Grundlagen der Theoretischen Informatik - Sommersemester Übungsblatt 1: Lösungsvorschläge

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge"

Transkript

1 Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem handelt es sich explizit um Lösungsvorschläge, nicht um eine Musterlösung. Alle Aufgaben lassen sich oft genau so gut auf andere Weise und manchmal noch besser lösen. Der hier skizzierte Weg ist nur eine denkbare Alternative. Insbesondere wird keine Gewähr für Vollständigkeit, Korrektheit und dafür übernommen, dass vergleichbare Lösungen in Prüfungen akzeptiert werden. Aufgabe 1.1 ( = 10 P) (a) [ = 3 P] Modell einer Formel ist eine Interpretation, die die Formel wahr macht. In den folgenden Tabellen stehen T und F für TRUE und FALSE: (i) α(a) α(b) α( A) α( A B) α(( A B) A) F F T T F F T T T F T F F F F T T F T T (ii) (iii) Die Belegung α(a) = T, α(b) = T ist das einzige Modell für die Formel ( A B) A. α(a) α(b) α(c) α( B) α(a B) α((c A)) α((a B) (C A)) F F F T T F F F F T T T F F F T F F F F T F T T F F F T T F F T T F F T F T T T T T T T F F T F F T T T F T T T Es gibt vier Belegungen der atomaren Formeln A, B und C, die Modelle der Formel (A B) (C A) sind: siehe die in Grau markierten Zeilen in der Tabelle. 1

2 α(a) α(b) α( B) α(a B) α(b A) α((a B) (B A)) F F T F T T F T F T F T T F T T T T T T F F T T Alle möglichen Belegungen der atomaren Formeln A und B sind Modelle der Formel (A B) (B A). Also ist die Formel eine Tautologie. (b) [1 + 2 = 3 P] Der Algorithmus aus der Vorlesung zur Erzeugung einer KNF (1) Implikation und Äquivalenz mittels ihrer Definitionen eliminieren: (α β) (α β) (β α) (α β) ( α β) (2) Negation zu atomaren Aussagen verschieben: (α β) ( α β) (α β) ( α β) α α (3) Disjunktion zu den Literalen verschieben: α (β γ) (α β) γ α β γ (4) Das Distributivgesetz für den logischen Operator anwenden: α (β γ) (α β) (α γ) (α β) γ (α γ) (β γ) (5) Klammern eliminieren durch Anwenden des Assoziativgesetzes des -Operators: α (β γ) (α β) γ α β γ Die Musterlösungen der Teilaufgaben (i) und (ii): (i) (A B) (X A) (1) ( A B) (X A) (5) ( A B) X ( A) (ii) (A (B C)) ( B A) (1) ((A (B C)) ((B C) A)) ( B A) (1) ( A (B C)) ( (B C) A) ( B A) (2) ( A (B C)) (( B C) A) (B A) (3)+(4) (( A B) ( A C)) (A B C) (A B) (5) ( A B) ( A C) (A B C) (A B) (c) [4 P] Fakten: einbruchstelle, beil, leiche, verdächtiger Implikation: 2

3 mord einbruchstelle beil leiche verdächtiger Beweis des Mordes Gegeben: Die Fakten einbruchstelle, beil, leiche, verdächtiger und das Prädikat mord mit der Implikation mord einbruchstelle beil leiche verdächtiger. Behauptung: Es fand einen Mord statt. Wir wissen, dass die Implikation mord einbruchstelle beil leiche verdächtiger logisch äquivalent zumord einbruchstelle beil leiche verdächtiger ist. Demzufolge besteht unsere Theorie S aus den folgenden Elementen: S = {einbruchstelle, beil, leiche, verdaechtiger, mord einbruchstelle beil leiche verdaechtiger, Aus S möchten wir folgern, dass es einen Mord gab. In dem Fall ist das Prädikat mord die Formel L, die wir zeigen möchten (S L). An der Stelle kommt das Theorem aus der Vorlesung zum Einsatz: Theorem: S L iff S L is inconsistent Was wir also machen müssen, ist anzunehmen, dass es keinen Mord ( L) gab und hiermit zeigen, dass die Theorie S L nach etlichen Transformationen der wff s (logischen Formeln) ein Element besitzt, das das Atom false ist. Somit widerspricht sich die Theorie S L und aufgrund der Inkonsistenz zu der logischen Konsequenz S L folgern wir, dass die Formel L gilt, was auch heißt, dass ein Mord stattgefunden hat. Der Widerspruchsbeweis: Annahme: mord beil, leiche, mord einbruchstelle beil leiche verdaechtiger, (5) mord (2) (3) (6) 3

4 (5) (6) (1) (5) (2) (5) (3) (5) einbruchstelle beil leiche verdaechtiger, (5) beil leiche verdaechtiger, (5) leiche verdaechtiger, (5) verdaechtiger, (5) 4

5 (4) (5) verdaechtiger verdaechtiger, (5) (5) false, (5) Aus (5) in den letzten Mengenklammern folgern wir, dass S L nicht stimmt und hiermit folgt nach Theorem die logische Konsequenz S L (in unserem Fall S mord) und somit zeigten wir, dass ein Mord stattgefunden hat. Aufgabe 1.2 ( = 10 P) (a) R R A < > B und S A S < R = {x y x y R x S. S < R ist die Menge aller Tupeln von R, deren Definitionsbereich dom(r) auf die Teilmenge S beschränkt ist (Domain restriction). (b) R R A < > B und S A S << R = {x y x y R x / S. S << R ist die Menge aller Tupeln von R, deren Definitionsbereich dom(r) auf die Teilmenge dom(r)\s beschränkt ist (Domain substraction). (c) R R A < > B und T B R > T = {x y x y R y T. R > T ist die Menge aller Tupeln von R, deren Wertebereich ran(r) auf die Teilmenge T beschränkt ist (Range restriction). (d) R R A < > B und T B R >> T = {x y x y R y / T. R >> T ist die Menge aller Tupeln von R, deren Wertebereich ran(r) auf die Teilmenge ran(r)\t beschränkt ist (Range substraction). (e) R R A < > B und S A R[S] = {y x y R x S = ran(s < R). R[S] ist die Menge aller Elemente im Wertebereich B, die den Elementen von der Teilmenge S A in R zugeordnet sind. (Relational image). 5

6 (f) R R A < > B R = {y x x y R R ist die Menge der umgekehrten Tupeln von R (Inverse). (g) R 1,R 2 R 1,R 2 A < > B R 1 <+ R 2 = R 2 (dom(r 2 ) << R 1 ) R 1 <+ R 2 ist die Vereinigung der Menge R 2 und der Menge aller Tupeln von R 1, deren Definitionsbereich A auf die Teilmenge dom(r 1 )\dom(r 2 ) beschränkt ist (Left overriding). (h) R 1,R 2 R 1,R 2 A < > B R 1 +> R 2 = R 1 (dom(r 1 ) << R 2 ) R 1 +> R 2 ist die Vereinigung der Menge R 1 und der Menge aller Tupeln von R 2, deren Definitionsbereich A auf die Teilmenge dom(r 2 ) \ dom(r 1 ) beschränkt ist (Right overriding). Aufgabe 1.3 ( = 10 P) Wichtig bei der Korrektur dieser Aufgabe ist auf die Eindeutigkeit der Elemente in den Mengen zu achten. Hier wird nur mit Mengen gearbeitet und in einer Menge jedes Element kommt ein Mal vor. Bei doppelten Angaben von Elementen in einer entsprechenden Menge müssen Punkte abgezogen werden. (a) [ = 2 P] (i) {ian < eats = {ian eggs,ian cheese,ian pizza (ii){jim<< eats = {ian eggs,ian cheese,ian pizza,ken pizza,lisa cheese, lisa pizza, lisa salad (iii) eats > {cheese,pizza = {ian cheese,ian pizza,ken pizza,lisa cheese, lisa pizza (iv) dom(eats > {eggs) = {ian, jim (b) [ = 4 P] (i) eats[{ian, lisa] = {eggs, cheese, pizza, salad (ii) eats = {eggs ian,eggs jim,cheese ian,cheese lisa,pizza ian,pizza ken,pizza lisa,salad jim,salad lisa,pizza ken,cheese lisa,pizza lisa,salad lisa (iii) eats [{cheese, eggs] = ian, jim, lisa (iv)eats ;cost = {ian cheap,ian expensive,jim cheap,ken expensive,lisa cheap, lisa expensive (v) eats ; (cost >> {expensive) = {ian cheap,jim cheap,list cheap (vi) eats [cost [{expensive]] = {ian, ken, lisa (vii) eats <+ {lisa steak = {ian eggs,ian cheese,ian pizza,jim eggs,jim salad,ken pizza,lisa steak (c) [2 + 2 = 4 P] Die Menge der Personen, die entweder eggs oder pizza essen: eats [{pizza, eggs] oder dom(eats > {eggs, pizza) 6

7 Die Menge der Personen, die cheese und pizza essen: (eats [{pizza]) (eats [{cheese]) oder dom(eats > {cheese) dom(eats > {pizza) Aufgabe 1.4 ( = 10 P) (a) [1 + 1 = 2 P] (i) [ : : 0.5 = 1 P] Sei X eine Menge und A, B X Teilmengen von X. z.z.: (X \A) (X \B) = X \(A B) Um die Gleichheit der Mengen zu zeigen, müssen wir die gegenseitigen Inklusionen und der Mengen (X\A) (X\B) und X\(A B) beweisen. Also der Beweis besteht aus den folgenden zwei Schritten: : Sei x (X \A) (X \B) x / A und x / B (mit anderen Worten x ist in keiner der Mengen A und B ethalten) x / A B x X \(A B). : Es gilt X \(A B) X \A und X \(A B) X \B, dann folgt: X \(A B) = X \(A B) X \(A B) (X \A) (X \B). Somit folgt, dass X \(A B) (X \A) (X \B). Da sich die Mengen (X \A) (X \B) und X \(A B) gegenseitig enthalten, folgt die Gleichheit. (ii) [ : : 0.5 = 1 P] Sei X eine Menge und A, B X Teilmengen von X. z.z.: (X \A) (X \B) = X \(A B) Wir zeigen, dass(x\a) (X\B) X\(A B) und(x\a) (X\B) X\(A B) gilt: : (X \A) (X \B) X \(A B) X \(A B) = X \(A B). {{ {{ X\(A B) X\(A B) : Sei x X \(A B) x / A B x X \A oder x X \B, aber nicht in beiden Mengen A und B gleichzeitig enthalten x (X \A) (X \B). Es folgt also die Behauptung X \(A B) (X \A) (X \B). (b) [ = 4 P] (i) [Wer die disjunktive Eigenschaft in seinem Beweis nicht erwähnt: P] Seien X und Y endliche Mengen. z.z.: X Y = X Y Die Menge X Y lässt sich wie folgt schreiben a X {(a,b) b Y. Außerdem gilt für alle a 1, a 2 X mit a 1 a 2, dass die Mengen {(a 1,b) b Y und {(a 2,b) b Y disjunkt zueinander sind. Daraus und aus dem gegebenen 7

8 Hinweis folgern wir: X Y = a X {(a,b) b Y Hinweis = {(a,b) b Y a X (c) [4 P] = a X Y = Y + Y + + Y = X Y {{ X mal (ii) [Induktionsanf.: 0.5 P, Induktionsschritt: 2 P] Sei X eine endliche Menge mit n Elementen. z.z.: P(X) = 2 n Die Eigenschaft zeigen wir mithilfe vollständiger Induktion. Induktionsanfang: Wenn X die leere Menge ist, dann ist die einzige Teilmenge von X die leere Menge selbst, was sich auch daraus schließen kann, dass die Anzahl der Elemente in P({) gleich Eins (bzw. 2 0 ) ist. Indunktionsannahme: Wir nehmen an, dass P(X) = 2 n gilt, wenn X eine endliche Menge mit n > 0 Elementen ist. Infuktionsschritt (n n+1): Sei X eine Menge mit n + 1 Elementen. Was wir jetzt zeigen müssen ist, dass P(X) = 2 n+1 gilt. Sei x ein beliebiges Element aus X, dann schreiben wir X als eine Vereinigung der Mengen X und {x (X = X {x), wobei X die Teilmenge von X ist ( X = n), die nur das Element x nicht beinhaltet. Da wir wissen, dass P(X) die Potenzmenge von X ist (die Menge aller Teilmengen von X), können wir diese als Vereinigung der folgenden zwei Mengen schreiben: P(X) = P(X {x) = P(X) {{x Y Y P(X ), (1) wobei P(X ) die Menge aller Teilmengen von X, die x nicht beinhalten, ist (P(X )) und {{x Y Y P(X ) die Menge aller Teilmengen von X, die das Element x enthalten. Es ist offensichtlich, dass Gelichung 1 stimmt. Des Weiteren können wir mithilfe der Induktionsannahme und der Gleichung 1 die Behauptung P(X) = 2 n+1 wie folgt beweisen: P(X) = P(X) {{x Y Y P(X ) = P(X) + {{x Y Y P(X ) Induktionsann. und X =n = 2 n +2 n = 2 2 n = 2 n+1. Hiermit zeigten wir, dass für jede endliche Menge X mit n Elementen die Gleichung P(X) = 2 n gilt. Primzahl p Elemente aus A(p) A(p) 2 {1 1 3 { 0 8

9 5 {2, { 0 11 { 0 13 {5, {4, { 0 23 { 0 29 {12, { 0 37 {6, {9, { 0 47 { 0 53 {23, { 0 61 {11,

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

5.2 Neue Projekte erstellen

5.2 Neue Projekte erstellen 5.2 Neue Projekte erstellen Das Bearbeiten von bestehenden Projekten und Objekten ist ja nicht schlecht wie aber können Sie neue Objekte hinzufügen oder gar völlig neue Projekte erstellen? Die Antwort

Mehr

Diana Lange. Generative Gestaltung Operatoren

Diana Lange. Generative Gestaltung Operatoren Diana Lange Generative Gestaltung Operatoren Begriffserklärung Verknüpfungsvorschrift im Rahmen logischer Kalküle. Quelle: google Operatoren sind Zeichen, die mit einer bestimmten Bedeutung versehen sind.

Mehr

Die Post hat eine Umfrage gemacht

Die Post hat eine Umfrage gemacht Die Post hat eine Umfrage gemacht Bei der Umfrage ging es um das Thema: Inklusion Die Post hat Menschen mit Behinderung und Menschen ohne Behinderung gefragt: Wie zufrieden sie in dieser Gesellschaft sind.

Mehr

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen. Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

9 Auto. Rund um das Auto. Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu.

9 Auto. Rund um das Auto. Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu. 1 Rund um das Auto Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu. 1. Zu diesem Fahrzeug sagt man auch Pkw oder Wagen. 2. kein neues Auto, aber viel billiger

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik

3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik Darstellung, Verarbeitung und Erwerb von Wissen 3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik DVEW WS 2004/05 c Gabriele Kern-Isberner 1 Stratifizierte Programme (Whlg.) Sei P ein

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Klicken Sie auf Weiter und es erscheint folgender Dialog

Klicken Sie auf Weiter und es erscheint folgender Dialog Datenimport Hier wird der Import von Excel-Daten in das Programm Videka TS beschrieben. Der Import mit den Programmen Aring s AdressMogul und Aring s promptbill läuft genauso ab, wie hier beschrieben.

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Übungen für Woche 10

Übungen für Woche 10 Übungen für Woche 10 Martin Rubey 12. Januar 2011 Die folgenden Übungen sollen den Umgang mit Backtracking und kombinatorischen Spezies näherbringen. Genaue Hinweise gibt es erst auf Seite 5. Zur Erinnerung:

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Anwendungsbeispiele Buchhaltung

Anwendungsbeispiele Buchhaltung Kostenstellen in Webling Webling ist ein Produkt der Firma: Inhaltsverzeichnis 1 Kostenstellen 1.1 Was sind Kostenstellen? 1.2 Kostenstellen in der 2 Kostenstellen in Webling 2.1 Kostenstellen erstellen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 4 Die Datenbank Kuchenbestellung In diesem Kapitel werde ich die Theorie aus Kapitel 2 Die Datenbank Buchausleihe an Hand einer weiteren Datenbank Kuchenbestellung

Mehr

Wie halte ich Ordnung auf meiner Festplatte?

Wie halte ich Ordnung auf meiner Festplatte? Wie halte ich Ordnung auf meiner Festplatte? Was hältst du von folgender Ordnung? Du hast zu Hause einen Schrank. Alles was dir im Wege ist, Zeitungen, Briefe, schmutzige Wäsche, Essensreste, Küchenabfälle,

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Beamen in EEP Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Zuerst musst du dir 2 Programme besorgen und zwar: Albert, das

Mehr

Sollsaldo und Habensaldo

Sollsaldo und Habensaldo ollsaldo und abensaldo Man hört oft die Aussage "Ein ollsaldo steht im aben, und ein abensaldo steht im oll". Da fragt man sich aber, warum der ollsaldo dann ollsaldo heißt und nicht abensaldo, und warum

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 3 Freie Waldorfschule Mitte März 8 Aufgaben zur analytischen Geometrie Musterlösung Gegeben sind die Ebenen E und E sowie die Punkte A und B: E : 4x + y + 3z = 3 E : x

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Systeme 1. Kapitel 6. Nebenläufigkeit und wechselseitiger Ausschluss

Systeme 1. Kapitel 6. Nebenläufigkeit und wechselseitiger Ausschluss Systeme 1 Kapitel 6 Nebenläufigkeit und wechselseitiger Ausschluss Threads Die Adressräume verschiedener Prozesse sind getrennt und geschützt gegen den Zugriff anderer Prozesse. Threads sind leichtgewichtige

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Vermeiden Sie es sich bei einer deutlich erfahreneren Person "dranzuhängen", Sie sind persönlich verantwortlich für Ihren Lernerfolg.

Vermeiden Sie es sich bei einer deutlich erfahreneren Person dranzuhängen, Sie sind persönlich verantwortlich für Ihren Lernerfolg. 1 2 3 4 Vermeiden Sie es sich bei einer deutlich erfahreneren Person "dranzuhängen", Sie sind persönlich verantwortlich für Ihren Lernerfolg. Gerade beim Einstig in der Programmierung muss kontinuierlich

Mehr