5 Sphärische Trigonometrie

Größe: px
Ab Seite anzeigen:

Download "5 Sphärische Trigonometrie"

Transkript

1 $Id: sphaere.tex,v /7/15 18:27:28 hk Exp $ 5 Sphärische Trigonometrie 5.6 Berechnung der Tageslänge Wir beschäftigen uns gerade mit der Berechnung der Tageslänge. Wir betrachten momentan einen fixierten Tag an dem der Einstrahlpunkt Q, also der Schnittpunkt der Erdoberfläche mit der Verbindungsstrecke vom Sonnenmittelpunkt zum Erdmittelpunkt, zum Äquator den Winkel δ hat. Wir hatten δ auch die Deklination genannt. Wir betrachten den Fall das die Nordhalbkugel der Sonne zugewandt ist und dies bedeutet δ. Die Tageslänge hängt dann vom Breitengrad ϕ ab, wobei wir hier einen Breitenkreis der nördlichen Halbkugel betrachten auf dem überhaupt ein Wechsel zwischen Tag und Nacht stattfindet, also mit ϕ π/2 δ. In einer ersten Näherung hatten wir eingesehen das die Tageslänge auf diesem Breitenkreis gemessen in Stunden als T 1 = T 1 (ϕ, δ = 24 π arccos( tan ϕ tan δ gegeben ist. Hierzu wurde das sphärische Dreieck gebildet aus Q, dem Sonnenaufgang P längs unseres Breitenkreises und dem Nordpol N betrachtet, der Winkel H in diesem Dreieck beim Nordpol ist dann der sogenannte Stundenwinkel und gibt die Zeit zwischen Sonnenaufgang und Mittag an. Diese geometrische Tageslänge weicht aber noch recht deutlich von der wirklich beobachteten Tageslänge ab. Dies liegt an zwei Hauptgründen. Zum einen ist die Sonne keine punktförmige Lichtquelle sondern hat eine Ausdehnung und nimmt eine Winkel von etwa 16 ein. Die Sonne ist also schon um den Winkel 16 vor Erreichen des Punktes P sichtbar. Weiter hat die Erde eine Atmosphäre an der sich die eingehenden Lichtstrahlen brechen, und Messungen dieses Effekts ergeben einen weiteren Korrekturwinkel 34. Insgesamt kommen wir auf den Korrekturwinkel ( 5 ɛ := = 5 =, In unserem Dreieck P QN haben wir bei Sonnenaufgang also tatsächlich P Q = π/2+ɛ im Winkelabstand und der Seitencosinussatz ergibt ( π sin ɛ = cos 2 + ɛ = sin ϕ sin δ + cos ϕ cos δ cos H und somit cos H = tan ϕ tan δ sin ɛ cos ϕ cos δ. 26-1

2 Als genaueren Wert für die Tageslänge in Stunden erhalten wir ( tan ϕ tan δ T 1 = T 1 (ϕ, δ = 24 π arccos sin ɛ cos ϕ cos δ Dies ist allerdings noch nicht die gewünschte Form dieser Formel. Wir wollen die korrigierte Tageslänge als eine Störung der geometrischen Tageslänge interpretieren, sie also als eine Summe von T 1 und einem Korrekturterm schreiben. Dieser Korrekturterm beschreibt dann im wesentlichen die Dauer der Dämmerung. Um den Wert von T 1 mit T 1 zu vergleichen machen wir eine kleine Approximationsüberlegung. Zunächst erinnern wir uns daran das die Differenzierbarkeit einer Funktion f in einem Punkt x bedeutet das für kleine Inkremente h die Näherung gilt. Die Ableitung des Arcus Cosinus ist f(x + h f(x + f (xh d dx arccos x = 1 1 x 2,. also haben wir arccos(x + h arccos x h 1 x 2. Der Wert sin ɛ/(cos ϕ cos δ ist vergleichsweise klein, also wird T 1 T π 1 tan 2 ϕ tan 2 δ sin ɛ cos ϕ cos δ. Weiter haben wir für kleine Winkel φ die übliche Näherung sin φ φ und es wird ( 5 sin ɛ ɛ = = π 18 = π 216, und somit T 2 T 2 := T cos2 ϕ cos 2 δ sin 2 ϕ sin 2 δ = T cos2 ϕ sin 2 δ. Der Dämmerungsterm ist sowohl im Breitengrad ϕ als auch in der Deklination δ monoton steigend, die Dauer der Dämmerung nimmt also für weiter nördlich gelegene Breitenkreise und hin zur Sommersommenwende zu. Die kürzeste Dämmerung tritt also im Frühlings- und im Herbstpunkt bei δ = auf und hat den Wert 1/(9 cos ϕ während die längste Dämmerung bei Sommer- beziehungsweise der Wintersonnenwende mit δ = ±δ ist. Für den Äquator ϕ = ergibt sich eine Dämmerung von mindestens 6, 8 Minuten und höchstens 7, 4 Minuten während für Kiel beim Breitegrad ϕ = 54 2 die Dämmerung mindestens 11, 4 und höchstens 15, 6 Minuten dauert. 26-2

3 Wir wollen uns die bisher hergeleiteten Formeln einmal am Beispiel des durch Kiel laufenden Breitenkreises anschauen. Kiel liegt südlich des Polarkreises bei 66, 56 also gibt es stets eine Tag und eine Nachtphase. In der folgenden Tabelle geben wir die Tageslänge in Kiel als Funktion der Deklination δ für einige Werte von δ in Stunden an δ 4, 69 9, 37 14, 6 18, 75 δ = 23, 44 T 1 12 : 12 : : : : : 57 T 2 12 : : 3 13 : : : : 12 Diese Tabelle gibt uns Werte zwischen dem Frühlingsanfang und der Sommersonnenwende, für andere Werte der Deklination δ lassen sich die Werte durch Symmetrieüberlegungen gewinnen. Die Tageslänge zwischen Sommersonnenwende und dem Herbstpunkt durchläuft dann dieselben Werte in die andere Richtung. Zwischen Herbstpunkt und Frühlingspunkt ist die Deklination negativ und die Nacht ist länger als der Tag. Die hierbei auftretenden Werte von T 1 und T 2 wollen wir uns über Symmetriebetrachtungen herleiten. Für φ π gilt cos(π φ = cos φ und π φ π, also ist für alle 1 x 1 auch arccos( x = π arccos x. Mit dieser Formel ergibt sich für δ δ T 1 (ϕ, δ = arccos(tan ϕ tan δ = π π (π arccos( tan ϕ tan δ = 24 T 1(ϕ, δ Der Länge des Tages zur negativen Deklination δ ist also die Länge der Nacht bei Deklination δ. Diese Formel gilt allerdings nur für die geometrische Tageslänge T 1, die korrigierte Tageslänge ergibt sich dann analog zur obigen Rechnung als T 2 (ϕ, δ = T 1 (ϕ, δ cos2 ϕ sin 2 δ. Damit haben wir die Tageslänge als Funktion der Deklination beschrieben. Um jetzt die Tageslänge als Funktion der Jahreszeit zu berechnen muss also nur noch die Deklination als eine solche bestimmt werden und hierzu beginnen wir mit einer vorbereitenden Überlegung. Ekliptik Zunächst einmal wollen wir den Fortlauf der Jahreszeit als den Winkel α zwischen dem Frühlings- H punkt F und dem Einstrahlpunkt Q bezüglich des M α Erdmittelpunkts M messen, also als den Winkelabstand zwischen F und Q. Sei Q der Schnittpunkt Äquator des Meridians durch Q mit dem Äquator. Dann betrachten wir das sphärische Dreieck = F Q Q. Dieses Dreieck hat bei Q einen rechten Winkel und sein Winkel bei F ist δ. Weiter sind in die Winkelabstände F Q = α und QQ = δ, der sphärische Sinussatz Satz 6 ergibt also sin δ = sin α sin δ sin π = sin α, 2 F Q δ Q 26-3

4 und wir haben sin δ = sin δ sin α. Schreiben wir jetzt tan δ = so ergibt sich sin δ 1 sin 2 δ = sin δ sin α 1 sin 2 δ sin 2 α = sin δ 1 sin 2 α sin2 δ = sin δ cot 2 α + 1 sin 2 δ = ( T 1 = T 1 (ϕ, α = 24 π arccos tan ϕ sin δ cot 2 α + cos 2 δ und für die korrigierte Tageslänge ergibt sich T 2 = T 2 (ϕ, α = T 1 (ϕ, α cos2 ϕ sin 2 δ sin 2 α. sin δ cot 2 α + cos 2 δ, Für die weiteren Rechnungen ist es bequemer anstelle von α den Winkel ω von der Wintersonnenwende zu Q zu verwenden, also α = ω π/2. Dann werden ( T 1 = T 1 (ϕ, ω = 24 π arccos tan ϕ sin δ, tan 2 ω + cos 2 δ T 2 = T 2 (ϕ, ω = T cos2 ϕ sin 2 δ cos 2 ω. Nehme wir als eine erste noch recht ungenaue Näherung an, dass die Sonne die Erde mit gleichbleibender Winkelgeschwindigkeit umläuft, so sind der Winkel ω und die Zeit seit der Wintersonnenwende proportional. Zur Bestimmung der Proportionalinätskonstante beachte das einem vollen Umlauf von ω der Winkel 2π entspricht und das dieser ein Jahr benötigt. Als ein tropisches Jahr T t bezeichnet man die Dauer zwischen zwei aufeinanderfolgenden Wintersonnenwenden beziehungsweise gleichwertig zwei aufeinanderfolgenden Frühlingspunkten. In Tagen ist die Dauer eines tropischen Jahres T t = 365, Ist also N die Zeit seit der Wintersonnenwende in Tagen, so wird ω = ω 1 (N = 2π T t N und als Dauer des Tages N bei Breitengrad ϕ ergibt sich in Stunden T 1 = T 1 (ϕ, N = 24 π arccos tan ϕ sin δ (. tan 2 2π T t N + cos 2 δ Diese Formel ist allerdings noch recht ungenau, für den Breitenkreis durch Kiel weicht sie bis über eine Viertelstunde von der wirklichen Tageslänge ab. Dies liegt im wesentlichen daran das die Winkelgeschwindigkeit der Erde um die Sonne eben nicht konstant 26-4

5 ist, um jetzt weiter zu kommen müssen wir uns das System aus Erde und Sonne etwas genauer anschauen. Das erste Keplersche Gesetz besagt das die Erde sich auf einer Ellipse e um die Sonne bewegt und das die Sonne einer der beiden Brennpunkte dieser Ellipse ist. Bezeichne S die Sonne und Z den Mittelpunkt der beiden Brennpunkte von e. Die lannge Halbachse a und die kurze Halbachse b von e sind bekannt und haben die Werte a = km und b = km. E r A Frühlingspunkt, 21.3 Z φ S P b Sommersonnenwende 21.6 Aphel, 4.7 Z a S Perihel, 4.1 Wintersonnenwende l Herbstpunkt, 23.9 Die Ellipse e Situation beim Perihel Gemäß der Formeln aus 4.4 ergeben sich die numerische Exzentrität ɛ und der Parameter p von e als ɛ = a2 b 2 a =, und p = b2 a = ( 2 b a = (1 ɛ 2 a = km. a Den sonnennächsten Punkt auf e nennt man das Perihel, in diesem Punkt liegt der kleinste Abstand zwischen Erde und Sonne vor. Nach 4.Satz 6 ist ZS = a 2 b 2 = ɛ a also ist SP = a ZS = (1 ɛa = km der kleinste Abstand zwischen Erde und Sonne. Den sonnenfernsten Punkt auf e nennen wir dagegen das Aphel P, sein Abstand zu S SP = 2a SP = (1 + ɛa = km ist der größte Abstand der Erde zur Sonne. Die Wintersonnenwende ist am 21.12, dreizehn Tage später am 4.1 erreicht die Erde das Perihel, am 21.3 sind dann der Frühlingspunkt und am 21.6 die Sommersonnenwende erreicht. Wieder dreizehn Tage später ist die Erde am 4.7 im Aphel und schließlich kommt sie am 23.9 am Herbstpunkt an. Bezeichne nun E die Erde und seien r := SE der aktuelle Abstand der Erde zur Sonne und φ der Winkel zwischen SP und SE. Nach 4.Satz 6 gehört zum Brennpunkt 26-5

6 S die auf der langen Halbachse von e senkrechte Leitgerade l mit d(s, l = p/ɛ und es gilt r = SE = ɛ d(e, l. Ist also E der Lotfüßpunkt von E auf die lange Halbachse von e, so lesen wir im Dreieck SEE cos φ = SE SE = SE r ab und erhalten also ist schließlich r = ɛ d(e, l = ɛ d(e, l = ɛ (d(s, l r cos φ = p rɛ cos φ r = p 1 + ɛ cos φ. Damit kennen wir den Zusammenhang des Perihelwinkels φ mit dem Abstand r zwischen Erde und Sonne. Um diese beiden mit der Zeit in Verbindung zu bringen benötigen wir das zweite Keplersche Gesetz. Nach diesem überstreicht der Bahnvektor von der Sonne zur Erde in gleichen Zeiten gleiche Flächen, die Fläche A die von SP, SE und dem Bogen von P nach E auf e berandet wird ist also proportional zur Zeit t seit dem Periheldurchgang. Bei einem vollen Umlauf wird die Fläche A zur Fläche der Ellipse A und wie in 4.4 gesehen ist diese gleich A(e = πab = πa 2 1 ɛ 2. Die Dauer eines vollständigen Umlaufs der Erde um die Sonne ist ein sognanntes siderisches Jahr, in Tagen gemessen ist dieses T s = 365, Tage. Beachte das das siderische Jahr etwas länger als das tropische Jahr ist wir haben also T s > T t, dies liegt daran das sich der Frühlingspunkt innerhalb eines Jahres etwas verschiebt und zwar entgegengesetzt zur Rotation der Erde um ihre Achse. Damit hängen A und t über die Formel A = ct mit c = πa2 1 ɛ 2 T s zusammen. Andererseits ist und wir erhalten A = p/(1+ɛ cos ψ r dr dψ = p2 2 dψ (1 + ɛ cos ψ 2 = 2c p 2 t. dψ (1 + ɛ cos ψ 2 Das links stehende Integral kann man exakt berechnen, die entstehende Formel ist allerdings etwas unangenehm. Daher verwenden wir die Tatsache das die numerische Exzentrität ɛ klein ist, um die Näherungen (1 + ɛ cos ψ 2 = 1 + 2ɛ cos ψ + ɛ 2 cos 2 ψ 1 + 2ɛ cos ψ 26-6

7 und 1 (1 + ɛ cos ψ 1 2ɛ cos ψ 2 (1 + 2ɛ cos ψ(1 2ɛ cos ψ = 1 2ɛ cos ψ 1 4ɛ 2 cos 2 ψ 1 2ɛ cos ψ sowie schließlich 2c p 2 t = dψ (1 + ɛ cos ψ 2 1 2ɛ cos ψ dψ = φ 2ɛ sin φ durchzuführen. Um φ durch t auszudrücken muss diese Gleichung nach φ aufgelöst werden. Exakt ist dies nicht vernünftig möglich, daher wird dies wieder nur näherungsweise durchgeführt. Da der Periheldurchgang dreizehn Tage nach der Wintersonnenwende ist haben wir ausßerdem t = N 13 und es ergibt sich schließlich ω = ω 2 (N = 2π T s N + 2ɛ 1 2ɛ sin ( 2π T s (N 13 Setzen wir dies in die Formel für T 2 = T 2 (ϕ, ω ein so ergibt sich die Tageslänge T 2 = T 2 (ϕ, N in Stunden. Umgeschrieben auf Minuten ergibt sich die Tageslänge in Kiel als Datum T 1 T 2 Beobachtete Tageslänge

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.25 2017/07/13 11:11:42 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten N N b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.8 2015/07/09 15:09:47 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.17 016/07/1 16:3:40 hk Exp $ 5 Sphärische Trigonometrie 5.5 Geographische Koordinaten Wir beschäftigen uns gerade mit der Berechnung des Weges zwischen zwei in geographischen Koordinaten

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v.5 03/08/3 7::33 hk Exp $ 5 Sphärische Trigonometrie 5.4 Geographische Koordinaten In der letzten Sitzung hatten wir die geographischen Koordinaten eines Punkts P auf einer Kugel, beziehungsweise

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.23 2017/07/10 14:46:08 hk Exp $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung In der letzten Sitzung haben wir begonnen uns mit sphärischer Trigonometrie zu beschäftigen.

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits

Mehr

Die Regiomontanus-Sonnenuhr

Die Regiomontanus-Sonnenuhr Die Regiomontanus-Sonnenuhr Von Günther Zivny Die Regiomontanus-Sonnenuhr gehört zur Gruppe der Höhensonnenuhren. Die Sonnenhöhe, also der Winkel zwischen Horizont und Sonne, ändert sich im aufe des Tages.

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.5 2013/08/13 17:21:33 hk Exp $ 5 Sphärische Trigonometrie m Ende der letzten Sitzung hatten wir mit der Untersuchung sphärischer Dreiecke begonnen. Gegeben war eine Sphäre K, oder

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/29 12:18:47 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/29 12:18:47 hk Exp $ $Id: quadratisch.tex,v 1.13 15/6/9 1:18:47 hk Ex $ 4 Kegelschnitte 4. Die Parabel Wir sind gerade dabei die Leitgeraden und Brennunkte einer Parabel zu bestimmen. Ist P eine Parabel, so nannten wir ein

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/18 15:11:12 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/18 15:11:12 hk Exp $ Mathematische Probleme, SS 25 Donnerstag 8.6 $Id: quadratisch.tex,v. 25/6/8 5::2 hk Exp $ 4 Kegelschnitte Am Ende der letzten Sitzung haben wir mit der Diskussion der Kegelschnitte begonnen. Gegeben sind

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 III.1 Exzentrizität der Erdumlaufbahn

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 Exzentrizität der Erdumlaufbahn = 0,0167

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.15 2016/07/08 13:57:53 hk Exp $ 5 Sphärische Trigonometrie 5.3 Kleinkreise als sphärische Kreise In der letzten Sitzung hatten wir eingesehen das die sphärischen Kreise auf einer Sphäre

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/ Mittwoch 8. $Id: transform.tex,v.8 //4 :9: hk Exp $ Koordinatentransformationen. Lineare Koordinatentransformationen Wir überlegen uns dies zunächst im Spezialfall

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6 $Id: dreieck.tex,v 1.35 017/06/15 13:19:44 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck In diesem Abschnitt wollen wir die sogenannten speziellen Punkte im Dreieck, also den Schwerpunkt, die

Mehr

Astronomische Beobachtungen und Weltbilder

Astronomische Beobachtungen und Weltbilder Astronomische Beobachtungen und Weltbilder Beobachtet man den Himmel (der Nordhalbkugel) über einen längeren Zeitraum, so lassen sich folgende Veränderungen feststellen: 1. Die Fixsterne drehen sich einmal

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Computational Astrophysics 1. Kapitel: Sonnensystem

Computational Astrophysics 1. Kapitel: Sonnensystem Computational Astrophysics 1. Kapitel: Sonnensystem Wilhelm Kley Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2011 W. Kley: Computational Astrophysics

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $ $Id: dreieck.tex,v 1.5 016/04/6 17:9:37 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Nachdem wir in der letzten Sitzung den Schwerpunkt S m eines Dreiecks = als den Schnittpunkt der Seitenhalbierenden,

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen.

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. 10.1. Ebene Kurven Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. Parameterdarstellungen einer Kurve sind stetige

Mehr

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $ $Id: dreieck.tex,v 1.61 019/05/07 10:51:36 hk Exp $ 1 Dreiecke 1.7 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Astronomische Ortsbestimmung mit dem Sextanten

Astronomische Ortsbestimmung mit dem Sextanten Astronomische Ortsbestimmung mit dem Sextanten Der Sextant Die einfachste Art seine Position zu bestimmen ist die Mittagsmethode. Dabei wird die Sonnenhöhe zur Mittagszeit gemessen. Sie hat den Vorteil,

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Koordinatensysteme der Erde

Koordinatensysteme der Erde Koordinatensysteme der Erde Es gibt verschiedene Arten, die Position eines Punktes auf der Oberfläche einer Kugel (manchmal auch Sphäre genannt) darzustellen, jede hat ihre Vor-und Nachteile und ist für

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

8 Euklidische Vektorräume und Fourierreihen

8 Euklidische Vektorräume und Fourierreihen Mathematik für Ingenieure II, SS 9 Dienstag 7.7 $Id: fourier.te,v 1.6 9/7/7 13:: hk Ep $ $Id: diff.te,v 1. 9/7/7 16:13:53 hk Ep $ 8 Euklidische Vektorräume und Fourierreihen 8.4 Anwendungen auf Differentialgleichungen

Mehr

SIS Vortragsreihe. Astronomische Koordinatensysteme

SIS Vortragsreihe. Astronomische Koordinatensysteme SIS Vortragsreihe Astronomische Koordinatensysteme Das Himmelsgewölbe Zur Vereinfachung stellen wir uns das Himmelsgewölbe als hohle Kugel vor. Die Fix-Sterne sind an dieser Kugel befestigt oder einfach

Mehr

Mathematische Probleme, SS 2013 Montag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ x 2 + y 2 = tan 2 (β)z 2.

Mathematische Probleme, SS 2013 Montag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ x 2 + y 2 = tan 2 (β)z 2. $Id: quadratisch.tex,v 1.8 2013/08/12 09:49:46 hk Exp $ 4 Kegelschnitte Wir hatten am Ende der letzten Sitzung begonnen die sogenannten Kegelschnitte zu besprechen. Gegeben sei ein Kegel K mit halben Öffnungswinkel

Mehr

Klassische Theoretische Physik II

Klassische Theoretische Physik II SoSe 2019 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. M. Jaquier, Dr. R. Rietkerk Übungsblatt 6 Ausgabe: 31.05 Abgabe: 07.06 @ 09:45 Uhr Besprechung: 11.06 Auf Lösungen

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Projekt der Klasse 4l MN Frühlingssemester 2008

Projekt der Klasse 4l MN Frühlingssemester 2008 Projekt der Klasse 4l MN Frühlingssemester 2008 Alexander Mikos Cedric Bergande Dario Goglio Konrad Marthaler Marc Inhelder Olivier Kastenhofer Stefan Kettner Leitung: Jan-Peter Trepp Seite 2 von 13 Inhaltsverzeichnis

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Unterrichtsprojekte Natur und Technik. Der Globus auf dem Schulhof, der begreifbar macht, warum es Sommer und Winter gibt

Unterrichtsprojekte Natur und Technik. Der Globus auf dem Schulhof, der begreifbar macht, warum es Sommer und Winter gibt Unterrichtsprojekte Natur und Technik Vinnhorster Weg 2 30419 Hannover Telefon: 0511-168-47665/7 Fax: 0511-168-47352 E-mail: schulbiologiezentrum@hannover-stadt.de Internet: www.schulbiologiezentrum-hannover.de

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L.

Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L. Kugeldreieck 1. Berechnen Sie die Fläche des vom Äquator, vom Nullmeridian und dem Längenkreis durch den angegebenen Ort begrenzten Kugeldreiecks. Geben Sie den sphärischen Exzeß des Dreiecks im Grad-

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Wann ist Frühlingsfest?

Wann ist Frühlingsfest? Wann ist Frühlingsfest? Erich Hartmann 22. Februar 2006 TU Darmstadt, Fachbereich Mathematik Schlossgartenstr. 7, D-64289 Darmstadt, Germany e-mail: ehartmann@mathematik.tu-darmstadt.de Das Frühlingsfest

Mehr

Astronomische Koordinatensysteme

Astronomische Koordinatensysteme Übung für LA Physik Astronomische Koordinatensysteme Sergei A.Klioner Lohrmann-Observatorium, Technische Universität Dresden Kartesische und sphärische Koordinaten Kartesisches Koordinatensystem und sphärische

Mehr

Doppler-Effekt und Bahngeschwindigkeit der Erde

Doppler-Effekt und Bahngeschwindigkeit der Erde Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Doppler-Effekt und Bahngeschwindigkeit der Erde 1 Einleitung Nimmt man im Laufe eines Jahres

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $ $Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen $Id: integral.tex,v.0 009//0 :4:35 hk Exp $ Integrale von Funktionen in mehreren Variablen.3 Integration über Jordan-meßbare Mengen Als ein zweites Beispiel der Integration über Jordan-meßbare Mengen wollen

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Berechnung der Zeitgleichung

Berechnung der Zeitgleichung Berechnung der Zeitgleichung Um eine Sonnenuhr berechnen zu können, muss man zu jedem Zeitpunkt den infallswinkel der Sonne relativ zur Äquatorebene (= Deklination δ) sowie den Winkel, um den sich die

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/1 Montag 3.11 $Id: transform.tex,v 1.5 9/11/3 16:9: hk Exp $ Koordinatentransformationen. ie Transformationsformel In der letzten Sitzung hatten wir die Transformationsformel

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Trigonometrie Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 29. Januar 2012 Inhaltsverzeichnis 3 Trigonometrie 1 3.1 Warum Trigonometrie........................

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

r 1 Abb. 1: Schlinge um Kreis im Abstand 1

r 1 Abb. 1: Schlinge um Kreis im Abstand 1 Hans Walser, [20130119a] Schlinge um Kreis Anregung: R. S., Z. 1 Die Uralt-Aufgabe Um einen Kreis mit Radius r wird eine Schlinge im Abstand 1 gelegt (Abb. 1). Wie lang ist die Schlinge im Vergleich zum

Mehr

Astronavigation

Astronavigation Astronavigation 1. Lektion: Nordsternbreite Der Nordstern steht genau über dem Nordpol (stimmt nicht, ich weiß, aber die Differenz ignorieren wir zunächst mal). Mit einem Sextanten misst man den Winkel

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel PD Dr. Roger Labahn {konrad.engel, roger.labahn}@uni-rostock.de.09.

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

10.3. Krümmung ebener Kurven

10.3. Krümmung ebener Kurven 0.3. Krümmung ebener Kurven Jeder der einmal beim Durchfahren einer Kurve bremsen oder beschleunigen mußte hat im wahrsten Sinne des Wortes erfahren daß die lokale Krümmung einen ganz wesentlichen Einfluß

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt Eine Methode zur Positionsberechnung aus Relativmessungen Von Eckhardt Schön, Erfurt Mit 4 Abbildungen Die Bewegung der Sterne und Planeten vollzieht sich für einen irdischen Beobachter scheinbar an einer

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

$Id: integral.tex,v /05/12 16:36:04 hk Exp $ arctan x + + 4n n 2 2x + a. x 2 + ax + b Φ n 1. A n 1, Φ n (x) = xn 1 2n

$Id: integral.tex,v /05/12 16:36:04 hk Exp $ arctan x + + 4n n 2 2x + a. x 2 + ax + b Φ n 1. A n 1, Φ n (x) = xn 1 2n $Id: integral.te,v 1.9 9/5/1 16:36:4 hk Ep $ Integralrechnung.4 Integration rationaler Funktionen Am Ende der letzten Vorlesung hatten wir die Formel + a + b = 4n A n 1 n n arctan + + 4n 1 n 1 a + a +

Mehr

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel Die Zeitgleichung Joachim Gripp, Lindau bei Kiel Einleitung Den meisten Sonnenuhr- Freunden ist die Zeitgleichung gut bekannt. Sie ist als Unterschied zwischen der von einer Sonnenuhr angezeigten Sonnenzeit

Mehr

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März Unser Sonnensystem Prof. Dr. Christina Birkenhake christina@birkenhake.net http://christina.birkenhake.net 8. März 2010 Heliozentrisches Weltbild des Kopernikus Ellipsen überspringen Ellipsen und Planetenbahnen

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

Die Zeitgleichung. 12 Uhr

Die Zeitgleichung. 12 Uhr Die Zeitgleichung Sonnenuhren zeigen gegenüber Normalzeituhren periodische Gangabweichungen. Sie gehen in gewissen Phasen des Jahres gegenüber der Normalzeit vor oder nach. Im Laufe des Jahres gleicht

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

1. Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (c) A B = A B und A B = A B.

1. Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (c) A B = A B und A B = A B. . Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (a) (A B) C = (A C) (B C) und (A B) C = (A C) (B C). (b) A (A B) = A und A (A B) = A. (c) (A B) = A B

Mehr

Fragen zu Kapitel III Seite 1 III

Fragen zu Kapitel III Seite 1 III Fragen zu Kapitel III Seite 1 III Grundbegriffe der klassischen Mechanik Fragen 3.1 bis 3.8 Zur Beantwortung der Fragen benötigen Sie folgende Daten Masse der Erde 5,974 10 4 kg Erdradius 6371 km Erdbeschleunigung

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Klassenarbeit - Die Erde

Klassenarbeit - Die Erde Klassenarbeit - Die Erde Erdrotation; Gradnetz; Erdbahn; Jahreszeiten; Oberflächenformen; Vegetationsgebiete 5. Klasse / Geografie Aufgabe 1 Erläutere die Erdrotation und den damit entstehenden Effekt.

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de

Mehr

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/29 15:15:02 hk Exp $ $Id: trig.tex,v /04/29 15:15:28 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/29 15:15:02 hk Exp $ $Id: trig.tex,v /04/29 15:15:28 hk Exp hk $ $Id: dreieck.tex,v 1.11 2013/04/29 15:15:02 hk Exp $ $Id: trig.tex,v 1.2 2013/04/29 15:15:28 hk Exp hk $ 1 Dreiecke 1.6 Einige Sätze über Kreise m Ende der letzten Sitzung hatten wir den Feuerbachkreis

Mehr

ASV Astroseminar 2003

ASV Astroseminar 2003 Astronavigation nicht für Prüfungen (C-Schein, SHS) sondern zum Vergnügen. Nichts auswendig lernen, sondern Hintergründe verstehen Nur Verfahren, die auf Sportbooten anwendbar sind Keine HO-Tafeln heutzutage

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 4

Grundlagen der Physik 1 Lösung zu Übungsblatt 4 Grundlagen der Physik Lösung zu Übungsblatt 4 Daniel Weiss 3. November 9 Inhaltsverzeichnis Aufgabe - Elektron auf Kreisbahn a) Geschwindigkeit des Elektrons.......................... b) Energie des Elektrons...............................

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Gewußt...? Kap. 1: Sonnenstand. ... wieviel Handspannen die Sonne im Winter mittags über dem Horizont steht?

Gewußt...? Kap. 1: Sonnenstand. ... wieviel Handspannen die Sonne im Winter mittags über dem Horizont steht? Gewußt...? In diesem Dokument sind einige Besonderheiten im jahreszeitlichen und örtlichen Verlauf der Sonne zusammengestellt und aufgrund der astronomischen Zusammenhänge erklärt. Die entsprechenden Daten,

Mehr

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 2 Aufgabe ) a) Berechne für alle natürlichen Zahlen n N das Integral e nx ln(x)dx. Mit Hilfe der partiellen Integration für f (x) = nx, somit f(x)

Mehr

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve.

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve. .. Skalarprodukt Kraftvektoren treten bei vielen physikalisch-technischen Problemen auf; sie greifen an einem Punkt in verschiedenen Richtungen an. Die bekannte Formel Arbeit = Kraft mal Weg muß man dann

Mehr

Orientierung am Himmel

Orientierung am Himmel Astronomie im Chiemgau e.v. www.astronomie-im-chiemgau.de Vortragsreihe Einführung in die Astronomie der VHS Haag i. Obb., Traunreut und Trostberg Orientierung am Himmel Himmelspole, Himmelsäquator und

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.19 217/5/11 12:3:56 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir eine metrische Form des Strahlensatzes hergeleiten,

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr