 2.65 g/cm

4 Suche nach Dunkler Materie Suche nach Dunkler Materie mit LXe in vier Untergrundlaboren XMASS (Kamioka) XENON100 (LNGS) LUX (Sanford) PANDAX (CJPL)

5 2.2.2 Abschirm-Methoden natürliche Radioaktivität im Gestein erzeugt: a-teilchen (3-7 MeV), ß-Elektronen ( MeV), Gammas (< 3.6 MeV) und Neutronen (MeV) Wieviel Abschirmung benötigt der Detektor? Cu

6 natürliche Radioaktivität - Gestein Wie viele Gammas strahlt die 600 m 2 Oberfläche eines Labors im Jahr ab? g Quartz A: N = 10 3 g s B: N = 10 7 g s C: N = g s D: N = g s

7 natürliche Radioaktivität - Gestein 5 cm Beispiel: Labor mit 600 m 2 Oberfläche: g s aus den ersten 5 cm der Wände 30 m 3 Gestein trägt zum g-untergrund bei - wichtiger g-strahler: 232 Th (Thorium-232) - mit Anteil 10-6 g(th) / g = 100 g Th 232 Th g mit t ½ ( 232 Th) = a erzeugt 1 g Th Gammas / Jahr 1300 Gammas / Sekunde Gamma-Raumuntergrund: N ~ Ereignisse / Jahr - höchstenergetische g s (2.6 MeV von 208 Tl) kommen aus der 238 U/ 232 Th Zerfallskette Wand Abschirmung des g-raumuntergrunds erforderlich

8 Absorptionskoeffizient µ (cm 2 /g) Abschirmwirkung von Blei benötigter Abschirmfaktor für ~1 MeV g s ~10 9 = 20 X 0 (X 0 : Strahlungslänge) Abschirmung aus massivem Blei () mit d = 0.45 m g L 2 L 1 L 3 K Kante Blei 232 Th Abschwächkoeffizient µ Absorption d =? 0.01 Paarbildung Quartz g-energie (MeV)

9 Blei-210 Untergrund Isotop -210 entsteht aus der 238 U-Zerfallskette mit t ½ ( 210 ) = 22 a Abschirmung erzeugt Untergrundsignal, dies muss abgeschirmt werden g Th d = 45 cm Quartz

10 Blei-210 Untergrund & römisches Blei Isotop -210 ist aus Blei-Ladungen von versunkenen römischen Galeeren zerfallen, da DT = 2000 y (Roman Lead) 210 Detektoren Taucher beim Bergen von römischem aus einer 2000 Jahre alten römischen Galeere für das INFN (CUORE Exp.) Römisches CUORE

11 natürliche Radioaktivität - Gestein innere Cu-Abschirmung im DAMA-Libra Experiment - Suche nach Dunkler Materie mit NaJ-Szintillatoren im LNGS g 232 Th Cu Quartz Cu

12 natürliche Radioaktivität - Gestein -Abschirmung & Cu-Kryostat im Heidelberg-Moskau Experiment - Suche nach 0nßß-Zerfällen mit 76 Ge-Dioden im LNGS g 232 Th Cu Quartz Cu

13 Myon-induzierte Radioaktivität - Gestein Myonen können durch tief-inelastische Streuprozesse im Gestein hochenergetische Neutronen erzeugen, die die Abschirmung durchdringen Myon g n Cu n

14 Moderation von Neutronen durch PE Zum Abbremsen von hochenergetischen Neutronen werden H-reiche Materialien benutzt (elastischer Stoß von Neutronen und Protonen) Myon Polyethylen (PE) g 2.2 MeV g p g PE Cu n D 2.2 MeV

15 Aufbau eines Vetozähler Anordnung der Szintillator-Module in einer 4p Geometrie um die Veto-Effizienz zu maximieren Myon PE

16 Aktive und passive Abschirmung Optimale Kombination von aktiver und passiver Abschirmung µ 232 Th g MeV g PE Cu

17 Aktive und passive Abschirmung Extrem untergrundarme Materialien für Astroteilchenphysik - Detektor, innere Cu-Abschirmung (elektrolytisch, OFC) ~100 nbq/kg für die Suche nach - dunkler Materie - 0nßß-Zerfall (Neutrino-Physik) e - Batterie e unreine Cu- Elektrode reine Cu- Elektrode Abfall Cu

18 Polyethylen Abschirmung Beispiel XENON100 -Abschirmung & Cu-Abschirmung im XENON100 Experiment - Suche nach WIMP-Streuprozessen mit Xe-TPC im LNGS PE H 2 O/Polyethylen untergrundarmes Cu Cu LXe- TPC PE Polyethylen

19 Untergrundreduktion XENON

20 Untergrundreduktion Grenze Solare Neutrinos: extrem kleine Wechselwirkungsrate - sind für aktuelle Suche nach seltenen Ereignissen mit Massen M ~ 100 kg keine relevante Untergrundquelle µ µ µ n e

21 Untergrundreduktion Grenze Solare Neutrinos: wie dick müsste -Abschirmung sein? - limitieren die Suche nach seltenen Prozessen bei Targetmassen > 10 t A: 10 2 km B: 10 8 km (1 AE) n e C: km (1 pc) D: km (100 pc)

22 2.2.3 Zerfallsketten Woher kommen die radioaktiven Isotope im Gestein? g a 232 Th 235 U 237 Np Quartz 238 U

23 natürliche Radioaktivität - Gestein Radioaktive schwere Elemente gebildet in Kernkollaps-SN-Explosionen - schwere (instabile) Elemente aus dem r-prozess bei SNae (vgl. ATP II) in solarem Nebel - Anreicherung in der Erdkruste SN Explosionen vor/nach Bildung des Sonnensystems 235,238 U, 232 Th, a 1.65:1 Anreicherung in Erdkruste 232 Th 235 U Erdkern 237 Np 238 U

24 Primordiale Zerfallsketten die vier primordialen Zerfallsketten - langlebige Mutterisotope: a 232 Th 237 Np 238 U 235 U - stabile End-Isotope: Bi Thorium-Reihe Neptunium-Reihe Uran-238-Reihe Aktiniden(U-235)-Reihe

25 Primordiale Zerfallsketten radioaktive Zerfallskette: durch den Zerfall eines Ausgangsisotops ( 235 U) werden radioaktive Tochterkerne erzeugt, die ihrerseits wieder zerfallen (Ende: stabiles Isotop) dn dt dn dt dn dt N N N N N 2 3 Zerfall Mutterkern Erzeugung Tochterkern & Zerfall Tochterkern säkulares Gleichgewicht: Aktivität A i aller Isotope der Kette ist identisch & die Häufigkeit N i der Isotope ist konstant 1 dn1 dn2 dn dt dt dt A A A N N 2 Aktiniden- Reihe N

26 Rate Zerfallskette von Uran Uranserie 238 U A = 4 j U Bi t ½ = a Ra Gammaspektrum von nat U 214 Bi 214 Bi 214 Bi 214 Bi 214 Bi E [MeV]

27 Radium-226: Entdeckung Radium Halbwertszeit t ½ = 1602 a - Entdeckung 1898 von Pierre & Marie Curie Nobelpreis für Chemie

28 Edelgas Radon-222 Radon-Emanation aus dem Boden trägt zu ~50% zur natürlichen Strahlenexposition bei medizinisches Röntgen 11% andere 1% intern 11% Kosmische Strahlung 8% Terrestrisch 8% Nuklearmedizin 4% Konsumerprod. 3% ~50 Bq/m 3 Rn

29 Edelgas Radon-222 Radon-Emanation aus 1 m 2 Boden ~ Rn-Atome/s = 0.5 pci Rn-222/s Boden: 1 pci Ra-226/g 1 m 2 Jährliche Emanation von Radon-222 aus dem gesamten Erdboden: Ci = 91 TBq

30 Edelgas Radon-222 Radon-Emanation in einem Untergrundlabor ( Ventilation) Experimente

31 Edelgas Radon-222 Radon-Emanation aus Detektorkomponenten stellt eine gefährliche Quelle von Untergrund dar Messung der Radon- Emanation im GERDA Kryostaten am LNGS

32 Edelgas Radon-220 Rn-220 aus Schweißnähten des Edelstahls: Untergrundquelle im KATRIN Spektrometer, da a-zerfall von Elektron-Emission begleitet 216 Po 220 Rn e- a

33 Edelgas Radon - Gegenmaßnahmen Radon-Emanation setzt Radon in das aktive Detektorvolumen frei, daher Gegenmaßnahmen: 1. kontinuierliche externe Belüftung / Abpumpen 2. passive Radon-Barriere - Bsp.: dünne Nylonballons im Borexino-Experiment (< 2 Radon-Zerfälle/Tag) 3. passive Radon-Kryofalle - Bsp.: Kupfer-Baffles im KATRIN-Experiment Rn-Atome frieren fest auf ln2-kalter Cu-Oberfläche (77K)

34 Zerfallsketten 237 Np Neptuniumserie 237 Np A = 4 j Np 209 Bi, t ½ = a Rauchmelder enthalten 241 Am 241 Am 241 Am 237 Np + a t ½ = a

35 Ionisations/Licht-Signal (kev) Untergrundreduktion Separation des Signals vom Untergrund durch 3 Techniken: äußere Abschirmung passiv: Cu, gegen g s PE gegen Neutronen aktiv: äußerer µ-veto Selbst-Abschirmung Beschränkung auf den innersten Bereich, keine Oberflächeneffekte fiducial volume Teilchendiskriminierung Ereignisparameter wie Ionisation, Szintillation Phononen: ideal zur Teilchendiskriminierung Cu fiducial volume Untergrund: Photonen und Elektronen Signal: Kernrückstöße Gesamtenergie (kev)

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2015/16 Vorlesung # 10, 22.12.2015 Guido Drexlin, Institut für Experimentelle Kernphysik, Fakultät für Physik Experimentelle Techniken - Abschirm-Methoden gegen externe

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2013/14 Vorlesung # 09, 19.12.2013 Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - Suche nach seltenen Ereignissen - Reaktionsraten

Mehr

Die Dunkle Seite des Universums

Die Dunkle Seite des Universums Die Dunkle Seite des Universums Marc Schumann AEC, Universität Bern Physik am Freitag, Bern, 16. Januar 2015 marc.schumann@lhep.unibe.ch www.lhep.unibe.ch/darkmatter normale Materie Dunkle Materie? 95%

Mehr

Astroteilchenphysik - I

Astroteilchenphysik - I Astroteilchenphysik - I WS 2012/2013 Vorlesung # 13, 31.01.2013 Guido Drexlin, Institut für Experimentelle Kernphysik DM: direkte Nachweismethoden - WIMP-Kern-Reaktionen: DM-Halo - skalare & spinabhängige

Mehr

Direkter Nachweis dunkler Materie

Direkter Nachweis dunkler Materie Direkter Nachweis dunkler Materie Hauptseminarvortrag von Johann Rauser 21. Juni 2013 HAUPTSEMINAR: DER URKNALL UND SEINE TEILCHEN KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2015/16 Vorlesung # 09, 15.12.2015 Guido Drexlin, Institut für Experimentelle Kernphysik, Fakultät für Physik Experimentelle Techniken - Suche nach seltenen Ereignissen

Mehr

Dunkle Materie-Experimente

Dunkle Materie-Experimente Dunkle Materie-Experimente Der Kampf im Untergrund gegen den Untergrund Hardy Simgen Max-Planck-Institut für Kernphysik Die Suche nach der Nadel im Warum ist sie so schwierig? Nadel und Heu sehen ähnlich

Mehr

Die Dunkle Seite des Universums Berner Physiker auf der Suche nach Dunkler Materie

Die Dunkle Seite des Universums Berner Physiker auf der Suche nach Dunkler Materie Die Dunkle Seite des Universums Berner Physiker auf der Suche nach Dunkler Materie Marc Schumann AEC, Universität Bern Seniorenuniversität Bern, 11. Oktober 2013 marc.schumann@lhep.unibe.ch www.lhep.unibe.ch/darkmatter

Mehr

Neutrinophysik-Experimente

Neutrinophysik-Experimente Physik am Samstagmorgen 2007/2008 Schülertreffen am Max-Planck-Institut für Kernphysik 26. April 2008 Neutrinophysik-Experimente Der Kampf im Untergrund gegen den Untergrund W. Hampel Max-Planck-Institut

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2015/16 Vorlesung # 15, 09.02.16 Guido Drexlin, Institut für Experimentelle Kernphysik, Fakultät für Physik Dunkles Universum - Bolometer & Thermistoren - Teilchendiskriminierung

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Direkte Suche nach WIMPs. Michael Willers TU München

Direkte Suche nach WIMPs. Michael Willers TU München Direkte Suche nach WIMPs Michael Willers TU München 15.01.2008 Was sind WIMPs?! Weakly Interacting Massive Particles Hypothetische Teilchen zur Lösung des DM Problems Masse " GeV - TeV Eigenschaften guter

Mehr

Das GERDA-Experiment am Gran Sasso Untergrundlabor

Das GERDA-Experiment am Gran Sasso Untergrundlabor Das GERDA-Experiment am Gran Sasso Untergrundlabor Nuklearer Prozess Dr. Béla Majorovits 13. Okt. 2007 1 Woraus bestehen wir? Die Materie um uns herum und die uns vertraut ist, besteht aus drei Elementarteilchen:

Mehr

Astroteilchenphysik I : Gliederung

Astroteilchenphysik I : Gliederung Astroteilchenphysik I : Gliederung 1. Einführung 1.1 Teilchenstrahlung aus dem Universum 1.2 Teilchenstrahlung aus dem Labor 2. Experimentelle Methoden 2.1 Multi-Messenger-Methoden 2.1.1 Luftschauer-Experimente

Mehr

Neutrinophysik. Prof. Dr. Caren Hagner Universität Hamburg

Neutrinophysik. Prof. Dr. Caren Hagner Universität Hamburg Neutrinophysik Prof. Dr. Caren Hagner Universität Hamburg Überblick über Elementarteilchen Neutrinos: Eigenschaften Das Rätsel der solaren Neutrinos Neutrino Oszillationen Neutrinostrahlen Aufbau der Materie:

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 06. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

Das Edelweiss Experiment

Das Edelweiss Experiment Das Edelweiss Experiment Mit dem Edelweiss Experiment im Mondane Untergrund Labor versucht man auf direkte Weise WIMP Teilchen nachzuweisen. Das Experiment im Frejus Tunnel, welcher Italien mit Frankreich

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2015/16 Vorlesung # 3, 3.11.2015 Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - Luftschauer-Prozesse Einführung elektromagnetische

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2015/16 Vorlesung # 2, 27.10.2015 Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - Multimessenger-Methoden: Gammas, Neutrinos, Protonen

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Guido Drexlin, Institut für Experimentelle Kernphysik Astroteilchenphysik I WS 2013/14 G. Drexlin (EKP) https://neutrino.ikp.kit.edu/personal/drexlin/home KIT University of the State of Baden-Württemberg

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Guido Drexlin, Institut für Experimentelle Kernphysik Astroteilchenphysik I WS 2015/16 G. Drexlin (EKP) https://neutrino.ikp.kit.edu/personal/drexlin/home KIT University of the State of Baden-Württemberg

Mehr

Astroteilchenphysik II

Astroteilchenphysik II Astroteilchenphysik II Sommersemester 2015 Vorlesung # 18, 30.4.2015 Guido Drexlin, Institut für Experimentelle Kernphysik Neutrino-Oszillationen - SNO Resultate: NC an D 2 O & die Lösung des SNP - MSW

Mehr

Kerne und Teilchen. Moderne Physik III

Kerne und Teilchen. Moderne Physik III Kerne und Teilchen Moderne Physik III Vorlesung # 07 Guido Drexlin, Institut für Experimentelle Kernphysik 3. Instabile Kerne - radioaktiver Zerfall: Grundlagen - Lebensdauer, Zerfallskonstante - Verzweigung

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Messung der Gamma-Aktivität im Large Volume Detektor im Gran Sasso Untergrundlabor

Messung der Gamma-Aktivität im Large Volume Detektor im Gran Sasso Untergrundlabor Messung der Gamma-Aktivität im Large Volume Detektor im Gran Sasso Untergrundlabor Bachelor Arbeit Yiea-Funk Te Betreut von Frau Prof. Laura Baudis und Marijke Haffke Inhalt 1. Einleitung» XENON Experiment»

Mehr

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:

Mehr

38. Lektion Wie alt ist Ötzi wirklich, oder wie wird eine Altersbestimmung durchgeführt?

38. Lektion Wie alt ist Ötzi wirklich, oder wie wird eine Altersbestimmung durchgeführt? 38. Lektion Wie alt ist Ötzi wirklich, oder wie wird eine Altersbestimmung durchgeführt? Lernziel: Radioaktive Isotope geben Auskunft über das Alter von organischen Materialien, von Gesteinen und von der

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2013/14 Vorlesung # 4, 14.11.2013 Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - Luftschauer-Prozesse: ECAL & HCAL, Myonen Schema

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Experimentelle Suche nach Dunkler Materie

Experimentelle Suche nach Dunkler Materie Experimentelle Suche nach Dunkler Materie Überblick Allgemeine Einführung Direkte Suche nach DM Experimente zur Direkten Suche Indirekte Suche nach DM Experimente zur Indirekten Suche Ausblick Zusammensetzung

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25 Physik V Kern- und Teilchenphysik Dr. Daniel Bick 12. Januar 2016 Daniel Bick Physik V WS 2015/16 12. Januar 2016 1 / 25 Korrektur Verlauf des Stabilitätstals Z = A 2 1 1 + a CA 2/3 4a A Daniel Bick Physik

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Direkter Nachweis dunkler Materie

Direkter Nachweis dunkler Materie Direkter Nachweis dunkler Materie Julien Wulf 24.06.11 HAUPTSEMINAR "DER URKNALL UND SEINE TEILCHEN" KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

WIMP-Teilchen. Auf der Suche nach Cold Dark Matter mit astrophysikalischen Experimenten

WIMP-Teilchen. Auf der Suche nach Cold Dark Matter mit astrophysikalischen Experimenten Hauptseminar Dunkle Materie in Teilchen- und Teilchenastrophysik SS 05 WIMP-Teilchen Auf der Suche nach Cold Dark Matter mit astrophysikalischen Experimenten Pierre Sauter, 28.06.2005 Übersicht Was sind

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2013/14 Vorlesung # 14, 06.02.2014 Guido Drexlin, Institut für Experimentelle Kernphysik Dunkles Universum - direkter CDM-Nachweis: Spin-abhängige Streuung WIMP-Plot

Mehr

Nuklidkarte. Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V

Nuklidkarte. Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V Z Nuklidkarte 1 N 2 Instabilität der Atomkerne: radioaktive Zerfälle Bekannteste Arten: α-zerfall: β-zerfall: γ-zerfall: Mutterkern Tochterkern + Heliumkern Mutterkern Tochterkern + Elektron + Neutrino

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

3) Natürliche und künstliche Radioaktivität (1)

3) Natürliche und künstliche Radioaktivität (1) 3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf

Mehr

Gammaspektroskopie. Typische Detektoren: Szintillationszähler: (NaI, CsI, Plastik- oder Flüssigszintillator, ) Ge Detektoren (hohe Energieauflösung)

Gammaspektroskopie. Typische Detektoren: Szintillationszähler: (NaI, CsI, Plastik- oder Flüssigszintillator, ) Ge Detektoren (hohe Energieauflösung) Gammaspektroskopie Typische Detektoren: Szintillationszähler: (NaI, CsI, Plastik- oder Flüssigszintillator, ) Ge Detektoren (hohe Energieauflösung) Wiederholung: WW von Gamma-Strahlung mit Materie Photoeffekt,

Mehr

Hochenergetische Teilchen als Boten aus dem Kosmos

Hochenergetische Teilchen als Boten aus dem Kosmos Hochenergetische Teilchen als Boten aus dem Kosmos Astroteilchenphysik von den Anfängen bis heute - Das Pierre Auger Observatorium Institut für Kernphysik KIT Universität des Landes Baden-Württemberg und

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α =δ0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

WIMP-Teilchen. Suche mit astrophysikalischen- und Labor - Experimenten. Paulus Frischholz

WIMP-Teilchen. Suche mit astrophysikalischen- und Labor - Experimenten. Paulus Frischholz WIMP-Teilchen Suche mit astrophysikalischen- und Labor - Experimenten Paulus Frischholz 24.06.2003 Missing Pieces Gliederung Einleitung Woher kommen die WIMPs? Wo sind die WIMPs heute? Wie kann man WIMPs

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

1) Targetmasse für neutrinolosen doppelten β-zerfall:

1) Targetmasse für neutrinolosen doppelten β-zerfall: 1) Targetmasse für neutrinolosen doppelten β-zerfall: Ein vielversprechender Kandidat für die Suche nach dem neutrinolosen doppelten β- Zerfall ist. Die experimentelle Observable ist die Halbwertszeit.

Mehr

Kosmische Strahlung Teilchen aus den Tiefen des Weltraums. Prof. Dr. Ulrich Katz Erlangen Centre for Astroparticle Physics 16.

Kosmische Strahlung Teilchen aus den Tiefen des Weltraums. Prof. Dr. Ulrich Katz Erlangen Centre for Astroparticle Physics 16. Kosmische Strahlung Teilchen aus den Tiefen des Weltraums Prof. Dr. Ulrich Katz Erlangen Centre for Astroparticle Physics 16. Juli 2009 Kosmische Strahlung: wie alles anfing 1912: Victor Hess entdeckt

Mehr

Proton-Proton-Zyklus. p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) H+p => 3 He+γ. He+ 3 He => 4 He+2p (86%) He+ 4 He=> 7 Be+γ (14%)

Proton-Proton-Zyklus. p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) H+p => 3 He+γ. He+ 3 He => 4 He+2p (86%) He+ 4 He=> 7 Be+γ (14%) Proton-Proton-Zyklus pp-neutrino pep-neutrino p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) 2 H+p => 3 He+γ 3 He+ 3 He => 4 He+2p (86%) 3 He+ 4 He=> 7 Be+γ (14%) 3 He+p => 4 He+ν e +e + (

Mehr

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Krise in in der der Physik Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Energie-Erhaltung im im Beta-Zerfall verletzt?? Alpha-Zerfall Beta-Zerfall

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Das solare Neutrinoproblem

Das solare Neutrinoproblem Das solare Neutrinoproblem Helene Kraft, Benjamin Gutknecht, Bartosz Slomski, Esther Dönsdorf, Maria Reinhardt, Kristoffer Menzel, David Caliebe 3. Juni, 2005 1 Der Weg zum Postulat des Neutrinos 1930,

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungsblatt Nr. 6: Musterlösungen Aufgabe 1: Zerfallsreihen und radioaktives Gleichgewicht a) Die Anzahl der Nuklide in

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α = δ 0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

Dunkle Materie überall Eine Suche nach bisher unbekannten Teilchen

Dunkle Materie überall Eine Suche nach bisher unbekannten Teilchen Dunkle Materie überall Eine Suche nach bisher unbekannten Teilchen Josef Jochum Kepler Center for Astro and Particle Physics Universität Tübingen Elementarteilchen Struktur des Universums u Enge Verknüpfung

Mehr

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung Norddeutsches Seminar für Strahlenschutz Gefahren ionisierender Strahlung Ionisation Entfernen eines oder mehrerer Elektronen aus dem neutralen Atom A A + + e - Aus einem elektrisch neutralem Atom wurden

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

Direkter Nachweis Dunkler Materie

Direkter Nachweis Dunkler Materie Johann Rauser Inhaltsverzeichnis Vortrag vom 21. Juni 2013 1 Warum Dunkle Materie 2 1.1 Gravitationslinseneekt............................ 2 1.2 Rotationsgeschwindigkeit von Spiralgalaxien.................

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Die Akte X der Teilchenphysik. Neutrinos. Kai Zuber

Die Akte X der Teilchenphysik. Neutrinos. Kai Zuber Die Akte X der Teilchenphysik Neutrinos Inhalt Historie Solare Neutrinos Der doppelte Betazerfall Ausblick und Zusammenfassung Entdeckung der Radioaktivität 1895 W. Röntgen entdeckt X-Strahlen 1896 H.

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

PRESSEMITTEILUNG. Neue Ergebnisse des XENON100 Experiments engen erlaubten Bereich für Dunkle Materie ein

PRESSEMITTEILUNG. Neue Ergebnisse des XENON100 Experiments engen erlaubten Bereich für Dunkle Materie ein PRESSEMITTEILUNG Neue Ergebnisse des XENON100 Experiments engen erlaubten Bereich für Dunkle Materie ein Wissenschaftler der XENON-Kollaboration berichten über neue Ergebnisse ihrer Suche nach Dunkler

Mehr

Astroteilchenphysik II

Astroteilchenphysik II Astroteilchenphysik II Sommersemester 2015 Vorlesung # 19, 7.5.2015 Guido Drexlin, Institut für Experimentelle Kernphysik Neutrinos - atmosphärische Neutrinos: 23-Mischung - Super-Kamiokande: up-down Asymmetrie

Mehr

Der Teilchenzoo wächst Intermezzo Kosmische Strahlung

Der Teilchenzoo wächst Intermezzo Kosmische Strahlung Der Teilchenzoo wächst Intermezzo Kosmische Strahlung Entdeckung neuer Teilchen die niemand brauchte... Elementarteilchen (von lat. elementum Grundstoff ) sind die Bausteine der Materie. So besteht die

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Der Large Hadron Collider (LHC)

Der Large Hadron Collider (LHC) Der Large Hadron Collider (LHC)...ein Rundgang durch das größte Experiment der Welt 1 Der Large Hadron Collider Institut für Experimentelle Kernphysik Übersicht Die Welt der Elementarteilchen Teilchenbeschleuniger

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s Vorlesung Fundamentale Experimente mit ultrakalten Neutronen (FundExpUCN) Die Entdeckung des Neutrons Fundamentale Eigenschaften des Neutrons Reaktorphysik und Erzeugung von Neutronen Spallationsneutronenquellen

Mehr

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde.

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde. Atommodelle 1. Vervollständige den Lückentext. Atome bestehen aus einer mit negativ geladenen und einem mit positiv geladenen und elektrisch neutralen. Die Masse des Atoms ist im konzentriert. Die Massenzahl

Mehr

3. Vorlesung: Dunkle Materie - Experimente

3. Vorlesung: Dunkle Materie - Experimente 1. Vorlesung: Dunkle Materie - Evidenzen und Detektionsprinzipien 2. Vorlesung: Neutrinos im Standardmodell 3. Vorlesung: Dunkle Materie - Experimente 4. Vorlesung: Suche nach dem neutrinolosen Doppelbetazerfall,

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 4: Messtechnik Markus Drapalik 07.11.2012 22.11.2012 Praxisseminar Strahlenschutz Teil 4: Messtechnik 1 1 Inhalt Wiederholung ionisierende Strahlung Prinzipien der Messtechnik

Mehr

Wechselwirkung Strahlung-Materie Kernreaktionen

Wechselwirkung Strahlung-Materie Kernreaktionen Wintersemester 2011/2012 Radioaktivität und Radiochemie Wechselwirkung Strahlung-Materie Kernreaktionen 10.11.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge

Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge Solare Neutrinos Axel Winter RWTH-Aachen betreut von Prof. Flügge Übersicht Solare Neutrinos: Erzeugung und Problematik Darstellung der experimentellen Detektionsmöglichkeiten Neutrinooszillation Zusammenfassung

Mehr

Wechselwirkung von Neutronen

Wechselwirkung von Neutronen Wechselwirkung von Neutronen Inhalt des 8.Kapitels Freie Neutronen Kernreaktionen und Kernspaltung Neutronenenergien Reaktionsarten von Neutronen Neutronenwechselwirkungen im Gewebe Abschirmung von Neutronen

Mehr

11. Kernzerfälle und Kernspaltung

11. Kernzerfälle und Kernspaltung 11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

Radioaktivität Haller/ Hannover-Kolleg 1

Radioaktivität Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 7 Kernphysik 7.5 - Absorption von Gammastrahlung Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 marius.schirmer@gmx.de

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Kernphysik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1.

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Astroteilchenphysik I Wintersemester 2013/14 Vorlesung # 3, 7.11.2013 Guido Drexlin, Institut für Experimentelle Kernphysik Experimentelle Techniken - Luftschauer-Prozesse Einführung elektromagnetische

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 4: Messtechnik Markus Drapalik 1 1 Inhalt Wiederholung Prinzipien der Messtechnik Gas Zählrohre Szintillatoren Halbleiterzähler Personendosimeter Andere Detektionsmethoden

Mehr

Grundwissen Atome und radioaktiver Zerfall

Grundwissen Atome und radioaktiver Zerfall Atome, Radioaktivität und radioaktive Abfälle Arbeitsblatt 6 1 Grundwissen Atome und radioaktiver Zerfall Repetition zum Atombau Die Anzahl der... geladenen Protonen bestimmt die chemischen Eigenschaften

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Kernphysik.1 Grundlagen.2 Kerneigenschaften. Bindungsenergien.4 Kernzerfälle.5 Kernreaktionen.6 Anwendungen Geometrischer Wirkungsquerschnitt Gesamtfläche A, n

Mehr

Radioaktive Belastung von Waldpilzen aus der Region Heilbronn

Radioaktive Belastung von Waldpilzen aus der Region Heilbronn Radioaktive Belastung von Waldpilzen aus der Region Heilbronn Prof. Dr. Kurt Rauschnabel, Labor Strahlungsmesstechnik in Zusammenarbeit mit dem Pilzverein Heilbronn e.v. Radioaktive Belastung von Waldpilzen

Mehr

Wechselwirkung zwischen Strahlung und Materie

Wechselwirkung zwischen Strahlung und Materie Wintersemester 2010/2011 Radioaktivität und Radiochemie Wechselwirkung zwischen Strahlung und Materie 11.11.2010 Udo Gerstmann I 0 I I = I. 0 e-µ x Schwächung von Strahlung Energieverlust schwerer geladener

Mehr