Algorithmen II Vorlesung am

Größe: px
Ab Seite anzeigen:

Download "Algorithmen II Vorlesung am"

Transkript

1 Algorithmen II Vorlesung am Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum II Wintersemester 0/0 in der Helmholtz-Gemeinschaft

2 Schnitte minimalen Gewichts: MinCut Algorithmen II Wintersemester 0/0

3 Problem MINCUT Problem: MINCUT Gegeben sei ein Graph G = (V, E) mit Kantengewichtsfunktion c : E R + 0. Finde einen nichttrivialen Schnitt (S, V \ S) minimalen Gewichts in G, d.h. finde S V mit S V, sodass c(s, V \ S) := c({u, v}) {u, v} E, u S, v V \ S minimal wird. (S, V\S) wird minimaler Schnitt genannt Algorithmen II Wintersemester 0/0

4 Problem MINCUT Problem: MINCUT Gegeben sei ein Graph G = (V, E) mit Kantengewichtsfunktion c : E R + 0. Finde einen nichttrivialen Schnitt (S, V \ S) minimalen Gewichts in G, d.h. finde S V mit S V, sodass c(s, V \ S) := c({u, v}) {u, v} E, u S, v V \ S minimal wird. (S, V\S) wird minimaler Schnitt genannt. S V \ S c(s, V \ S) = Algorithmen II Wintersemester 0/0

5 Schnittberechnung mittels Flussalgorithmus Bemerkung: Dualität zu maximalem Fluss (Bemerkung.) Zu gegebenen s, t V kann ein minimaler s-t-schnitt mit einem Flussalgorithmus (z.b. Ford & Fulkerson, Goldberg & Tarjan) berechnet werden. Das Minimum über alle Paare s, t V liefert einen global minimalen Schnitt. ( ) V Θ( V ) Flussberechnungen. Da im minimalen Schnitt jeder Knoten von irgendeinem anderen getrennt wird, kann man stattdessen s V auch festhalten und t V \ {s} wähle. V Flussberechnungen. Heute: Effizientere Berechnung eines minimalen Schnittes ohne Flussalgorithmus. Algorithmen II Wintersemester 0/0

6 Stark verbundene Knoten Definition: Am stärksten verbundene Knoten (Definition.) Zu S V und v V \ S sei c(s, v) = {u, v} E u S c({u, v}). Den Knoten v V \ S, für den c(s, v) maximal wird, nennen wir auch den am stärksten mit S verbundenen Knoten. S c(s, ) = + = 5 c(s, ) = c(s, 8) = Knoten ist am stärksten mit S verbunden. Algorithmen II Wintersemester 0/0

7 Verschmelzen zweier Knoten Definition: Verschmelzen zweier Knoten (Definition.) Seien s, t V. Dann können s und t wie folgt verschmolzen werden. s und t werden durch einen neuen Knoten x s,t ersetzt. Alle Kanten die vorher zu s oder t inzident waren sind jetzt zu x s,t inzident (abgesehen von {s, t}, falls s und t adjazent waren). Mehrfachkanten werden aufgelöst indem Kantengewichte addiert werden , 7 8 Algorithmen II Wintersemester 0/0 Verschmelzen der Knoten und , 7 5 8

8 Algorithmus von Stoer & Wagner Überblick Der Algorithmus von Stoer & Wagner besteht V Phasen. In jeder Phase i wird ein Schnitt in einem Graphen G i = (V i, E i ) berechnet, der Schnitt der Phase i. G i entsteht aus G i durch Verschmelzen geeigneter Knoten, wobei G = G. Ergebnis des Algorithmus ist der minimale Schnitt aller Schnitte der einzelnen Phasen i (für i V ). Ablauf einer Phase i Starte mit S i = {a}, wobei a ein beliebiger Startknoten in G i ist. Füge iterativ den am stärksten zu S i verbundenen Knoten zu S i hinzu. Seien s und t die als vorletztes bzw. als letztes zu S i hinzugefügten Knoten. Der Schnitt der Phase i ist (V i \ {t}, {t}). G i+ entsteht aus G i durch Verschmelzen von s und t. Algorithmen II Wintersemester 0/0

9 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} (beliebig gewählter Startknoten) Algorithmen II Wintersemester 0/0

10 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) Algorithmen II Wintersemester 0/0

11 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) Algorithmen II Wintersemester 0/0

12 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} Algorithmen II Wintersemester 0/0

13 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} Algorithmen II Wintersemester 0/0

14 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, 6} Algorithmen II Wintersemester 0/0

15 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, 6} S = {,,, 7, 8, 6, 5} Algorithmen II Wintersemester 0/0

16 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, 6} S = {,,, 7, 8, 6, 5} S = {,,, 7, 8, 6, 5, } Schnitt der Phase: {V \ {}, {}} Gewicht 5 s t Algorithmen II Wintersemester 0/0

17 Algorithmus von Stoer & Wagner Beispiel Phase G = G S = {} S = {, } (beliebig gewählter Startknoten) ( am stärksten zu {} verbunden) S = {,, } ( am stärksten zu {, } verbunden) S = {,,, 7} S = {,,, 7, 8} S = {,,, 7, 8, 6} S = {,,, 7, 8, 6, 5} S = {,,, 7, 8, 6, 5, } Schnitt der Phase: {V \ {}, {}} Gewicht 5 Verschmelzen von s und t ergibt G s t, Algorithmen II Wintersemester 0/0

18 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

19 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

20 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, 6} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

21 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, 6} S = {, {, 5}, 6, } (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

22 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, 6} S = {, {, 5}, 6, } S = {, {, 5}, 6,, } (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

23 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, 6} S = {, {, 5}, 6, } S = {, {, 5}, 6,, } S = {, {, 5}, 6,,, 7} (beliebig gewählter Startknoten), Algorithmen II Wintersemester 0/0

24 Algorithmus von Stoer & Wagner Beispiel Phase G = G mit und 5 verschmolzen S = {} S = {, {, 5}} S = {, {, 5}, 6} S = {, {, 5}, 6, } S = {, {, 5}, 6,, } S = {, {, 5}, 6,,, 7} S = {, {, 5}, 6,,, 7, 8} (beliebig gewählter Startknoten) s t, Schnitt der Phase: {V \ {8}, {8}} Gewicht 5 Verschmelzen von s und t ergibt G, 5 6 7, 8 Algorithmen II Wintersemester 0/0

25 Algorithmus von Stoer & Wagner Beispiel Phase Schnitt der Phase: {V \ {}, {}} Gewicht 5 Phase Schnitt der Phase: {V \ {8}, {8}} Gewicht 5 Phase Schnitt der Phase: {V \ {{7, 8}}, {{7, 8}}} Gewicht 7 Phase Schnitt der Phase: {V \ {{, 7, 8}}, {{, 7, 8}}} Gewicht 7 Phase 5 Schnitt der Phase: {V 5 \ {{,, 7, 8}}, {{,, 7, 8}}} Gewicht Phase 6 Schnitt der Phase: {V 6 \ {{, 5}}, {{, 5}}} Gewicht 7 Phase 7 Schnitt der Phase: {V 7 \ {}, {}} Gewicht 9 siehe Skript Der Schnitt aus Phase 5 ist minimal unter den Schnitten der einzelnen Phasen. Der Algorithmus von Stoer & Wagner gibt diesen Schnitt aus (Beweis, dass der so bestimmte Schnitt immer ein minimaler Schnitt ist folgt später.) Algorithmen II Wintersemester 0/0

26 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O() O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Algorithmen II Wintersemester 0/0

27 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O() O( V log V + E ) O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Jeder Knoten wird nur einmal zu S hinzugefügt. deg(v) = E O( E ) v V Algorithmen II Wintersemester 0/0

28 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) S {a} t a while S V i do v Knoten aus V i \ S sodass c(s, v) maximal S S {v} s t t v O( V log V + E ) O() O( V log V + E ) O(log V + deg(v)) O() Speichere (V i \ {t}, {t}) als SCHNITT-DER-PHASE Konstruiere aus G i Graph G i+ durch Verschmelzen von s und t O( E ) Benutze einen FIBONACCI-HEAP um c(s, u) für alle u V i \ S zu speichern. Maximum v entfernen: O(log V ) Nachbarn von v updaten: O(deg(v)) Jeder Knoten wird nur einmal zu S hinzugefügt. deg(v) = E O( E ) v V Algorithmen II Wintersemester 0/0

29 Algorithmus von Stoer & Wagner Laufzeit MINSCHNITTPHASE(G i, c, a) O( V log V + E ) MIN-SCHNITT(G, c, a) G G for i = to V do MINSCHNITTPHASE(G i, c, a) if SCHNITT-DER-PHASE ist kleiner als MIN-SCHNITT then speichere SCHNITT-DER-PHASE als MIN-SCHNITT Gib MIN-SCHNITT aus. O( V log V + V E ) O() O( V log V + V E ) O( V log V + E ) O() O() Lemma: Laufzeit des Algorithmus von Stoer & Wagner Der Algorithmus von Stoer & Wagner hat eine Laufzeit von O( V log V + V E ). Zum Vergleich: Der Flussalgorithmus von Goldberg & Tarjan hat eine Laufzeit von O( V E log( V / E )) Algorithmen II Wintersemester 0/0

30 Algorithmus von Stoer & Wagner Korrektheit Definition: s-t-schnitt Ein Schnitt (S, V \ S) heißt s-t-schnitt, falls s S und t V \ S für s, t V, s t. Ein s-t-schnitt trennt Knoten u und v, wenn u S und v V \ S. Lemma: SCHNITT-DER-PHASE ist minimaler s-t-schnitt (Lemma.5) Sei (S, V \ S) der SCHNITT-DER-PHASE in einem Graphen G = (V, E) mit Kostenfunktion c : E R + 0 und Startknoten a V. Seien s und t der vorletzte bzw. letzte betrachtete Knoten. Dann ist (S, V \ S) minimal unter allen s-t-schnitten. Algorithmen II Wintersemester 0/0

31 Algorithmus von Stoer & Wagner Korrektheit Definition: s-t-schnitt Ein Schnitt (S, V \ S) heißt s-t-schnitt, falls s S und t V \ S für s, t V, s t. Ein s-t-schnitt trennt Knoten u und v, wenn u S und v V \ S. Lemma: SCHNITT-DER-PHASE ist minimaler s-t-schnitt (Lemma.5) Sei (S, V \ S) der SCHNITT-DER-PHASE in einem Graphen G = (V, E) mit Kostenfunktion c : E R + 0 und Startknoten a V. Seien s und t der vorletzte bzw. letzte betrachtete Knoten. Dann ist (S, V \ S) minimal unter allen s-t-schnitten. Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) a s t a s t S V \ S V \ S S Algorithmen II Wintersemester 0/0

32 Algorithmus von Stoer & Wagner Korrektheit Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) Definition: aktive Knoten MINSCHNITTPHASE betrachtet die Knoten aus V gemäß einer linearen Ordnung, die mit a beginnt und mit s und t endet. Ein Knoten v V heißt aktiv (bzgl. S ), wenn {S, V \ S } den Knoten v von seinem Vorgänger trennt. a s t a s t S V \ S V \ S S Algorithmen II Wintersemester 0/0

33 Algorithmus von Stoer & Wagner Korrektheit Beweis: Zeige: Für jeden s-t-schnitt (S, V \ S ) gilt: c(s, V \ S) c(s, V \ S ) Definition: aktive Knoten MINSCHNITTPHASE betrachtet die Knoten aus V gemäß einer linearen Ordnung, die mit a beginnt und mit s und t endet. Ein Knoten v V heißt aktiv (bzgl. S ), wenn {S, V \ S } den Knoten v von seinem Vorgänger trennt. a s t a s t S V \ S V \ S Definition: Für v V \ {a} sei S v Menge der Knoten vor v. Sei weiter V v = S v {v} sowie S v = S V v. a v s t a v s t S S V \ S V \ S v {v} V v \ S v Betrachte Einschränkung von G auf V v für aktiven Knoten v. Zeige: c(s V, {v}) c(s v, V v \ S v ) (zeigt genau das gewünschte für v = t) S v S S Algorithmen II Wintersemester 0/0

34 Algorithmus von Stoer & Wagner Korrektheit Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge): c(s V, {v}) c(s v, V v \ S v ) a... v a... v S v {v} V v \ S v S v Algorithmen II Wintersemester 0/0

35 Algorithmus von Stoer & Wagner Korrektheit Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge): c(s V, {v}) c(s v, V v \ S v ) a... v a... v S v {v} V v \ S v S v Induktionsanfang: Sei v erster aktiver Knoten. c(s V, {v}) = c(s v, V v \ S v ) a S v v {v} a S v v V v \ S v oder also auch a v V v \ S v S v keine aktiven Knoten ( kein Knoten wird vom Vorgänger getrennt) Algorithmen II Wintersemester 0/0

36 Algorithmus von Stoer & Wagner Korrektheit Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge): c(s c(s v, V v \ S V, {v}) v ) a... S v v {v} a S v V v \ S v... v Induktionsschritt: Behauptung gilt für v; sei u nächster aktiver Knoten. Schätze zunächst c(s u, {u}) ab: a... S u v... u {u} c(s u, {u}) = c(s v, {u}) + c(s u \ S v, {u}) c(s v, {v}) + c(s u \ S v, {u}) v ist mindestens so stark mit S v verbunden wie u (sonst wäre die Reihenfolge anders) Algorithmen II Wintersemester 0/0

37 Algorithmus von Stoer & Wagner Korrektheit Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge): c(s V, {v}) c(s v, V v \ S v ) a... S v v {v} a S v V v \ S v... v Induktionsschritt: Behauptung gilt für v; sei u nächster aktiver Knoten. Schätze zunächst c(s u, {u}) ab: Schätze dann c(s u, V u \ S u ) ab: a... S u v... u {u} S u a... v V u \ S u... u c(s u, {u}) = c(s v, {u}) + c(s u \ S v, {u}) c(s v, {v}) + c(s u \ S v, {u}) c(s v, V v \ S v ) + c(s u \ S v, {u}) c(s u, V u \ S u ) v ist mindestens so stark mit S v verbunden wie u (sonst wäre die Reihenfolge anders) Algorithmen II Wintersemester 0/0

38 Algorithmus von Stoer & Wagner Korrektheit Zeige induktiv über aktive Knoten (entsprechend Einfügereihenfolge): c(s V, {v}) c(s v, V v \ S v ) a... S v v {v} a S v V v \ S v... v Induktionsschritt: Behauptung gilt für v; sei u nächster aktiver Knoten. Schätze zunächst c(s u, {u}) ab: Schätze dann c(s u, V u \ S u ) ab: a... S u v... u {u} S u a... v V u \ S u... u c(s u, {u}) = c(s v, {u}) + c(s u \ S v, {u}) c(s v, {v}) + c(s u \ S v, {u}) c(s v, V v \ S v ) + c(s u \ S v, {u}) c(s u, V u \ S u ) v ist mindestens so stark mit S v verbunden wie u (sonst wäre die Reihenfolge anders) nach Induktionsvoraussetzung Algorithmen II Wintersemester 0/0

39 Algorithmus von Stoer & Wagner Korrektheit () Satz: Korrektheit des Algorithmus von Stoer & Wagner (Satz.6) Der minimale Schnitt von allen Ergebnissen der V Ausführungen von MIN- SCHNITTPHASE ist ein minimaler, nichttrivialer Schnitt in G = (V, E) mit V. Algorithmen II Wintersemester 0/0

40 Algorithmus von Stoer & Wagner Korrektheit () Satz: Korrektheit des Algorithmus von Stoer & Wagner (Satz.6) Der minimale Schnitt von allen Ergebnissen der V Ausführungen von MIN- SCHNITTPHASE ist ein minimaler, nichttrivialer Schnitt in G = (V, E) mit V. Beweis: Induktion über V. Induktionsanfang: V = ist trivial. Induktionsschritt: V Betrachte Phase mit vorletztem bzw. letztem Knoten s und t. Fall : G hat einen nichttrivialen minimalen Schnitt, der s von t trennt. Schnitt der ersten Phase ist ein nichttrivialer minimaler Schnitt. Fall : G hat keinen nichttrivialen minimalen Schnitt, der s von t trennt. In jedem nichttrivialen minimalen Schnitt liegen s und t auf der gleichen Seite. Verschmilzt man s und t, so induziert ein minimaler Schnitt im resultierenden Graph G einen in minimalen Schnitt in G. Laut Induktionsvoraussetzung liefert der Algorithmus einen minimalen Schnitt für G. Algorithmen II Wintersemester 0/0

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 I NSTITUT F U R T HEORETISCHE I NFORMATIK, P ROF. D R. D OROTHEA WAGNER KIT Universita t des Landes Baden-Wu rttemberg und nationales

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am..03 Randomisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Algorithmen für Planare Graphen

Algorithmen für Planare Graphen Algorithmen für Planare Graphen 12. Juni 2018, Übung 4 Lars Gottesbüren, Michael Hamann INSTITUT FÜR THEORETISCHE INFORMATIK KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Prüfungstermine

Mehr

Lösungshinweise 3 Vorlesung Algorithmentechnik im WS 08/09

Lösungshinweise 3 Vorlesung Algorithmentechnik im WS 08/09 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Lösungshinweise Vorlesung Algorithmentechnik im WS 08/09 Problem : Kreuzende Schnitte Zwei Schnitte (S, V \ S) und (T, V \ T ) in einem

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Effizienter Planaritätstest Vorlesung am

Effizienter Planaritätstest Vorlesung am Effizienter Planaritätstest Vorlesung am 23.04.2014 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER Satz Gegebenen einen Graphen G = (V, E) mit n Kanten und m Knoten, kann in O(n + m) Zeit

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 17.01.013 Parametrisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 03.12.2013 Algorithmische Geometrie: Schnitte von Strecken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Minimale Schnitte und Schnittbäume

Minimale Schnitte und Schnittbäume Minimale Schnitte und Schnittbäume Studienarbeit von Myriam Freidinger Betreuer: Prof. Dr. Dorothea Wagner, Robert Görke ITI Prof. Dr. Dorothea Wagner, Universität Karlsruhe 23. Februar 2007 Danksagung

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Graphalgorithmen Netzwerkalgorithmen. Laufzeit

Graphalgorithmen Netzwerkalgorithmen. Laufzeit Netzwerkalgorithmen Laufzeit (Folie 390, Seite 78 im Skript) Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{

Mehr

Algorithmen I - Tutorium 28 Nr. 3

Algorithmen I - Tutorium 28 Nr. 3 Algorithmen I - Tutorium 28 Nr. 3 18.05.2016: Spaß mit Listen, Arrays und amortisierter Analyse Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/2007 12. April 2007 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen Lerneinheit : Kürzeste Pfade in Graphen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 016.6.01 Einleitung Diese Lerneinheit beschäftigt

Mehr

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 14. Mai

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 1. Vorlesung Minimale Spannbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Motivation ) Kantengewichte w : E R >0 ) w(e ) := e E w(e)

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Übung 5 Algorithmen II

Übung 5 Algorithmen II Michael Axtmann michael.axtmann@kit.edu http://algo.iti.kit.edu/algorithmenii_ws6.php - 0 Axtmann: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Kap. 6.5: Minimale Spannbäume ff

Kap. 6.5: Minimale Spannbäume ff Kap. 6.: Minimale Spannbäume ff Professor Dr. Karsten Klein Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 20. VO 2. TEIL DAP2 SS 2009 2. Juli 2009 SS08 1 Überblick 6.:

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Algorithmen I - Tutorium 28 Nr. 2

Algorithmen I - Tutorium 28 Nr. 2 Algorithmen I - Tutorium 28 Nr. 2 11.05.2017: Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK

Mehr

3.2 Generischer minimaler Spannbaum-Algorithmus

3.2 Generischer minimaler Spannbaum-Algorithmus 3.2 Generischer minimaler Spannbaum-Algorithmus Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer Knoten (jedes v V bildet einen Baum) while Wald F mehr als einen Baum enthält do wähle einen

Mehr

2. Das single-source-shortest-path-problem

2. Das single-source-shortest-path-problem . Das single-source-shortest-path-problem Zunächst nehmen wir an, dass d 0 ist. Alle kürzesten Pfade von a nach b sind o.b.d.a. einfache Pfade.. Dijkstra s Algorithmus Gegeben: G = (V, A), (A = V V ),

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens Praktikum Algorithmen-Entwurf (Teil 5)..5 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen Endpunkt

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 17 (8.7.2014) Minimale Spannbäume II Union Find, Prioritätswarteschlangen Algorithmen und Komplexität Minimaler Spannbaum Gegeben: Zus. hängender,

Mehr

Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt

Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt U N S A R I V E R S A V I E I T A S N I S S Grundzüge von Algorithmen und Datenstrukturen, WS /6: Lösungshinweise zum 3. Übungsblatt Christian Hoffmann, Fabian Bendun Aufgabe 3. (a) Sei j i + = n die Größe

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

1. Übung Algorithmen I

1. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.04.2014 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS0 Datum:.6.200 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Minimaler Spannbaum (MST) Challenge der Woche Fibonacci Heap Minimaler Spannbaum

Mehr

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 19.6.1 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=99 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1 Organisatorisches

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datentrukturen Prof. Dr. Hanjo Täubig Lehrtuhl für Effiziente Algorithmen (Prof. Dr. Ernt W. Mayr) Intitut für Informatik Techniche Univerität München Sommeremeter H. Täubig

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL.6.16 Graphtraversierung (DFS, topologische Sortierung und mehr) Kürzeste Wege: Problemstellung, Algorithmen Analoger Algorithmus Dijkstras Algorithmus: Idee, Korrektheit Heute: mehr zu Dijkstra,

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme 10 Matching-Probleme 10.1 Definition von Matching-Probleme Definition 21 [2-dimensionales Matching] Sei G = (V, E) ein ungerichteter Graph und E E. E ist ein Matching, wenn für alle Kantenpaare e 1, e

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Prof. Dr. Erika Ábrahám Datenstrukturen und Algorithmen 1/1 Datenstrukturen und Algorithmen Vorlesung 14: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

Heute. Medium Access Control / Färbungen, Teil 2. Kapazität & Scheduling. kurze Wiederholung Schöner verteilter Färbungsalgorithmus

Heute. Medium Access Control / Färbungen, Teil 2. Kapazität & Scheduling. kurze Wiederholung Schöner verteilter Färbungsalgorithmus Heute Medium Access Control / Färbungen, Teil kurze Wiederholung Schöner verteilter Färbungsalgorithmus Kapazität & Scheduling Interferenz etwas realistischer neue Probleme und Herangehensweisen VL 0 Eine

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Das Problem des minimalen Steiner-Baumes

Das Problem des minimalen Steiner-Baumes Das Problem des minimalen Steiner-Baumes Ein polynomieller Approximationsalgorithmus Benedikt Wagner 4.05.208 INSTITUT FU R THEORETISCHE INFORMATIK, LEHRSTUHL ALGORITHMIK KIT Die Forschungsuniversita t

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 156, Seite 56 im Skript) Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die letzte Ebene vollständig besetzt ist,

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Datenstrukturen und Algorithmen D-INFK. Musterlösung 1

Datenstrukturen und Algorithmen D-INFK. Musterlösung 1 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 008/09 Blatt

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

Auswählen nach Rang (Selektion)

Auswählen nach Rang (Selektion) Auswählen nach Rang (Selektion) Geg.: Folge X von n Schlüsseln, eine Zahl k mit k n Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x k für X sortiert als x x 2 L x n trivial lösbar in Zeit O(kn)

Mehr

6. Musterlösung. Problem 1: Abgeschlossenheit der Addition *

6. Musterlösung. Problem 1: Abgeschlossenheit der Addition * Universität Karlsruhe Algorithmentehnik Fakultät für Informatik WS 05/06 ITI Wagner 6. Musterlösung Problem 1: Abgeshlossenheit der Addition * Zeigen oder widerlegen Sie: Die Summe 1 2 zweier Kreise ist

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 7.1 (P) Binomial Heap

Abgabe: (vor der Vorlesung) Aufgabe 7.1 (P) Binomial Heap TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 7 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr