Ferienkurs Experimentalphysik III

Größe: px
Ab Seite anzeigen:

Download "Ferienkurs Experimentalphysik III"

Transkript

1 Ferienkurs Experimentalphysik III Vorlesung Dienstag - Spiegel, Linsen und optische Geräte Monika Beil, Michael Schreier 28. Juli 2009 Inhaltsverzeichnis Grundbegrie 2 2 Spiegel 2 3 Linsen 3 3. Brechung an Sphärischen Oberächen Dünne Linsen Vorzeichenkonvention Dicke Linsen Linsensyteme und Hauptebenen Optische Instrumente 7 4. Vergröÿerung Bildhelligkeit Schärfentiefe Die Lupe Brillen Mikroskop Teleskop Auösungsvermögen optischer Geräte

2 Grundbegrie Bevor wir uns weiter mit dem Thema befassen ist es sinnvoll einige Begriichkeiten einzuführen Die optische Abbildung Die optische Abbildung bezeichnet die Erzeugung eines Bildes durch Spiegel, Linsen und andere optische Geräte. Man spricht von einem reellen Bild wenn an dessen Ort tatsachlich Lichstrahlen auftreen. Als ein virtuelles Bild bezeichnet man hingegen den gedachten (interpolierten) Ort an dem das Objekt zu stehen scheint. Brennweite Als Brennweite f bezeichnet man diejenige Gröÿe eines abbildenden Systems die angibt an welchem Ort parallel eintreende Strahlen fokussiert werden. 2 Spiegel Für einen reektierten Strahl gilt bekanntermaÿen Ausfallswinkel=Einfallswinkel. Die Behandlung ebener Spiegel hat sich mit dieser einen Gesetzmäÿigkeit eigentlich erledigt, komplizierter wird es aber für gekrümmte Flächen. Hier hängt der absolute Reexionswinkel zusätzlich vom Ort der Reexion ab. Einen häugen Spezialfall stellen dabei die sphärischen Spiegel dar. 2

3 Für parallel einfallendes Licht gilt wegen der Gleichschenkligkeit des Dreieck M F S Für achsennahe Strahlen (h R) ist also MF = R 2 cos α OF = R MF ( = R ) 2 cos α es gilt cos α = sin 2 α, sin α = h ( R ) R OF = f = R 2 R 2 h 2 f = R 2 Für den Fall eines auf der Achse liegenden, nahen Objekts gilt nun tan γ = h g, tan β = h b, sin δ = h R, γ + β = 2δ Mit der Näherung für kleine Winkel tan α sin α α folgt g + ( 2 ) b R f Wie sich zeigen wird gilt dieser Zusammenhang auch für Linsen, die wir im Anschluss behandeln werden. 3 Linsen 3. Brechung an Sphärischen Oberächen Wie wir schon beim sphärischen Spiegel gesehen haben haben gekrümmte Flächen die Eigenschaft Licht zu fokussieren. Um diesen Eekt näher zu untersuchen betrachten wir zunächst die Brechung von Licht an einer Sphärischen Grenzschicht. 3

4 Für parall einfallendes Licht entnehmen wir der Zeichnung den Zusammenhang h =R sin α = f sin γ sin α sin(α β) R = f γ=α β = n sin α = n 2 sin β, cos ( ) n2 f R n 2 n sin α sin α cos β cos α sin β R Liegt das Objekt auf der optischen Achse und nah an der Grenzäche, so gilt α = δ + ɛ, β = δ γ tan ɛ ɛ h g sin δ δ h R 3.2 Dünne Linsen tan γ γ h f n sin α = n 2 sin β n α = n 2 β n (δ + ɛ) = n 2 (δ γ) n g + n 2 b = n 2 n R = n 2 f Die Behandlung von Linsen gestaltet sich nach dieser Vorarbeit relativ einfach, jedoch müssen wir zwischen zwei Typen von Linsen unterscheiden. Für dünne Linsen gilt dass deren Dicke d vernachlässigbar gegenüber deren Krümmungsradien R, R 2 ist. Nehmen wir die vorherigen Ergebnisse zu Hilfe so gilt n g + n 2 = n 2 n b R g 2 = b n 2 b + n 3 b = n 3 n 2 R 2 n g + n 3 b = n 2 n R + n 3 n 2 R 2 4

5 Meist bendet sich die Linse in Luft, so dass gilt n = n 3 =, n 2 = n, womit folgt g + ( = (n ) ) = b R R 2 f Für die Brennweite einer dünnen Linse gilt also f = ( ) R R 2 n R 2 R 3.2. Vorzeichenkonvention Bie allen Rechungen in der Optik ist jedoch zu beachten dass viele Gröÿen Richtungsabhängig sind. So gilt für den Radius einer Linse, dass dieser positiv für konvexe und negativ für konkave (aus Sicht der Durchlaufrichtung) ist. Für einen von links nach rechts durch ein System laufenden Strahl gilt überdies Gröÿe +/ Ort des Objekts relativ zur Linse/Spiegel Gegenstandsweite g + links gegenstandsseitige Brennweite f g + links Bildweite b + rechts bildseitige Brennweite f g + rechts Da Spiegel den Lichtstrahl reektieren gelten für sie umgekehrte Vorzeichen bei den Radien und alle Abstände (b und g) vor der Linse werden positiv gerechnet. 3.3 Dicke Linsen Bei dicken Linsen muss man den Wegunterschied den das Licht zwischen der ersten und der zweiten Grenzäche zurücklegt mitberücksichtigen. Die Rechnung ändert sich dadurch aber nur quantitativ n g + n 2 = n 2 n b R g 2 = (b d) n 2 b d + n 3 b = n 3 n 2 n g + n 3 b = R 2 ( n2 n R + n 3 n 2 R 2 ) + n 2 d b (b d) 5

6 Für eine dicke Linse in Luft ergibt sich so nach etwas Rechnerei g + ( = (n ) ) (n )d + = b R R 2 nr R 2 f 3.3. Linsensyteme und Hauptebenen Werden mehrere Linsen hintereinander durchleuchtet, so ist es im allgemeinen deutlich schwerer den Lichtweg zu konstruieren und zu berechnen. Als Hilfe können dabei die Hauptebenen dienen. Hat man die Hauptebenen bestimmt so kann man rechnerisch und für Konstruktionen davon ausgehen dass das Licht nur an ihnen gebrochen wird. Der einfachste Weg die Lage der Hauptebenen in einem System zu bestimmen besteht darin das Licht parallel einfallen zu lassen. Wegen der Identikation von H mit g und H 2 mit b kan man für parallel einfallendes Licht von links (rechts) g (b ) mit f = b + g g b = f b b g = f g die Lage der Hauptebenen bestimmen. Für eine dicke Linse folgt also(vgl. Zeichnung) (n )fd h = nr 2 (n )fd h 2 = nr Mit diesen beiden Orten als Bezugspunkte (anstatt der Linsenmitte) wird auch für dicke Linsen die Linsengleichung zu f = b + g. Für die Kombination zweier Linsen gilt bei parallel einfallendem Licht b = f g 2 = D f b 2 = (D f )f 2 D f f 2. Die Gesamtbrennweite des Systems ergibt sich also zu f = f f 2 D f + f 2 D 6

7 was sich umformen lässt in f = f + f 2 D f f 2 Für D f,2 gilt dass sich die reziproken Brennweiten D i = f i der Linsen addieren. 4 Optische Instrumente Für die Behandlung von optischen Instrumenten essenziel ist die deutliche/konventionelle Sehweite s 0 deren Wert man aus einer Betrachtung des menschlichen Auges erhält. 4. Vergröÿerung s 0 = 25cm Da in aller Regel das von einem optischen System erzeugte Bild nicht die selbe Gröÿe wie das Original besitzt betrachten wir nun die vergröÿerneden bzw. verkleinernden Eigenschaften von Linsen. Man unterscheidet hierbei zwischen transversaler Vergröÿerung V T und longitudinaler Vergröÿerung V L. B und G bezeichnen im Folgenden die Gröÿe der Objekte. V T = B G = b g V L = f 2 (g f) 2 Die transversale Vergröÿerung gibt also die naiv interpretierte Vergröÿerung an, während V L die Verbreiterung des Objekts Beschreibt. Zusätzlich dazu gelten die Zusammenhänge V L = db dg = V T 2 b g = f f g. Analog zu diesen beiden Gröÿen gibt es noch die Winkelvergröÿerung V ɛ = Es gilt V ɛ b g = V T. Sehwinkel ɛ mit Instrument Sehwinkel ɛ. 0 ohne Instrument 7

8 4.2 Bildhelligkeit Der Durchmesser einer Linse oder auch vorgeschaltete Blenden haben entscheidenden Einuss auf die Lichtstärke optischer Instrumente. Für die Helligkeit H gilt folgender Zusammenhang gilt nun g f B 2 = f 2 g 2 tan β β = D g H β2 B 2 folgt für die Helligkeit H D2 f 2 Besonders in der Fotographie wird hier häug von der Blende oder F-Zahl gesprochen F = D f H F 2 annimmt. Mit jeder höheren Blende halbiert sich also die Bildhel- wobei F die Werte 2 n 2 ligkeit. 4.3 Schärfentiefe Da eine Linse für nur an einem Ort ein scharfes Bild darstellt, gilt auch umgekehrt der Zusammenhang, dass für einen festen Abstand Schirm-Linse nur Objekte bestimmten Abstands von der Linse scharf dargestellt werden. Die Schärfentiefe bezeichnet dabei das Verhältnis des scharf dargestellten Bereichs zu dessen mittleren Abstand von der Linse. 8

9 Zur leichteren Rechnung führen wir noch die Gröÿen b = b v b und g = g g v ein. Aus dem Strahlensatz folgt nun der Zusammenhang u/2 b = D/2 b + b D/2 b u = D b b Mit der longitudinalen Vergröÿerung und der Nähernug g f ergibt sich somit g V L = b, V L ( ) f 2 g g = g2 g2 ub b = f 2 f 2 wegen g f b f folgt D g g = ug Df = ugf f 2 Oft ist u vorgegeben durch z.b. die Körnigkeit B 0 des verwendeten Films. 4.4 Die Lupe Das wohl einfachste optische Instrument stellt die Lupe dar. Mit einer einzelnen Linse werden hier Objekte vergröÿert. 9

10 Für die Vergröÿerung einer Lupe gilt V = tan ɛ = B/b = s 0 tan ɛ 0 G/s 0 g Liegt das zu betrachtende Objekt zudem in der Brennebene gilt V = s 0 f Aus Abbildungsgründen spricht man hier auch von einer Betrachtung mit entspanntem Auge 4.5 Brillen Brillen stellen ebenfalls eines der einfacheren optischen Instrumente dar. Für die hier oft verwendete Gröÿe Dioptrin gilt D := f. Generell unterscheidet man zwischen Kurzsichtigkeit: Die Brille entwirft von einem Gegenstand im Unendlichen ein virtuelles Bild in der Entfernung s max, in der ein Kurzsichtiger gerade noch scharf sehen kann g s max = f D < 0 Weitsichtigkeit: Die Brille muss einen nahen Gegenstand g auf eine Mindestentfernung s min abbilden g + = s min f D > Mikroskop Bei einem Mikroskop wird eine Linse mit kurzer Brennweite (Objektiv) mit einer Linse mit hoher Brennweite (Okular) kombiniert. Für ein scharfes Bild muss der Gegenstand vom Objektiv in die Brenebene des Okulars abgebildet werden. 0

11 Für die Vergröÿernug des Objektivs gilt V Ob = b ( g = b ) f Ob b = b f Ob f Ob (Streng genommem gilt V Ob = b g, dies wird aber meist nicht berücksichtigt) Hier wird nun häug der Begri der Tubuslänge t verwendet, der den Abstand der beiden Brennweiten voneinander angibt. Hier also t = b f Ob. Damit wird unsere Formel zu V Ob = t f Ob Für das Okular gilt wegen der Abbildung in das Auge V Ok = s 0 f Ok Die Gesamtvergröÿerung des Systems ergibt sich durch Multipliaktion der Einzelvergröÿerungen zu V M = V Ob V Ok = ts 0 f Ob f Ok Da f Ob meist sehr klein ist t b ndet man dies auch in der äquivalenten Form V M = (d f Ok)s 0 f Ob f Ok, d = b + f Ok. 4.7 Teleskop Bei einem Fernrohr tauschen Objektiv und Okular im Vergelich zum Mikroskop ihre Rollen

12 Als Vergröÿerung erhalten wir nach 4. V F = ɛ ɛ 0 Wegen sin ɛ ɛ = B f 2 und sin ɛ 0 ɛ 0 = B f ergibt sich V F = f f 2 = f Ob f Ok Als Okular kann auch eine Zerstreulinse dienen, dann geht f Ok in f Ok über. Fernrohre erhöhen dabei auch die Lichtintensität der abzubildenden Objekte. Es gilt dann für die Intensität pro Fläche I I ( D D 2 ) 2 = ( Dein D aus ) 2 = 4.8 Auösungsvermögen optischer Geräte ( ) 2 fob = VF 2 f Ok Unter dem Auösungsvermögen versteht man den minmalen Winkel α unter dem man zwei Punkte gerade noch trennen kann. Wichtig hierfür sind neben der Geometrie der Anordnung, die betrachtete Wellenlänge λ und die Gröÿe des Lichteinlasses (Durchmesser der Pupille, Linse,... ). Man unterschiedet hier zwischen zwei Kriterien Dawes-Kriterium α = arcsin λ D λ D Reyleigh-Kriterium α = arcsin.22 λ D.22 λ D Das häuger verwendete Reyleigh-Kriterium wird auch bei Spaltversuchen verwendet, D bezeichnet dann die Spaltbreite. Bilder entnommen aus Wolfgang Demtröder - Experimentalphysik 2 Elektrizität und Optik 2

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III Musterlösung Dienstag - Spiegel, Linsen und optische Geräte Monika Beil, Michael Schreier 28. Juli 2009 Aufgabe Bestimmen Sie das Verhältnis der Brennweiten des Auges

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Dienstag, 06.03.0 Vergrößerungslinse Sie sollen mit einer Linse ein 0fach vergrößertes Bild eines Gegenstandes G auf einem

Mehr

Lösungen zur Geometrischen Optik Martina Stadlmeier f =

Lösungen zur Geometrischen Optik Martina Stadlmeier f = Lösungen zur Geometrischen Optik Martina Stadlmeier 24.03.200. Dicke Linse a) nach Vorlesung gilt für die Brechung an einer gekrümmten Grenzfläche f = n2 n 2 n r Somit erhält man für die Brennweiten an

Mehr

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III Aufgaben Montag - Elektrodynamik und Polarisation Monika Beil, Michael Schreier 27. Juli 2009 1 Prisma Gegeben sei ein Prisma mit Önungswinkel γ. Zeigen Sie dass bei symmetrischem

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 12

Grundlagen der Physik 2 Lösung zu Übungsblatt 12 Grundlagen der Physik Lösung zu Übungsblatt Daniel Weiss 3. Juni 00 Inhaltsverzeichnis Aufgabe - Fresnel-Formeln a Reexionsvermögen bei senkrechtem Einfall.................. b Transmissionsvermögen..............................

Mehr

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente 2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)

Mehr

FK Ex 4 - Musterlösung Dienstag

FK Ex 4 - Musterlösung Dienstag FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu

Mehr

Ferienkurs Experimentalphysik 3 - Geometrische Optik

Ferienkurs Experimentalphysik 3 - Geometrische Optik Ferienkurs Experimentalphysik 3 - Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Inhaltsverzeichnis Einleitung Geometrische Optik 2 2 Grundlegende Konzepte 2 3 Die optische Abbildung 2

Mehr

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11. Versuche P1-31,40,41 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.2010 1 1 Vorwort Für den Versuch der geometrischen Optik gibt es eine Fülle

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen

Mehr

Entstehung des Regenbogens durch Brechung-Reflexion-Brechung

Entstehung des Regenbogens durch Brechung-Reflexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr

7.1.3 Abbildung durch Linsen

7.1.3 Abbildung durch Linsen 7. eometrische Optik Umkehrung des Strahlenganges (gegenstandsseitiger rennpunkt): f = n n n 2 R (7.22) n g + n 2 b = n 2 n R (7.23) 7..3 Abbildung durch Linsen Wir betrachten dünne Linsen, d.h., Linsendicke

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 200/20 8. Übungsblatt - 3.Dezember 200 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) (7 Punkte) Gegeben sei

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Optische Abbildungen Armin Regler, Pascal Wittlich, Ludwig Prade Montag, 15. März 2011 Inhaltsverzeichnis 1 Einleitung 2 2 Das Huygensche Prinzip 2 3 Optische Abbildungen

Mehr

LS7. Geometrische Optik Version vom 24. Januar 2019

LS7. Geometrische Optik Version vom 24. Januar 2019 Geometrische Optik Version vom 24. Januar 2019 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Linsen.................................. 3 1.1.2 Bildkonstruktion (dünne Linsen)...................

Mehr

PW6 Geometrische Optik

PW6 Geometrische Optik PW6 Geometrische Optik Andreas Allacher 0501793 Tobias Krieger 0447809 Betreuer: Dr. Erhard Schafler.Nov.006 Seite 1 Inhaltsverzeichnis 1. Brennweite von Linsen und Linsenfehler...3 1.1 Prinzip und Formeln...3

Mehr

Übungen zur Optik (E3-E3p-EPIII) Blatt 8

Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Wintersemester 2016/2017 Vorlesung: Thomas Udem ausgegeben am 06.12.2016 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen ab 12.12.2016 Die Aufgaben ohne Stern sind

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente . Vorlesung EP IV Optik 3. Geometrische Optik Brechung und Totalrelexion Dispersion 4. Farbe 5. Optische Instrumente Versuche: Brechung, Relexion, Totalrelexion Lichtleiter Dispersion (Prisma) additive

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

Das Brechungsgesetz. Brechung und Reflexion: n 1. n 2. Das Snelliussche Brechungsgesetz:

Das Brechungsgesetz. Brechung und Reflexion: n 1. n 2. Das Snelliussche Brechungsgesetz: Das rechungsgesetz rechung und Relexion: An einer renzläche zwischen zwei Medien mit rechungsindices n und n spaltet sich ein einallender Strahl au: [E] Einallender Strahl [R] Relektierter Strahl [] ebrochener

Mehr

Medium Luft zueinander, wenn diese Linse ein reelles, gleich großes und umgekehrtes Bild eines Medium Luft zueinander, wenn diese Linse ein reelles, verkleinertes und umgekehrtes Bild eines Medium Luft

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19 Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III Musterlösung Montag - Elektrodynamik und Polarisation Monika Beil, Michael Schreier 7. Juli 009 1 Prisma Gegeben sei ein Prisma mit Önungswinkel γ. Zeigen Sie dass bei

Mehr

Optische Instrumente: Das Auge

Optische Instrumente: Das Auge Optische Instrumente: Das Auge Das menschliche Auge ist ein höchst komplexes Gebilde, welches wohl auf elementaren optischen Prin- S P H N zipien beruht, aber durch die Ausführung besticht. S: M Sklera

Mehr

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Testat Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Mo Di Mi Do Fr Datum: Versuch: 12 Abgabe: Fachrichtung Sem. : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops In diesem Versuch

Mehr

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073)

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073) Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Pro. Dr. L. Oberauer Wintersemester 200/20 6. Übungsblatt - 29.November 200 Musterlösung Franziska Konitzer (ranziska.konitzer@tum.de) Augabe ( ) (6 Punkte) Um die Brennweite

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Geometrische Optik Qi Li, Bernhard Loitsch, Hannes Schmeiduch Dienstag, 06.03.2012 Inhaltsverzeichnis 1 Einleitung 2 2 Das Huygensche Prinzip 2 3 Optische Abbildungen 3

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Vorbereitung zur geometrischen Optik

Vorbereitung zur geometrischen Optik Vorbereitung zur geometrischen Optik Armin Burgmeier (347488) Gruppe 5 9. November 2007 Brennweitenbestimmungen. Kontrollieren der Brennweite Die angegebene Brennweite einer Sammellinse lässt sich überprüfen,

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017 4 Linsen 4.1 Linsenformen Optische Linsen sind durchsichtige Körper, welche (im einfachsten Fall) auf beiden Seiten von Kugelflächen oder auf der einen Seite von einer Kugelfläche, auf der anderen Seite

Mehr

Grundlagen der Experimentalphysik 3 (Optik, Wellen und Teilchen)

Grundlagen der Experimentalphysik 3 (Optik, Wellen und Teilchen) Grundlagen der Experimentalphysik 3 (Optik, Wellen und Teilchen) WS 2010/11 Prof. Dr. Tilman Pfau 5. Physikalisches Institut Aufgabe 1: Parabolspiegel 6(1,1,1,2,1) Punkte a) Will man ein breites, paralleles

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Ergänzungs-Set geometrische Optik

Ergänzungs-Set geometrische Optik Ergänzungs-Set geometrische Optik Geometrische Optik mit Diodenlaser und Metalltafel 1007520 Ergänzungs-Set geometrische Optik plus 1075205 Die Spalte Benötigte Geräte listet den für den jeweiligen Versuch

Mehr

Technische Raytracer

Technische Raytracer Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Abbildung 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Abbildung Ein zweidimensionales Bild

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? 4 Hautstrahlen für Siegel + = i f f = r 2 4 Hautstrahlen Doelbrechung, λ/4-platte und λ/2-platte Shärische brechende Flächen

Mehr

Teilskript zur LV "Optik 1" Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1

Teilskript zur LV Optik 1 Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1 Teilskript zur LV "Optik " sphärischer Linsen Seite Objekt (optisch) Gesamtheit von Objektpunkten, von denen jeweils ein Bündel von Lichtstrahlen ausgeht Wahrnehmen eines Objektes Ermittlung der Ausgangspunkte

Mehr

Geometrische Optik _ optische Linsen und Spiegel

Geometrische Optik _ optische Linsen und Spiegel Geometrische Optik _ optische Linsen und Spiegel 1) Berechne den Brennpunkt des nebenstehenden Linsensystems unter der Annahme, daß beide Linsen zusammen sehr dünn sind. Sammellinse : R 2 = 20 cm ; R 1

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht. 4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen

Mehr

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente Physik für Pharmazeuten OPTIK Geometrische Optik Wellen Beugung, Interferenz optische Instrumente geometrische Optik Wellengleichungen (Maxwellgleichungen) beschreiben "alles" Evolution exakt berechenbar

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 8 Mikroskop Gruppe Nr.: 1 Andreas Bott (Protokollant) Marco Schäfer Theoretische Grundlagen Das menschliche Auge: Durch ein Linsensystem wird im menschlichen

Mehr

Protokoll zum Grundversuch Geometrische Optik

Protokoll zum Grundversuch Geometrische Optik Protokoll zum Grundversuch Geometrische Optik Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I Tutorin: Jana Muenchenberger 01.02.2007 Inhaltsverzeichnis

Mehr

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 5+6+7: Roter Faden: Heute: Wellenoptik, geometrische Optik (Strahlenoptik) http://www-linux.gsi.de/~wolle/telekolleg/schwingung/index.html Versuche: Applets: http://www.walter-fendt.de/ph4d huygens,

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Abbildung Wiederholung Lichtdetektion Photoelektrischer Effekt Äußerer P.E.: Elektron wird aus Metall herausgeschlagen und hat einen Impuls Anwendung: Photomultiplier,

Mehr

Sehwinkel, Winkelvergrösserung, Lupe

Sehwinkel, Winkelvergrösserung, Lupe Aufgaben 2 Optische Instrumente Sehwinkel, Winkelvergrösserung, Lupe Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten

Mehr

4. Optische Abbildung durch Linsen

4. Optische Abbildung durch Linsen DL 4. Optische Aildung durch Linsen 4.1 Einleitung Optische Linsen und Linsensysteme ilden die Grundlage zahlreicher ildgeender Apparate, die in Wissenschat und Technik wie auch im täglichen Leen Anwendung

Mehr

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik - Lösung

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik - Lösung Ferienkurs Experimentalphysik 3 - Übungsaugaben Geometrische Optik - Matthias Brasse, Max v. Vopelius 4.0.009 Augabe : Zeigen Sie mit Hile des Fermatschen Prinzips, dass aus der Minimierung des optischen

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum B. Versuch og : Optische Geräte. 4. Auflage 2017 Dr. Stephan Giglberger

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum B. Versuch og : Optische Geräte. 4. Auflage 2017 Dr. Stephan Giglberger U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch og : Optische Geräte 4. Auflage 2017 Dr. Stephan Giglberger Inhaltsverzeichnis

Mehr

Physik 4, Übung 3, Prof. Förster

Physik 4, Übung 3, Prof. Förster Physik 4, Übung 3, Prof. Förster Christoph Hansen Emailkontakt 3. April 203 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

Bildentstehung, Spiegel und Linsen Bildentstehung und Bildkonstruktion bei dicken sphärischen Linsen

Bildentstehung, Spiegel und Linsen Bildentstehung und Bildkonstruktion bei dicken sphärischen Linsen Aufgaben 8 Bildentstehung, Spiegel und Linsen Bildentstehung und Bildkonstruktion bei dicken sphärischen Linsen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten

Mehr

Annahme: Wellen- und Quanteneigenschaften des Lichts können vernachlässigt werden.

Annahme: Wellen- und Quanteneigenschaften des Lichts können vernachlässigt werden. Annahme: Wellen- und Quanteneigenschaften des Lichts können vernachlässigt werden. Experiment: Laserlichtquelle. 1.1 Axiome der geometrischen Optik Licht breitet sich in Form von Strahlen aus. Lichtstrahlen

Mehr

Wellen an Grenzflächen

Wellen an Grenzflächen Wellen an Grenzflächen k ey k e α α k ex k gy β k gx k g k r k rx k ry Tritt ein Lichtstrahl in ein Medium ein, so wird in der Regel ein Teil reflektiert, und ein Teil wird in das Medium hinein gebrochen.

Mehr

Geometrische Optik. Versuch: P Auswertung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P Auswertung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Jens Küchenmeister (25380) Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Auswertung - Versuchsdurchführung: Montag, 3.0.2005

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed 1 Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

Kapitel Optische Abbildung durch Brechung

Kapitel Optische Abbildung durch Brechung Kapitel 3.8.3 Optische Abbildung durch Brechung Dicke Linsen, Linsensysteme, Optische Abbildungssysteme Dicke Linse Lichtwege sind nicht vernachlässigbar; Hauptebenen werden eingeführt Dicke Linse Lichtwege

Mehr

Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben)

Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben) Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben) WS 2009/10 1 Die Lochkamera 2. (a) Durch maßstabsgetreue Zeichnung oder durch Rechnung mit Strahlensatz ergibt sich: Die Größe der

Mehr

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

Übungsblatt 4 Grundkurs IIIa für Physiker

Übungsblatt 4 Grundkurs IIIa für Physiker Übungsblatt 4 Grundkurs IIIa für Physiker Othmar Marti, othmar.marti@physik.uni-ulm.de 3. 6. 2002 1 Aufgaben für die Übungsstunden Reflexion 1, Brechung 2, Fermatsches Prinzip 3, Polarisation 4, Fresnelsche

Mehr

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19 Aufgaben Optische Instrumente Auge Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt analysieren

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 30/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechungsgesetz Das Fermat sches Prinzip: Das Licht nimmt den Weg auf dem es die geringste Zeit

Mehr

Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl

Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl Modelle in der Physik Optik Strahlenoptik vereinfachte Darstellungen der Wirklichkeit dienen der besseren Veranschaulichung Wesentliches wird hervorgehoben Unwesentliches wird vernachlässigt Was ist ein

Mehr

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung

Mehr

Mehrfachabbildungen entstehen, wenn mehrere Spiegel gegeneinander geneigt sind.

Mehrfachabbildungen entstehen, wenn mehrere Spiegel gegeneinander geneigt sind. Optische Abbildungen Nachdem wir die Eigenschaften des Lichts jetzt im wesentlichen kennen gelernt haben, werden wir im folgenden uns mit der sog geometrischen Optik beschäftigen, die mit geradlinigen

Mehr

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 501 : Optische Abbildungen (OA)

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 501 : Optische Abbildungen (OA) Gruppe : Namen, Matrikel Nr.: HS D Hochschule Düsseldorf Versuchstag: Vorgelegt: Testat : V 501 : Optische Abbildungen (OA) Zusammenfassung: 1 von 13 Gruppe : HS D Korrigiert am: Hochschule Düsseldorf

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet?

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1 Musterprüfung Module: Linsen Optische Geräte 1. Teil: Linsen 1.1. Was besagt das Reflexionsgesetz? 1.2. Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1.3. Eine Fläche bei einer

Mehr

21.4 Linsen. Entscheidend für die Funktion einer Linse ist daher, dass die beiden Oberflächen zueinander gekrümmt sind. α 1. α 2. n 1.

21.4 Linsen. Entscheidend für die Funktion einer Linse ist daher, dass die beiden Oberflächen zueinander gekrümmt sind. α 1. α 2. n 1. 21.4 Linsen Eine Linse ist ein optisches erät, dessen unktion au dem Brechungsgesetz beruht. Dadurch erährt der Lichtstrahl eine Richtungsänderung beim Ein- und Austritt. Die Oberlächen von Linsen sind

Mehr

Versuch 005 / Versuch 403

Versuch 005 / Versuch 403 38 Versuch 005 / Versuch 403 Dünne Linsen und Spiegel In diesem Versuch werden die Brennweiten von verschiedenen Sammel- und Zerstreuungslinsen sowie von einem Hohlspiegel bestimmt. Dies geschieht mit

Mehr

Geometrische Optik. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss

Geometrische Optik. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss Geometrische Optik Praktikumsversuch am 17.11.2010 Gruppe: 3 Thomas Himmelbauer Daniel Weiss Abgegeben am: 24.11.2010 Inhaltsverzeichnis 1 Einleitung 2 2 Bestimmung der Brennweite einer Linse 2 3 Mikroskop

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Auflösungsvermögen bei dunkelen Objekten

Auflösungsvermögen bei dunkelen Objekten Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Mehrlinsen- und Mehrspiegelsysteme Mehrlinsensysteme

Mehrlinsen- und Mehrspiegelsysteme Mehrlinsensysteme Aufgaben 9 Mehrlinsen- und Mehrspiegelsysteme Mehrlinsensysteme Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder

Mehr

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht Übersicht Allgemeine Übersicht, Licht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische) vs. lichttechnische (fotometrische) Größen Beschreibung radiometrische, fotometrische

Mehr