25. Vorlesung Sommersemester

Größe: px
Ab Seite anzeigen:

Download "25. Vorlesung Sommersemester"

Transkript

1 25. Vorlesung Sommersemester 1 Dynamik der Flüssigkeiten Als Beispiel für die Mechanik der Kontinua soll hier noch auf die Bewegung von Flüssigkeiten, eingegangen werden. Traditionell unterscheidet man Hydrodynamik für inkompressible Flüssigkeiten und Gasdynamik für kompressible. Da man es heute meist mit dem allgemeinen Fall zu tun hat, der beide einschließt, benutzt man im Englischen den Ausdruck fluid dynamics, für den es leider kein gutes deutsches Äquivalent gibt Dynamik der Flüssigkeiten kommt nahe. Oft wird aber auch einfach Hydrodynamik auch im allgmeineren Sinne verwendet, während Gasdynamik immer das speziellere Gebiet bezeichnet. Auf jeden Fall sind Flüssigkeiten von elastischen Kontinua dadurch unterschieden, dass ihre Teilchen keine Ruhelage kennen, sondern frei beweglich sind. 2 Grundlegende Felder Wenn wir eine Flüssigkeit im Raum beobachten, so ist ihr Zustand dadurch gekennzeichnet, dass zu einer Zeit t and jedem Ort r die folgenden Größen gemessen werden können: 1. die Massendichte ρ( r, t), die durch den Kontinuumsgrenzwert M ρ( r, t) = lim V 0 V (1) gegeben ist, wobei M die in V enthaltene Masse ist, 2. die lokale Strömungsgeschwindigkeit v( r, t). Sie erhält man aus dem entsprechenden Grenzwert für die Impulsdichte, dividiert durch die Massendichte. 3. Der Druck p( r, t), der für die Bewegung eine große Rolle spielt, und 4. u. U. noch andere thermodynamische Eigenschaften der Materie wie Temperatur, innere Energie, usw. Hier soll der Thermodynamik-Vorlesung nicht vorgegriffen werden und wir werden immer den einfachsten Fall betrachten. 1

2 Wichtig ist, dass die Eigenschaften der Flüssigkeit an festen Orten gemessen werden, an denen aber zu jedem Zeitpunkt andere Teile der Flüssigkeiten vorhanden sind. Das macht die Ableitung der Bewegungsgleichung etwas schwieriger, weil z. B. das zweite Newtonsche Axiom die Beschleunigung eines festen Massenpunktes beschreibt: wir müssen also in der Lage sein, die Änderung der Geschwindigkeit eines Elementes der Flüssigkeit während seiner Bewegung mitzuverfolgen. 3 Euler- und Lagrangebild Diese Problematik findet Ausdruck in zwei verschiedenen Formulierungen der Hydrodynamik. Wenn man, wie bisher, die Verhältnisse an einem festen Ort beschreibt, unabhängig davon, welcher Teil der Flüssigkeit sich gerade dort befindet, so ist das das Eulersche Bild (oder Formulierung oder Darstellung. In der Darstellung nach Lagrange dagegen verfolgt man einen festen Teil der Flüssigkeit, d. h. ein Element, das einem kleinen Volumenelement entspricht, das immer dieselben Bestandteile enthält 1, und dessen Position durch r(t) gegeben ist. Seine Geschwindigkeit ist u = d r dt. (2) Das ist jetzt die vollständige Ableitung nach der Zeit und diese Geschwindigkeit ist kein Vektorfeld mehr: es handelt sich ja um einen einzelnes Element. Wenn sich allerdings dieses zur Zeit t am Ort r aufhält, dann stimmt seine Geschwindigkeit mit der dortigen momentanen Strömungsgeschwindigkeit der Flüssigkeit überein, u = v( r, t). Die Bahnkurve r(t) beschreibt eine Stromlinie, d. h. die Kurve, der man folgt, wenn man sich mit dem Element der Flüssigkeit zusammen bewegt. Wie kommt man von diesen individuellen Elementen wieder zur Beschreibung der Flüssigkeit als Ganzes? Man hat ein Kontinuum solcher Punkte und kann sie charakterisieren, wenn man angibt, an welchem Ort r 0 sich das Element zur Zeit t 0 befand. Damit erhält man die Kurvenschar r(t; r 0 ) mit r(t; r 0 ) = r 0 (das Semikolon soll andeuten, dass r 0 nur die Teilchen durchnumeriert, es spielt die Rolle eines Index). Die Flüssigkeit wird also dadurch beschrieben, dass man Stromlinien zu allen Anfangspositionen angibt. Diese Lagrange-Beschreibung hat den Vorteil, dass man die Bewegungsgleichungen leichter formulieren kann, eignet aber sich aber nicht, wenn die Stromlinien sich kompliziert benehmen, also etwa Wirbel bilden. Den Übergang zwischen beiden Bildern kann man wie folgt machen: aus der Lagrangedarstellung erhält man für jedes Teilchen charakterisiert durch r 0 zur Zeit t seine Position r(t; r 0 ) und seine momentane Geschwindigkeit, die mit der Strömungsgeschwindigkeit übereinstimmt. Aus diesen beiden Größen muss man dann die Abhängigkeit v( r, t) ausrechnen. Das ist natürlich i. a. sehr schwierig. 1 Das bedeutet nicht dieselben Atome oder Moleküle: diese haben ja ihre thermische Bewegung und wandern in der Flüssigkeit hin und her. Gemeint ist also, das dieses Volumenelement der mittleren Geschwindigkeit, d. h. der Strömungsgeschwindigkeit folgt. 2

3 Aus dem Eulerschen Bild kommt man zur Lagrangedarstellung, indem man die Stromlinien ausrechnet. Man bestimmt r(t; r 0 ) aus der Gleichung d r dt = v( r(t), t) mit der Anfangsbedingung r(t 0) = r 0. (3) Das ist wesentlich einfacher zu bewerkstelligen, aber natürlich meist auch nicht analytisch machbar. 4 Die konvektive Ableitung Eine wichtige Möglichkeit, beide Bilder miteinander zu verknüpfen, ist die konvektive Ableitung, manchmal auch als substantielle oder materielle bezeichnet. Die Idee ist, die zeitliche Änderung irgendeiner Größe am Ort eines Elementes der Flüssigkeit aus den Eulerschen Feldern zu berechnen. Wie ändert sich etwa die Temperatur nicht an festem Ort (das wäre T/), sondern wenn sich der Beobachter mit einem Element der Flüssigkeit mitbewegt. Dann beobachtet man aber die Größe T( r(t; r 0 ), t), die jetzt nur noch von der Zeit abhängt, und ihre Zeitableitung wird dt dt = T d r(t; r 0) + T dt = T v + T. (4) Da die Bezeichnung mit der vollständigen Ableitung etwas verwirrend wäre, wird meist ein neues Symbol eingeführt, eben das der konvektiven Ableitung, jetzt als Operator definiert: D = + v. (5) Die physikalische Bedeutung ist klar: die mitbewegte Ableitung hat zwei Beiträge: einmal die partielle Zeitableitung am festen Ort, dazu kommt die Änderung durch die Bewegung des Flüssigkeitselementes, wegen der T an einer verschobenen Stelle ausgewertet werden muss. 5 Die Kontinuitätsgleichung Die Formulierung der Erhaltung einer Substanz, die sich durch Strömung im Raum nur verlagern kann, aber nirgendwo erzeugt oder vernichtet wird, hatten wir schon als Beispiel für den Gaußschen Satz im ersten Semester abgeleitet. Hier sei also einfach konstatiert: die Erhaltung der Masse in der Flüssigkeit wird beschreiben durch die Gleichung ρ + (ρ v) = 0. (6) 3

4 Für die Lagrangeformulierung der Massenerhaltung brauchen wir hier nur die konvektive Ableitung einzusetzen: Dρ = ρ + v ρ = (ρ v) + v ρ = v ρ ρ( v) + v ρ (7) = ρ v. Zusammengefasst lautet also die Lagrange-Version Dρ 6 Die Eulersche Gleichung = ρ v. (8) Als zweite Gleichung benötigt man eine, die die Wirkung der inneren Kräfte in der Flüssigkeit beschreibt, also eine version der Newtonschen Bewegungsgleichung. Wir nehmen eine ideale Flüssigkeit an, d. h. es gibt außer dem Druck keine Effekte, die Impuls oder Energie der Elemente der Flüssigkeit ändern, also vor allem keine Reibung oder Wärmeleitung. Unser Flüssigkeitselement ist nun ein kleines Volumen, auf von allen Seiten Druck einwirkt. Die zugehörige Kraft auf ein Flächenelement d S ist nun einfach d F = p d S, (9) denn die Größe der Kraft ist Druck mal Fläche, ihre Richtung ist senkrecht zur Oberfläche nach innen, also genau entgegengesetzt zur Richtung von ds. Die gesamte Kraft auf das Volumen erhält man durch Integrieren, F = p ds = p d 3 r. (10) Im letzten Schritt wurde dabei der Gaußsche Satz benutzt. Man kann ihn anwenden, indem man einfach unser Vektorintegral mit einem beliebigen konstanten Vektor a multipliziert: a p ds = ( ap) ds = ( ap)d 3 r = a pd 3 r. (11) Den Vektor kann man wieder herausnehmen, weil er ja beliebig war. Die Änderung des Impulses des Volumens ist nun 2 durch ρ D v gegeben, so dass aus dem zweiten Newtonschen Axiom die Eulersche Gleichung ρ D v = p (12) 2 Man würde zunächst meinen, dass eigentlich die Zeitableitung von ρ vd 3 r betrachtet werden sollte. Das erübrigt sich aber, weil das Volumen sich ja auch mitbewegt und somit die Masse darin sich nicht ändert. Für die Geschwindigkeit reicht es, dann die konvektive Ableitung zu benutzen, um die Bewegung des Volumens zu berücksichtigen 4

5 folgt. Im Eulerschen Bild setzt man einfach die konvektive Ableitung ein und dividiert dann durch ρ: v p + ( v ) v = ρ. (13) In einer dritten Form kann man die Eulergleichung auch auf die Form einer Erhaltungsgleichung bringen. Man berechnet die zeitliche Änderung der lokalen Impulsdichte = ρ v + ρ v. (14) Hierin werden die Kontinuitätsgleichung und die Eulergleichung für die beiden Zeitableitungen eingesetzt und man erhält zunächst = (ρ v) v ρ( v ) v p. (15) Die beiden ersten Terme rechts kann man als Divergenz schreiben, wenn man das Tensorprodukt einführt, das aus zwei Vektoren einen Tensor macht: a b Komponenten : ( a b) ij = a i b j. (16) Man tut also nichts anderes, als die Komponenten des Tensors aus den Produkten der Vektorkomponenten zu bilden. Oft wird das wie hier einfach durch Nebeneinanderstellen der Vektoren (ohne die Produktzeichen oder für Skalarund Vektorprodukt bezeichnet, aber es gibt auch andere Schreibweisen wie a b). Somit wird die Eulergleichung zur Impulserhaltungsgleichung + (ρ v v) = p. (17) Die Linke Seite hat die Form der Kontinuitätsgleichung für jede Impulskomponente getrennt. Man beachte aber, dass links keine Null steht wie bei der Kontinuitätsgleichung: der Impuls wird auch durch den Druck innerhalb der Flüssigkeit neu verteilt (man kann allerdings sehen, dass der Gesamtimpuls erhalten bleibt. Der Tensor hat die Aufgabe, den Impulsstrom zu beschreiben. Man braucht einen Tensor, weil zwei Richtungen involviert sind: Impuls in Richtung ρ v strömt in eine Richtung, die durch das zweite v gegeben ist. 5

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

1 Ideale Fluide. 1.1 Kontinuitätsgleichung. 1.2 Euler-Gleichungen des idealen Fluids. 1.3 Adiabatengleichung

1 Ideale Fluide. 1.1 Kontinuitätsgleichung. 1.2 Euler-Gleichungen des idealen Fluids. 1.3 Adiabatengleichung Handout zum Vortrag über Euler- und Navier-Stokes-Gleichungen, Potential- und Wirbelströmungen von Niels Bracher. 1 Ideale Fluide 1.1 Kontinuitätsgleichung Die hydrodynamische Kontinuitätsgleichung beschreibt

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

3. Vorlesung Wintersemester

3. Vorlesung Wintersemester 3. Vorlesung Wintersemester 1 Parameterdarstellung von Kurven Wir haben gesehen, dass man die Bewegung von Punktteilchen durch einen zeitabhängigen Ortsvektor darstellen kann. Genauso kann man aber auch

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Zusatzvorlesungen: Z-1 Ein- und mehrdimensionale ntegration Z-2 Gradient, Divergenz und Rotation Z-3 Gaußscher und Stokesscher ntegralsatz Z-4 Kontinuitätsgleichung Z-5 Elektromagnetische Felder an Grenzflächen

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Abbildung 14: Ein Vektorfeld im R 2

Abbildung 14: Ein Vektorfeld im R 2 Vektoranalysis 54 Vektoranalysis Wir wollen nun Vektorfelder betrachten. Es sei U R n. Ein Vektorfeld im R n ist eine Abbildung v : U R n, die jedem Punkt x ihres sbereichs U einen Vektor v(x) zuordnet.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

2.2.2 Die EULERschen Bewegungsgleichungen (dynamischen Grundgleichungen)

2.2.2 Die EULERschen Bewegungsgleichungen (dynamischen Grundgleichungen) Raumakustik Wellentheoretische Raumakustik ist die Schallgeschwindigkeit (vgl. LAPLACEsche Gl. (.1), S. 6). Differentielle Form: Vektorielle Form: grad grad (.3) Das Argument des Gradienten ist ein Skalar,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Maxwell-Boltzmann Verteilung. Mykola Zotko Frankfurt am Main

Maxwell-Boltzmann Verteilung. Mykola Zotko Frankfurt am Main Maxwell-Boltzmann Verteilung James Clerk Maxwell 1831-1879 Ludwig Boltzmann 1844-1906 Maxwell-Boltzmann Verteilung 1860 Geschwindigkeitsverteilung - eine Verteilungsfunktion, die angibt, mit welcher relativen

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante

Mehr

4. Hamiltonformalismus

4. Hamiltonformalismus 4. Hamiltonormalismus Für die praktische Lösung von Problemen bietet der Hamiltonormalismus meist keinen Vorteil gegenüber dem Lagrangeormalismus. Allerdings bietet der Hamiltonormalismus einen direkten

Mehr

IV. Strömungen eines idealen Fluids

IV. Strömungen eines idealen Fluids IV. Strömungen eines idealen Fluids Dieses Kapitel befasst sich mit einigen Lösungen des Systems von Gleichungen (III.8), (III.18) und (III.4) für die Bewegung eines idealen Fluids. Dabei wird angenommen,

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 2. Vorlesung Pawel Romanczuk WS 2017/18 1 Eine kurze Exkursion in die Wahrscheinlichkeitstheorie 2 Diskrete Variable Wahrscheinlichkeit Wert

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 8 1 d Alembertsches Prinzip und Lagrangegleichungen 1. Art Teil II 2 Das d Alembertsche Prinzip für N-Teilchensysteme

Mehr

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3 3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 06. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

5.2 Drehimpuls, Drehmoment und Trägheitstensor

5.2 Drehimpuls, Drehmoment und Trägheitstensor 186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Hydrodynamische Wechselwirkung und Stokes Reibung

Hydrodynamische Wechselwirkung und Stokes Reibung Hydrodynamische Wechselwirkung und Stokes Reibung 9. Februar 2008 Problemstellung Kolloidsuspension aus Teilchen und Lösungsmittel Teilchen bewegen sich aufgrund von externen Kräften Schwerkraft Äußere

Mehr

6. Boltzmann Gleichung

6. Boltzmann Gleichung 6. Boltzmann Gleichung 1 6.1 Herleitung der Boltzmann Gleichung 2 6.2 H-Theorem 3 6.3 Transportphänomene G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 6 3. Juni 2013 1 / 23

Mehr

Newtonschen. (III.27a) oder, in tensorieller Schreibweise

Newtonschen. (III.27a) oder, in tensorieller Schreibweise III.. Nicht-ideales Fluid: Navier Stokes-Gleichung In einem bewegten realen Fluid gibt es Reibungskräfte, die zum Transport von Impuls zwischen benachbarten Fluidschichten beitragen, wenn diese Schichten

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Brownsche Bewegung Seminar - Weiche Materie

Brownsche Bewegung Seminar - Weiche Materie Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch) Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches

Mehr

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf.

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Eichtransformationen i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Beweis: Wirkung S ist unabhängig von Parametrisierung für gegebene physikalische Bahnkurve; folglich haben

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der

Mehr

Dieses Buch enthält eine kurze Einführung in die relativistische

Dieses Buch enthält eine kurze Einführung in die relativistische Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Kontrollfragen. Hydrodynamik. Stephan Mertens. 6. Juli 2013 G N D O O

Kontrollfragen. Hydrodynamik. Stephan Mertens. 6. Juli 2013 G N D O O Kontrollfragen Hydrodynamik Stephan Mertens 6. Juli 2013 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Erläutern Sie die Lagrange sche und die Euler sche Darstellung

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

Theoretische Physik (Elektrodynamik)

Theoretische Physik (Elektrodynamik) Theoretische Physik (Elektrodynamik) Andreas Knorr andreas.knorr@physik.tu-berlin.de PN 72 Technische Universität Berlin Theoretische Physik III (Elektrodynamik) p.127 I Vorkenntnisse und Geschichte (1)

Mehr

Kompressible Gasdynamik

Kompressible Gasdynamik Hauptseminar Lineare und Nichtlineare Wellenphänomene 14. Januar 2013 Inhaltsverzeichnis 1 Thermodynamische Grundlagen 2 Bewegungsgleichungen 3 Konstruktion der Charakteristiken Allgemeine Konstruktion

Mehr

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10. 10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur

Mehr

Studienbücherei. Mechanik. W.Kuhn. w He y roth. unter Mitarbeit von H. Glaßl. Mit 187 Abbildungen. VEB Deutscher Verlag der Wissenschaften Berlin 1989

Studienbücherei. Mechanik. W.Kuhn. w He y roth. unter Mitarbeit von H. Glaßl. Mit 187 Abbildungen. VEB Deutscher Verlag der Wissenschaften Berlin 1989 Studienbücherei Mechanik w He y roth W.Kuhn unter Mitarbeit von H. Glaßl Mit 187 Abbildungen m VEB Deutscher Verlag der Wissenschaften Berlin 1989 Inhaltsverzeichnis Experimentelle Grundlagen der Mechanik

Mehr

Theorie B: Klassische Mechanik

Theorie B: Klassische Mechanik Theorie B: Klassische Mechanik Kirill Melnikov TTP KIT Einführung Alle Informationen zu dieser Veranstaltung finden Sie auf http://www.ttp.kit.edu/courses/ss018/theob/start Vorlesungen: Freitags, 9.45-11.15

Mehr

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren?

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? V4 Vektorfelder Vektorfelder haben oft Struktur: quellfrei, wirbelfrei Quellfeld Wirbelfeld Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? Zunächst brauchen wir

Mehr

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Lösungen 1

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Lösungen 1 H. van Hees Sommersemester 218 Übungen zur Theoretischen Physik 2 für das Lehramt L3 Lösungen 1 Aufgabe 1: Geladenes Teilchen im homogenen elektrostatischen Feld Wie wir später in der Vorlesung lernen

Mehr

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche R. Mahnke (Univ. Rostock), J. Kaupužs (Lettische Univ. Riga) 3. Mai 24 Zusammenfassung Ziel dieses Kommentars ist es, die Newtonschen

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 13/14 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 1 Präsenzübungen (P7) Viererimpuls und relativistisches Electron im Plattenkondensator (a) Es

Mehr

Klausur Experimentalphysik I

Klausur Experimentalphysik I Universität Siegen Winter Semester 2017/2018 Naturwissenschaftlich-Technische Fakultät Prof. Dr. Mario Agio Department Physik Klausur Experimentalphysik I Datum: 21.3.2018-10 Uhr Name: Matrikelnummer:

Mehr

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen Kapitel 3 Statistische Definition der Entropie 3.1 Ensemble aus vielen Teilchen Die Überlegungen dieses Abschnitts werden für klassische Teilchen formuliert, gelten sinngemäß aber genauso auch für Quantensysteme.

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

1.3 Geschlecht männlich weiblich. 1.4 Welchen Schultyp haben Sie besucht Math.-naturw. Neusprachlich Altsprachlich Sonstige

1.3 Geschlecht männlich weiblich. 1.4 Welchen Schultyp haben Sie besucht Math.-naturw. Neusprachlich Altsprachlich Sonstige Eingangstest Vorlesung Physik [ Lösungen ] Füllen Sie diesen Fragebogen bitte ehrlich aus. Das Ergebnis dient nicht Ihrer Bewertung, sondern soll einen Einblick in den Wissensstand Ihres Jahrgangs vermitteln.

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel SCIENTIFIC COMPUTING Die eindimensionale Wärmeleitungsgleichung (WLG) Begriffe Temperatur Spezifische Wärmekapazität Wärmefluss Wärmeleitkoeffizient Fourier'sche Gesetz Spezifische Wärmeleistung Mass für

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoretische Physik I/II Prof. Dr. M. Bleicher Institut für Theoretische Physik J. W. Goethe-Universität Frankfurt Aufgabenzettel XI 27. Juni 2011 http://th.physik.uni-frankfurt.de/ baeuchle/tut Lösungen

Mehr

Mehrdimensionale Probleme: Wärmeleitung

Mehrdimensionale Probleme: Wärmeleitung Mehrdimensionale Probleme: Wärmeleitung 2 Bei der Anwendung der Randelementmethode auf mehrdimensionale Probleme ergeben sich neue Probleme, insbesondere bei der mathematischen Beschreibung. In diesem

Mehr

Bedeutung des Schneidstrahls fu r die Fugenbildung beim Laserstrahl-Schneiden

Bedeutung des Schneidstrahls fu r die Fugenbildung beim Laserstrahl-Schneiden Bedeutung des Schneidstrahls fu r die Fugenbildung beim Laserstrahl-Schneiden Mit Hilfe der Erhaltungssätze der klassischen Physik für Masse, Impuls und Energie wird in diesem Kapitel abgeleitet, welche

Mehr

Grundlagen der Lagrange-Mechanik

Grundlagen der Lagrange-Mechanik Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Theoretische Biophysik - Statistische Physik

Theoretische Biophysik - Statistische Physik Theoretische Biophysik - Statistische Physik 10. Vorlesung Pawel Romanczuk Wintersemester 2018 http://lab.romanczuk.de/teaching/ 1 Brownsche Bewegung Zusammenfassung letzte VL Formulierung über Newtonsche

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr