Lehrbuch der Algebra

Größe: px
Ab Seite anzeigen:

Download "Lehrbuch der Algebra"

Transkript

1 Gerd Fischer Lehrbuch der Algebra Mit lebendigen Beispielen, ausfuhrlichen Erlauterungen und zahlreichen Bildern Unter Mitarbeit von Florian Quiring und Reinhard Sacher vieweg

2 Inhaltsverzeichnis Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen Innere Verkniipfungen und Halbgruppen Beispiele Definition einer Gruppe Abschwachung der Gruppenaxiome Translationen und Kiirzungsregeln Definition einer Untergruppe Erzeugung von Untergruppen Untergruppen von Z, Kongruenzen und Restklassen Beispiele 11 2 Homomorphismen und Normalteiler Definition eines Homomorphismus Beispiele Nebenklassen Ordnung und Index Beispiele Definition eines Normalteilers Homomorphismen und Normalteiler Faktorgruppen Beispiele 35 3 Isomorphiesatze und Produkte von Gruppen Isomorphiesatze Aufeeres direktes Produkt Inneres direktes Produkt Aufeeres semidirektes Produkt* Inneres semidirektes Produkt* Beispiele* Zyklische Gruppen Teilbarkeit ganzer Zahlen Produkte zyklischer Gruppen Untergruppen zyklischer Gruppen Die Eulersche ^-Funktion Primrestklassengruppen 62

3 INHALTSVERZEICHNIS IX 3.13 Der euklidische Algorithmus Beispiele 65 4 Operationen von Gruppen auf Mengen Definition einer Operation Beispiele und Satz von CAYLEY Bahnenraum und Standgruppe Die Klassengleichung Zyklenzerlegung einer Permutation Beispiele 77 5 Symmetriegruppen* Regelmafiige n-ecke und die Diedergruppe Endliche Untergruppen von 0(2) Symmetrien des Tetraeders Symmetrien von Wiirfel und Oktaeder Symmetrien von Ikosaeder und Dodekaeder Die Klassengleichung der Ikosaedergruppe Endliche Untergruppen von SO (3) Symmetrien von Fuftballen 97 6 Struktursatze* Summen zyklischer Gruppen Zahlung von zyklischen Summanden Primarzerlegung Zerlegung von endlichen abelschen p-gruppen Elementarteiler Beispiele Torsionsuntergruppen Ill 6.8 Freie abelsche Gruppen Endlich erzeugte abelsche Gruppen Beispiele Satz von CAUCHY und p-gruppen Die Siitze von SYLOW Beispiele Einfache und auflosbare Gruppen* Einfache Gruppen Kommutatorgruppen Beispiele Auflosbare Gruppen Auflosbarkeit von p-gruppen Beispiele 140 II Ringe Grundbegriffe Definition eines Rings Einheiten, Korper, Unterringe Ringhomomorphismen Beispiele 145

4 INHALTSVERZEICHNIS 1.5 Polynomringe Grad eines Polynoms Division mit Rest Nullstellen und Werte von Polynomen Einheitswurzeln in C Polynome in mehreren Veranderlichen * Endliche Untergruppen der multiplikativen Gruppe eines Korpers Einbettung einer Halbgruppe in eine Gruppe Quotientenkorper Beispiele Ideale und Restklassenringe Definition von Idealen Ideale und Einheiten Restklassenringe Isomorphiesatze Beispiele Hauptidealringe und noethersche Ringe Euklidische Ringe Beispiele Der Hilbertsche Basissatz* Operationen mit Idealen* Der Chinesische Restesatz* Beispiele* Primideale und maximale Ideale Beispiele Existenz maximaler Ideale und das Lemma von ZORN* Teilbarkeit in Integritatsringen Teiler und assoziierte Elemente Irreduzible Elemente und Primelemente Teilerketten Primzahlen Faktorielle Ringe Gemeinsame Teiler und Vielfache Polynomringe iiber faktoriellen Ringen Irreduzibilitatskriterien fur Polynome Beispiele Ringe holomorpher Funktionen* Quadratische Zahlkorper* Quadratische Zahlringe* Einheiten in quadratischen Zahlringen* Euklidische quadratische Zahlringe* Faktorzerlegung in quadratischen Zahlringen* Ideale als ideale Zahlen* 238

5 INHALTSVERZEICHNIS XI III Korpererweiterungen Grundbegriffe Charakteristik und Primkorper Grad einer Korpererweiterung Adjunktion von Elementen Algebraische und transzendente Elemente Das Minimalpolynom Beispiele Algebraische Korpererweiterungen Algebraisch abgeschlossene Korper Konstruktion von Korpererweiterungen Symbolische Adjunktion von Nullstellen Fortsetzung von Korperisomorphismen Zerfallungskorper eines Polynoms Beispiele Der algebraische Abschluss* Einfache und mehrfache Nullstellen Vielfachheit von Nullstellen und formale Ableitung Separabilitat Der Frobenius-Homomorphismus Endliche Korper Beispiele Algebraischer Abschluss eines endlichen Korpers Der Satz vom primitiven Element Beispiele Resultanten* Diskriminanten* Beispiele* Galois-Erweiterungen Symmetrische Polynome Relative Automorphismen und Fixkorper Gruppenordnung und Korpergrad Galois-Erweiterungen Der Hauptsatz der Galois-Theorie Beispiele Der Fundamentalsatz der Algebra* Diskriminante und Galois-Gruppe* Galois-Theorie endlicher Korper* Losung von Polynomgleichungen * Quadratische Gleichungen Kubische Gleichungen Beispiele Gleichungen vierten Grades Beispiele Kreisteilung in Charakteristik Null Kreisteilung in Charakteristik p>0 346

6 XII INHALTSVERZEICHNIS 5.8 Reine Polynome Zyklische Erweiterungen Losbarkeit von Polynomgleichungen Die allgemeine Polynomgleichung Gleichungen fiinften Grades und das Ikosaeder Darstellung von Einheitswurzeln Beispiele Das Umkehrproblem der Galois-Theorie Geometrische Konstruktionen Konstruktionen mit Zirkel und Lineal Der Korper der konstruierbaren Punkte Struktur des Korpers der konstruierbaren Punkte Unlosbarkeit klassischer Konstruktionsaufgaben Konstruktion von regelma igen n-ecken* Andere Regeln fur Konstruktionsverfahren 386 Anhang Platonische Korper 387 Literaturverzeichnis 393 Index 396 Symbolverzeichnis 403

INHALTSVERZEICHNIS XII

INHALTSVERZEICHNIS XII Inhaltsverzeichnis I Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen... 1 1.1 Innere Verknüpfungen und Halbgruppen... 1 1.2 Beispiele... 2 1.3 Definition einer Gruppe... 4 1.4 Abschwächung der Gruppenaxiome...

Mehr

Inhaltsverzeichnis. Bibliografische Informationen digitalisiert durch

Inhaltsverzeichnis. Bibliografische Informationen  digitalisiert durch Inhaltsverzeichnis Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen 1 1.1 Innere Verknüpfungen und Halbgruppen 1 1.2 Beispiele 2 1.3 Definition einer Gruppe 4 1.4 Abschwächung der Gruppenaxiome 4 1.5

Mehr

Inhaltsverzeichnis. Leitfaden 1

Inhaltsverzeichnis. Leitfaden 1 Inhaltsverzeichnis Leitfaden 1 1 Gruppen 5 1.1 Halbgruppen, Gruppen und Untergruppen... 5 1.1.1 Innere Verknüpfungen und Halbgruppen... 5 1.1.2 Beispiele... 6 1.1.3 Definition einer Gruppe... 8 1.1.4 Abschwächung

Mehr

Algebra. Gruppen - Ringe - Körper. Bearbeitet von Christian Karpfinger, Kurt Meyberg

Algebra. Gruppen - Ringe - Körper. Bearbeitet von Christian Karpfinger, Kurt Meyberg Algebra Gruppen - Ringe - Körper Bearbeitet von Christian Karpfinger, Kurt Meyberg 4. Auflage 2017. Buch. XXII, 467 S. Softcover ISBN 978 3 662 54721 2 Weitere Fachgebiete > Mathematik > Algebra Zu Leseprobe

Mehr

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion

Mehr

Armin Leutbecher. Zahlentheorie. Eine Einführung in die Algebra. Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel. SJ Springer

Armin Leutbecher. Zahlentheorie. Eine Einführung in die Algebra. Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel. SJ Springer Armin Leutbecher Zahlentheorie Eine Einführung in die Algebra Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel SJ Springer Inhaltsverzeichnis Einleitung 1 Häufig verwendete Abkürzungen 9 1 Der Fundamentalsatz

Mehr

Elemente der Algebra. Eine Einführung in Grundlagen und Denkweisen. Von Doz. Dr. Peter Göthner Universität Leipzig

Elemente der Algebra. Eine Einführung in Grundlagen und Denkweisen. Von Doz. Dr. Peter Göthner Universität Leipzig Elemente der Algebra Eine Einführung in Grundlagen und Denkweisen Von Doz. Dr. Peter Göthner Universität Leipzig B. G. Teubner Verlagsgesellschaft Stuttgart Leipzig 1997 Inhalt 1 Strukturen mit einer binären

Mehr

Übungsblatt 11. Hausübungen

Übungsblatt 11. Hausübungen Übungsblatt 11 Hausübungen Die Hausübungen müssen bis Mittwoch, den 09.01.19, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

Grundbegriffe aus der Vorlesung Algebra

Grundbegriffe aus der Vorlesung Algebra Grundbegriffe aus der Vorlesung Algebra 17. Februar 2010 Dieses Glossar enthält die wichtigsten Begriffe und auch einige der wichtigsten Aussagen der Vorlesung. Zusätzliche Dinge (nicht klausurrelevant)

Mehr

Algebra Zusammenfassung

Algebra Zusammenfassung Algebra Zusammenfassung Dr. Urs Hartl WS 02/03 Einleitung: Auflösen von Polynomgleichungen Der Name Algebra ist arabischen Ursprungs und bedeutete Rechnen mit Gleichungen und Lösen derselben. In der Algebra

Mehr

Algebra, Kryptologie und Kodierungstheorie

Algebra, Kryptologie und Kodierungstheorie Algebra, Kryptologie und Kodierungstheorie Mathematische Methoden der Datensicherheit von Roland Matthes 1. Auflage Hanser München 2003 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22431 5

Mehr

Übungsblatt 12: Abschluss

Übungsblatt 12: Abschluss Übungsblatt 1: Abschluss 1. PRIMITIVE ELEMENTE V 1.1. (a) Sei E K eine endliche Galoiserweiterung. Zeigen Sie (mit Hilfe der Galoiskorrespondenz), dass für α E die beiden Aussagen äquivalent sind: (i)

Mehr

Klausur zur Einführung in die Algebra, Lösungsvorschlag

Klausur zur Einführung in die Algebra, Lösungsvorschlag Universität Konstanz Christoph Hanselka Fachbereich Mathematik und Statistik Markus Schweighofer 16. März 2015 Wintersemester 2014/2015 Klausur zur Einführung in die Algebra, Lösungsvorschlag Aufgabe 1

Mehr

15 Auflösbarkeit durch Radikale

15 Auflösbarkeit durch Radikale Chr.Nelius: Algebra (SS 2006) 1 15 Auflösbarkeit durch Radikale f [T] sei ein normiertes Polynom vom Grade 1. Wir wollen die Frage untersuchen, ob sich die Nullstellen von f formelmäßig berechnen lassen.

Mehr

Themenkataloge für die Zentralklausuren (Sekundarstufe II)

Themenkataloge für die Zentralklausuren (Sekundarstufe II) Themenkataloge für die Zentralklausuren (Sekundarstufe II) Algebra Funktionentheorie Reelle Analysis Diese Themenkataloge sind nur für die Zentralklausuren maßgeblich. Für die Individualklausuren und die

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

Einführung in die Algebra Blatt 1 Abgabe

Einführung in die Algebra Blatt 1 Abgabe Blatt 1 Abgabe 2.5.2017 Begründen Sie, dass die folgende Menge mit der dazugehörigen Multiplikation eine Halbgruppe bildet. Entscheiden Sie, welche der Halbgruppen eine Gruppe ist. (i) G = Z 1 versehen

Mehr

DIE GRUNDLEHREN DER MATHEMATISCHEN WISSENSCHAFTEN IN EINZELDARSTELLUNGEN MIT BESONDERER BER U CKSI CHTI G UNG D ER ANWEND UNGSGEBIETE

DIE GRUNDLEHREN DER MATHEMATISCHEN WISSENSCHAFTEN IN EINZELDARSTELLUNGEN MIT BESONDERER BER U CKSI CHTI G UNG D ER ANWEND UNGSGEBIETE DIE GRUNDLEHREN DER MATHEMATISCHEN WISSENSCHAFTEN IN EINZELDARSTELLUNGEN MIT BESONDERER BER U CKSI CHTI G UNG D ER ANWEND UNGSGEBIETE HERAUSGEGEBEN VON R. GRAMMEL F. HIRZEBRUCH E. HOPF H. HOPF. W. MAAK.

Mehr

MATHEMATISCHEN WISSENSCHAFTEN

MATHEMATISCHEN WISSENSCHAFTEN DIE GRUNDLEHREN DER MATHEMATISCHEN WISSENSCHAFTEN IN EINZELDARSTELLUNGEN MIT BESONDERER BERUCKSICHTIGUNG DERANWENDUNGSGEBIETE HERAUSGEGEBEN VON J.1. DOOB R. GRAMMEL E. HEINZ F. HIRZEBRUCH E. HOPF. H. HOPF.

Mehr

Algebra (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart

Algebra (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart (V4, Ü 2) Wintersemester 1997/98 Universität Stuttgart Auf den nächsten Seiten finden Sie die Übungsblätter zur Vorlesung. Dozent: Prof. Dr. Jörg Brüdern Übungen: Dipl. Math. Rainer Dietmann und Dipl.

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

ZAHLENTHEORIE DR. HELMUT HASSE. von. 3. berichtigte Auflage. Mit 49 Abbildungen EM. O. PROFESSOR ANDER UNIVERSITÄT HAMBURG

ZAHLENTHEORIE DR. HELMUT HASSE. von. 3. berichtigte Auflage. Mit 49 Abbildungen EM. O. PROFESSOR ANDER UNIVERSITÄT HAMBURG ZAHLENTHEORIE von DR. HELMUT HASSE EM. O. PROFESSOR ANDER UNIVERSITÄT HAMBURG 3. berichtigte Auflage Mit 49 Abbildungen AKADEMIE-VERLAG. BERLIN 1969 INHALTSVERZEICHNIS I. Die Grundlagen der Arithmetik

Mehr

Körper- und Galoistheorie. Nachklausur mit Lösungen

Körper- und Galoistheorie. Nachklausur mit Lösungen Fachbereich Mathematik/Informatik 14. Januar 2012 Prof. Dr. H. Brenner Körper- und Galoistheorie Nachklausur mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben

Mehr

Algebra SoSe 2010 Spickzettel

Algebra SoSe 2010 Spickzettel Algebra SoSe 2010 Spickzettel Aus Vorlesungs1Wiki Dies der offizielle Spickzettel zur Vorlesung Algebra SoSe 2010 Alle sind herzlich eingeladen, an der Wiki1Seite mitzuarbeiten! Für die Richtigkeit der

Mehr

Algebra Arbeitsversion

Algebra Arbeitsversion Algebra Arbeitsversion Prof. Dr. Ina Kersten getext von Ole Riedlin 4. April 2002 2 INHALTSVERZEICHNIS Inhaltsverzeichnis 0 Worum geht es? 9 I Gruppen 13 1 Die Isomorphiesätze der Gruppentheorie 13 1.1

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

LINEARE ALGEBRA II JÜRGEN HAUSEN

LINEARE ALGEBRA II JÜRGEN HAUSEN LINEARE ALGEBRA II JÜRGEN HAUSEN i Jürgen Hausen Lineare Algebra II Shaker Verlag Aachen 2013 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Definitionen und Sätze der Algebra. Daniel Jaud

Definitionen und Sätze der Algebra. Daniel Jaud Definitionen und Sätze der Algebra Daniel Jaud August 8, 2013 2 Contents 1 Gruppen 5 1.1 Elementare Gruppeneigenschaften................. 5 1.2 Zyklische Gruppen.......................... 7 1.3 Normalteiler

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

3 Teilbarkeit in Integritätsringen

3 Teilbarkeit in Integritätsringen 3 Teilbarkeit in Integritätsringen 3.1 Division mit Rest in Z Zu a, b Z, b > 0 existieren eindeutig bestimmte Zahlen q, r Z a = qb + r, 0 r < b. 3.2 Satz Sei K ein Körper zu f, g K[T ], g 0 existieren

Mehr

Algebra I - Wintersemester 05/06 - Zusammenfassung

Algebra I - Wintersemester 05/06 - Zusammenfassung Algebra I - Wintersemester 05/06 - Zusammenfassung Die Autoren 28. September 2017 1 Gruppen 1.1 Grundlagen 1.2 Homomorphie- und Isomorphiesätze Sind G und G Gruppen und ϕ : G G ein Gruppenhomomorphismus.

Mehr

Zusammenfassung Algebra Diese Zusammenfassung basiert neben meiner Vorlesungsmitschrift

Zusammenfassung Algebra Diese Zusammenfassung basiert neben meiner Vorlesungsmitschrift Zusammenfassung Algebra Diese Zusammenfassung basiert neben meiner Vorlesungsmitschrift auch auf dem Algebra-Skript von Prof. Dr. Helmut Schwichtenberg (Universität München). Hinweis: Es gilt jeweils die

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 26 Einheitswurzeln Definition 26.1. Es sei K ein Körper und n N +. Dann heißen die Nullstellen des Polynoms X n 1 in K die n-ten

Mehr

Übungen zu Algebra und Zahltentheorie Blatt 1

Übungen zu Algebra und Zahltentheorie Blatt 1 Prof. Dr. Wolfgang Soergel Übungen zu Algebra und Zahltentheorie Blatt 1 Aufgabe 1 (4 Punkte). Seien A, B, C abelsche Gruppen. Eine Abbildung ϕ : A B C heißt bilinear oder genauer Z-bilinear, wenn jedes

Mehr

VORLESUNGEN ÜBER ZAHLENTHEORIE

VORLESUNGEN ÜBER ZAHLENTHEORIE VORLESUNGEN ÜBER ZAHLENTHEORIE VON HELMUT HASSE O. PROFESSOR AN DER UNIVERSITÄT IN HAMBURG ZWEITE NEUBEARBEITETE AUFLAGE MIT 28 ABBILDUNGEN SPRINGER-VERLAG BERLIN GÖTTINGEN HEIDELBERG NEW YORK 1964 Inhaltsverzeichnis

Mehr

Algebra I. Gal(K/Q), Gal(K/Q), a σa.

Algebra I. Gal(K/Q), Gal(K/Q), a σa. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 12. Übungsblatt Aufgabe 1: (6 1 P) Sei ζ = ζ 7 = exp(2πi/7) und K := Q[ζ]. Wir nehmen an, dass K/Q eine Galois-Erweiterung ist und dass es einen

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2015/16) 1. Abgabetermin: Donnerstag, 22. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2015/16) 1. Abgabetermin: Donnerstag, 22. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2015/16) 1 Abgabetermin: Donnerstag, 22. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Kommutator, Kommutatorgrupe, Normalreihe, auflösbare Gruppe

reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Kommutator, Kommutatorgrupe, Normalreihe, auflösbare Gruppe 1 Lernliste 1.1 Relationen reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Äquivalenzrelation, Kongruenzrelation Klasseneinteilung Hauptsatz über Äquivalenzrelationen Jede

Mehr

Klausur zur Algebra. Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018

Klausur zur Algebra. Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018 Klausur zur Algebra Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

Übungen zu Algebra, WS 2015/16

Übungen zu Algebra, WS 2015/16 Übungen zu Algebra, WS 2015/16 Christoph Baxa 1) Es seien G 1,..., G n Gruppen. Beweisen Sie: Ist σ S n, so ist G σ(1) G σ(n) = G1 G n. 2) Beweisen Sie: Sind G 1,..., G n und H 1,..., H n Gruppen mit der

Mehr

PROSEMINAR LINEARE ALGEBRA SS10

PROSEMINAR LINEARE ALGEBRA SS10 PROSEMINAR LINEARE ALGEBRA SS10 Körper und Konstruktion mit Zirkel und Lineal Neslihan Yikici Mathematisches Institut der Heinrich-Heine Universität Düsseldorf Juni 2010 Betreuung: Prof. Dr. Oleg Bogopolski

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen)

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen) Zahlentheorie LVA 405.300 C. Fuchs Inhaltsübersicht 26.06.2013 Inhaltsübersicht Die Zahlentheorie gehört zu den Kerngebieten der Mathematik und steht historisch und thematisch in ihrem Zentrum. Es geht

Mehr

Übungen zur Einführung in die Algebra

Übungen zur Einführung in die Algebra Blatt 1, 17.10.2013 Aufgabe 1.1. Bestimme alle Untergruppen und Normalteiler der symmetrischen Gruppe S 3. Aufgabe 1.2. Es seien E, I, J, K M(2 2; C) die folgenden Matrizen: ( ) ( ) ( ) ( ) 1 0 0 1 0 i

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

Galois-Theorie Anfänge

Galois-Theorie Anfänge Galois-Theorie Anfänge Evariste Galois1811-1832 entdeckte als 20-Jähriger, dass mit dem Gleichungsauflösen durch Wurzelterme eine wiederholte Untergruppenbildung einer speziellen Permutationsgruppe der

Mehr

Musterlösung zur Probeklausur

Musterlösung zur Probeklausur Musterlösung zur Probeklausur Markus Severitt 26. Juni 2006 Aufgabe 1. Sei G eine Gruppe mit g 2 = e für alle g G. Zeigen Sie, dass G abelsch ist. Lösung. g 2 = e für alle g G heißt gerade, dass alle Elemente

Mehr

1. Symmetrische Gruppen

1. Symmetrische Gruppen http://wwwmathematikuni-bielefeldde/birep/alg/ 1 Symmetrische Gruppen 1 Bestimme alle Untergruppen der symmetrischen Gruppe S 4 Zeichne den entsprechenden Untergruppen-Verband 2 (a) Die Gruppe S n wird

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar

Mehr

Algebraische Grundlagen der Informatik

Algebraische Grundlagen der Informatik Kurt-Ulrich Witt Algebraische Grundlagen der Informatik Zahlen - Strukturen - Codierung - Verschlüsselung vieweg Vorwort Abbildungssverzeichnis V VII XIII I Grundlagen 1 1 Mengen und Einführung in die

Mehr

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen

Mehr

Algebra. 0 = (f g)(x) = f(x) g(x).

Algebra. 0 = (f g)(x) = f(x) g(x). Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 25. November 2008 Algebra 7. Übung mit Lösungshinweisen Aufgabe 31 Sei R ein Integritätsbereich,

Mehr

Probeklausur zur Algebra

Probeklausur zur Algebra Probeklausur zur Algebra Prof. Dr. C. Löh/D. Fauser/J. Witzig 9. Februar 2018 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Algebra und Zahlentheorie Stoffsammlung Dennis Müller 30. März i Z

Algebra und Zahlentheorie Stoffsammlung Dennis Müller 30. März i Z Algebra und Zahlentheorie Stoffsammlung Gruppen Zu jedem n N + existiert eine Gruppe mit n Elementen (z.b. Z/nZ) Jede abelsche Gruppe ist isomorph zu i Z/pr i i Z Z/abZ Z/aZ Z/bZ wenn a, b teilerfremd

Mehr

Testklausur II mit Lösungen

Testklausur II mit Lösungen Fachbereich Mathematik/Informatik 2. Juli 2011 Prof. Dr. H. Brenner Körper- und Galoistheorie Testklausur II mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben

Mehr

5. Galoisgruppen. 5. Galoisgruppen 45

5. Galoisgruppen. 5. Galoisgruppen 45 5. Galoisgruppen 45 5. Galoisgruppen Nach dem Studium von Zerfällungskörpern im letzten Kapitel wollen wir nun wieder zu unseren Problemen aus der Einleitung zurückkehren. Dazu erinnern wir uns zunächst

Mehr

Algebra. Daniel Scholz im Winter 2004/2005. Überarbeitete Version vom 18. September 2005.

Algebra. Daniel Scholz im Winter 2004/2005. Überarbeitete Version vom 18. September 2005. Algebra Daniel Scholz im Winter 2004/2005 Überarbeitete Version vom 18. September 2005. Inhaltsverzeichnis 1 Ringe und Ideale 4 1.1 Ringe und Ideale......................... 4 1.2 Quotientenkörper.........................

Mehr

Mathematisches Institut SS 2010 Heinrich-Heine-Universität Prof. Dr. Stefan Schröer. Algebra. Blatt 1. ω = u + v,

Mathematisches Institut SS 2010 Heinrich-Heine-Universität Prof. Dr. Stefan Schröer. Algebra. Blatt 1. ω = u + v, Blatt 1 Aufgabe 1. Sei z = re iϕ C eine komplexe Zahl mit r, ϕ R, und n 1. Geben Sie alle ω C mit ω n = z in Polarkoordinaten an. Aufgabe 2. Sei X 3 + px + q C[X] ein kubisches Polynom. Dessen drei Nullstellen

Mehr

Ina Kersten. Algebra. LAT E X-Bearbeitung von Ole Riedlin. Universitätsdrucke Göttingen

Ina Kersten. Algebra. LAT E X-Bearbeitung von Ole Riedlin. Universitätsdrucke Göttingen Ina Kersten Algebra LAT E X-Bearbeitung von Ole Riedlin Universitätsdrucke Göttingen Ina Kersten Algebra This work is licensed under the Creative Commons License 3.0 by-nd, allowing you to download, distribute

Mehr

3 Algebraische Körpererweiterungen

3 Algebraische Körpererweiterungen 3 Algebraische Körpererweiterungen 3.1 Algebraische und transzendente Elemente Definition 3.1.1 Sei L ein Körper, K L Teilkörper. (a) Dann heißt L Körpererweiterung von K. Schreibweise: L/K Körpererweiterung.

Mehr

r(s + t) = rs + rt, (r + s)t = rt + st. (f + g)(m) := f(m) + g(m), (f g)(m) := f(m) g(m)

r(s + t) = rs + rt, (r + s)t = rt + st. (f + g)(m) := f(m) + g(m), (f g)(m) := f(m) g(m) 290 7.1 Ringe und Ideale Erinnern wir uns zunächst an die Definition von Ringen, es sind Mengen R mit zwei Verknüpfungen + und, so daß (R, +) eine abelsche Gruppe, (R, ) eine Halbgruppe ist, und die beiden

Mehr

Einführung in die Algebra II

Einführung in die Algebra II Falko Lorenz Einführung in die Algebra II 2. Auflage Spektrum Akademischer Verlag Heidelberg B erlin Oxford Inhaltsverzeichnis 20 Formal reelle Körper Ordnungen und Präordnungen von Körpern Fortsetzung

Mehr

Algebra I Klausur 2. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer

Algebra I Klausur 2. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer Technische Universität Berlin Wintersemester 2014/2015 Prof. Dr. Martin Henk 17. April 2015 Algebra I Klausur 2 Name: Vorname: Matrikelnummer: Aufgabe: 1 2 3 4 5 6 Σ Note Maximale Punktzahl: 10 6 7 6 6

Mehr

Algebra WS 2008/ Übungsblatt

Algebra WS 2008/ Übungsblatt Algebra WS 2008/2009 1. Übungsblatt Konvention. In Aufgabenstellungen getätigte Aussagen sind jeweils zu beweisen, auch wenn kein explizites Zeigen Sie, dass... dabeisteht. 1. Sei (R, +, ) ein Ring, a

Mehr

2 Normale und separable Körpererweiterungen

2 Normale und separable Körpererweiterungen 2 Normale und separable Körpererweiterungen Definition und Satz 2.1. Seien K ein Körper und f K[X], Grad(f) 1. Ein Zerfällungskörper L von f über K ist eine Körpererweiterung L/K mit folgenden beiden Eigenschaften:

Mehr

Übungsblatt 7. Hausübungen

Übungsblatt 7. Hausübungen Übungsblatt 7 Hausübungen Die Hausübungen müssen bis Mittwoch, den 06.1.17, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring

Mehr

Einführung in die Algebra

Einführung in die Algebra Einführung in die Algebra TU Kaiserslautern WS 2014/2015 Prof. Dr. Wolfram Decker 14. November 2014 Dieses Skript basiert auf der Vorlesungsmitschrift von Meiko Volz 2 Inhaltsverzeichnis 0 Einführung 3

Mehr

Thema: Die Einheitengruppe des Restklassenrings /n

Thema: Die Einheitengruppe des Restklassenrings /n RWTH Aachen Lehrstuhl D für Mathematik Betreuer: Prof. U. Schoenwaelder Hausaufsatz zur Vorlesung Algebra I im WS 99/00 Thema: Die Einheitengruppe des Restklassenrings /n Vorgelegt von Sascha Haarkötter

Mehr

Kapitel III. Ringerweiterungen

Kapitel III. Ringerweiterungen Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm, TU Dresden SS2017 Kapitel III. Ringerweiterungen 0 Ringerweiterungen Seien R S Ringe. 0.1 Definition. Für A S bezeichnet R[A] den kleinsten

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Algebra. Skript zur Vorlesung SS Peter Junghanns

Algebra. Skript zur Vorlesung SS Peter Junghanns Skript zur Vorlesung Algebra SS 2012 Peter Junghanns Hinweis: Das vorliegende Skript stellt nur ein Gerüst zu den Inhalten der Vorlesung dar. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

Über das Umkehrproblem der Galoistheorie

Über das Umkehrproblem der Galoistheorie Bachelorarbeit Über das Umkehrproblem der Galoistheorie von Julia Jöchler Betreuer: Univ.-Prof. Dr. Tim Netzer SS2017 Fakultät für Mathematik, Informatik und Physik an der Universität Innsbruck Studiengang:

Mehr

8. Einfache und auflösbare Gruppen

8. Einfache und auflösbare Gruppen 74 Andreas Gathmann 8. Einfache und auflösbare Gruppen Wir haben am Ende des letzten Kapitels in Bemerkung 7.37 gesehen, dass es praktisch aussichtslos ist, alle endlichen Gruppen klassifizieren zu wollen.

Mehr

Algebraische Strukturen

Algebraische Strukturen Algebraische Strukturen 3 Inhaltsverzeichnis 3.1 Gruppen.... 46 3.2 Ringe... 50 3.3 Körper... 55 3.4 Homomorphismen... 61 In diesem Kapitel findet der Leser eine Einführung in die Grundbegriffe der Algebra,

Mehr

Algebra 1 Wintersemester 2005/06 Übungsblatt 1

Algebra 1 Wintersemester 2005/06 Übungsblatt 1 Wintersemester 2005/06 Übungsblatt 1 Dieses Übungsblatt ist nicht unbedingt typisch für die Vorlesung. Es dient dazu, Stoff für die Übung am 28. Oktober zu liefern. Aufgabe 1: In dieser Aufgabe wollen

Mehr

14 Kreisteilungskörper

14 Kreisteilungskörper 14 Kreisteilungskörper Wir wenden unsere Ergebnisse auf einen Fall an, mit dem die Algebraische Zahlentheorie begann und der bis heute im Zentrum der Forschung steht. 14.1 Erweiterungen mit Einheitswurzeln

Mehr

Klausur zur Algebra (B3)-Lösungen

Klausur zur Algebra (B3)-Lösungen Prof. Dr. Salma Kuhlmann Gabriel Lehéricy 13. März 2017 Simon Müller Wintersemester 2016/2017 Klausurnummer: 1 Klausur zur Algebra (B3)-Lösungen Matrikelnummer: Pseudonym: Aufgabe 1 2 3 4 5 6 7 erreichte

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung

Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung Ihre Vorbereitung auf die mündliche Prüfung sollte in mehreren Schritten verlaufen: Definitionen und Sätze Die wichtigen Definitionen

Mehr

Algebra I. Werner Seiler

Algebra I. Werner Seiler Algebra I Werner Seiler Bei diesem Skript handelt es sich um eine Zusammenfassung der Vorlesung Algebra I zusammen, die Herr Seiler im WS2004/05 an der Universität Heidelberg gehalten hat. Das Skript umfasst

Mehr

Algebraische Zahlentheorie. Teil II. Die Diskriminante.

Algebraische Zahlentheorie. Teil II. Die Diskriminante. II-1 Algebraische Zahlentheorie Teil II Die Diskriminante Sei K ein Zahlkörper vom Grad n (also [K : Q] = n) Es gibt genau n Körper- Homomorphismen σ i : K C (siehe Merkzettel Separabilität) Stellen wir

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe Universität Paderborn SS 2007 Warburger Str. 100 33098 Paderborn Seminar Der Ring O K der ganzen Zahlen über einem Zahlenkörper K Armin Hecht, Sabine Naewe 04.Dezember 2007 Inhaltsverzeichnis 7 Der Ring

Mehr

9.3 Normale und separable Erweiterungen

9.3 Normale und separable Erweiterungen 9.3. NORMALE UND SEPARABLE ERWEITERUNGEN 345 9.3 Normale und separable Erweiterungen Wir betrachten jetzt noch algebraische Erweiterungen der folgenden Form: 9.3.1 Definition (normale Erweiterung) Algebraische

Mehr

Algebra I Klausur 1. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer

Algebra I Klausur 1. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer Technische Universität Berlin Wintersemester 2014/2015 Prof. Dr. Martin Henk 19. Februar 2014 Algebra I Klausur 1 Name: Vorname: Matrikelnummer: Aufgabe: 1 2 3 4 5 6 Σ Note Maximale Punktzahl: 10 5 6 6

Mehr

384 = = = =

384 = = = = Aufgabe 1 (a) Sei n N. Charakterisieren Sie die Einheiten im Ring Z/nZ auf zwei verschiedene Arten. (b) Bestimmen Sie das inverse Element zur Restklasse von 119 in der Einheitengruppe von Z/384Z. (a) Die

Mehr