Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel 2: Zufallsgröÿen und ihre Verteilungen

Größe: px
Ab Seite anzeigen:

Download "Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel 2: Zufallsgröÿen und ihre Verteilungen"

Transkript

1 Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiÿ Sommersemester 08 Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel : Zufallsgröÿen und ihre Verteilungen. Bei einer Klausur mit maximal 00 zu erreichenden Punkten seien im Ergebnis die erreichten Punktzahlen näherungsweise normalverteilt mit µ = 60 Punkte und σ = 0 Punkte. (a) Zum Bestehen der Klausur sind 50 Punkte erforderlich. Bestimmen Sie den Anteil der Studenten, die diese Klausur bestehen. (b) Die Note gut wird vergeben für Punktzahlen von 80 bis 95. Ermitteln Sie den Anteil der Studenten mit der Note gut. (c) Auf welchen Wert müÿte die zum Bestehen nötige Mindestpunktzahl festgelegt werden, damit mindestens 90% der Studenten bestehen.. Die Reiÿfestigkeit von Kettengliedern sei normalverteilt mit σ = 5 kg. Der Erwartungswert µ soll bei unveränderter Varianz durch Änderung der Materialeigenschaften so beeinuÿt werden, daÿ höchstens 3% der Kettenglieder eine Reiÿfestigkeit von weniger als 50 kg haben. Welche mittlere Reiÿfestigkeit benötigt man dafür? 3. Berechnen Sie die Quantile zum Niveau 0,95 und 0,0 der Normalverteilung N(00, 9).. Die Dicke von Balken sei näherungsweise normalverteilt mit Erwartungswert 5 cm und einer Standardabweichung von 0,5 cm. (a) Wie hoch ist der Anteil der Balken, die eine Dicke von mindestens,73 cm haben? (b) Es werden drei Balken aufeinander gelegt. Mit welcher Wahrscheinlichkeit ist dieser Stapel höher als 77 cm? (c) Wieviele Balken können in einen Container mit einer Höhe von 3 m gestapelt werden mit einer Sicherheit von 95%? 5. Eine Zufallsgröÿe X nimmt die Werte 0,,, 0, 0 mit folgenden Wahrscheinlichkeiten an: x i P (X = x i ) p (a) Bestimmen Sie p. 6 p 6 (b) Mit welcher Wahrscheinlichkeit ist X > 5?. (c) Berechnen Sie Erwartungswert und Standardabweichung der Zufallsgröÿe X. (d) Geben Sie die Verteilungsfunktion F X von X an.

2 6. Es soll die Rakete einer neuen Raummission gestartet werden. Nach maximal 3 Startversuchen wird die Mission abgebrochen. Die Wahrscheinlichkeit für einen erfolgreichen Start beträgt 0,8, die einzelnen Startversuche erfolgen unabhängig voneinander. Die Kosten für den ersten Start betragen 3 Mio $, für jeden weiteren jeweils Mio $. Bei einem erfolgreichen Start bringt die Mission einen Erlös von 5 Mio $ aufgrund der Informationen aus den durchgeführten Experimenten. Die Zufallsgröÿe X beschreibe den Nettogewinn in Mio $. Bestimmen Sie Verteilung, Erwartungswert und Varianz von X. 7. In einem Spiel werden Münzen geworfen. Fällt dabei mal Wappen, dann erhält der Spieler Euro Gewinn und bei 3 mal Wappen Euro. Weitere Gewinne gibt es nicht. Wie ist der Einsatz pro Wurf (mit Münzen) für ein faires Spiel zu wählen? 8. Es wird einmal mit zwei idealen Würfeln gewürfelt. Die Zufallsgröÿe X beschreibe den Betrag der Dierenz der Augenzahlen. Bestimmen Sie den Wertebereich, die Verteilung und die Verteilungsfunktion von X. 9. In einem Test seien zu jeder der 5 Fragen mögliche Antworten angegeben. (a) Es sei bekannt, daÿ es zu jeder Frage genau eine richtige Antwort gibt. Mit welcher Wahrscheinlichkeit besteht man dann den Test ohne jegliche Vorkenntnisse, wenn mindestens drei Fragen richtig beantwortet sein müssen. (b) Wie ändert sich diese Wahrscheinlichkeit, wenn die Anzahl der richtigen Antworten unbekannt ist. D.h. von den jeweils vier möglichen Antworten für eine Frage können eine bis maximal alle vier richtig sein. 0. Eine Fluggesellschaft hat aus bisherigen Daten ermittelt, daÿ etwa % der reservierten Flüge nicht angetreten werden. Daher plant sie zukünftig die Überbuchung von Maschinen mit 0 Sitzplätzen um Reservierungen. Mit welcher Wahrscheinlichkeit wird dann noch jeder ankommende Fluggast mit der gebuchten Maschine befördert?. Die Anzahl der Druckfehler auf einer Buchseite kann als poissonverteilt angenommen werden (seltenes Ereignis). Ein Lektor hat im Mittel,5 Fehler pro Seite gefunden. (a) Mit welcher Wahrscheinlichkeit ndet man auf einer Seite keinen Druckfehler? (b) Mit welcher Wahrscheinlichkeit ist die Anzahl der Druckfehler auf einer Seite gröÿer? (c) Ermitteln Sie die Wahrscheinlichkeit, daÿ auf Seiten mindestens Fehler sind.. In einer Straÿe werden an einem Punkt die vorbeifahrenden Fahrzeuge gezählt. Die Anzahl pro Minute ist poissonverteilt. In Richtung A sind es, Fahrzeuge im Mittel und in Richtung B 0,8 pro Minute. Die Anzahl der passierenden Fahrzeuge in beiden Richtungen wird als unabhängig angenommen. Wie groÿ ist die Wahrscheinlichkeit, daÿ in einem Zeitintervall von 3 Minuten mindestens Fahrzeuge an diesem Punkt vorbeifahren. 3. Beim Mensch-ärgere-Dich-nicht Spiel darf man den ersten Zug erst machen, nachdem man eine Sechs gewürfelt hat. Wie groÿ ist die Wahrscheinlichkeit, daÿ man mehr als drei Würfe machen muÿ, um beginnen zu können? Wieviele Würfe braucht man im Mittel um die erste Sechs zu erhalten?

3 { x : a < x < 3. Gegeben sei die Funktion f X (x) =. 0 : sonst Wie groÿ muÿ a R sein, damit f X (x) die Dichtefunktion einer Zufallsgröÿe X ist? Bestimmen Sie die Verteilungsfunktion F X (x) und den Erwartungswert EX von X. Wie groÿ sind die Wahrscheinlichkeiten P (X >, 5) und P (, 5 < X <, 5)? 5. Eine physikalische Meÿgröÿe wird n-mal gemessen. Der Meÿvorgang ist fehlerbehaftet, die Meÿwerte können als Realisierungen von N(µ, σ )-verteilten Zufallsgröÿen X i, i =,..., n aufgefaÿt werden. Die Standardabweichung σ ist ein Maÿ für die Genauigkeit des Meÿvorgangs, sie betrage Einheit. Als Schätzung für µ wird das arithmetische Mittel X n = n (X X n ) verwendet. Wie groÿ muÿ n sein, damit die Schätzung X n nur 0,5 Einheiten von µ abweicht mit einer Wahrscheinlichkeit von mindestens 0,95? 6. Die exponentialverteilte Zufallsgröÿe X mit Parameter λ = beschreibe die Lebensdauer eines Gerätes. Berechnen Sie den Median von X und interpretieren Sie den Wert. 7. Die Zeit zwischen dem Eintreen von zwei Telefonanrufen an einem Anschluÿ sei exponential verteilt mit λ = 0, 5 (in Stunden). (a) Mit welcher Wahrscheinlichkeit trit länger als eine Stunde (eine halbe Stunde) kein Anruf ein? (b) Es sei bereits 5 Minuten kein Anruf eingetroen. Wie groÿ ist die Wahrscheinlichkeit, daÿ auch in der folgenden halben Stunde kein Anruf eintrit? 8. Die Zufallsgröÿe X sei χ -verteilt mit 0 Freiheitsgraden. (a) Bestimmen Sie die Wahrscheinlichkeit, daÿ die Werte von X im Intervall [3, 5 ; 0, 8] liegen. (b) Ermitteln Sie die Stelle x, so daÿ 99 % der Werte von X kleiner als x sind. 9. Die Zufallsgröÿe X sei t-verteilt mit 30 Freiheitsgraden. Bestimmen Sie t und t so, daÿ gilt P (X t ) = 0, 9 und P ( X > t ) = 0,. 3

4 Lösungen:. (a) P (X 50) = 0, 83 (b) P (80 X 95) = 0, 05 (c) P (X x) = 0, 9 x = 60 0, 855 = 7, 85, d.h. Mindestpunktzahl ist 7. P (X 50) = 0, 03 µ = , 8808 = 59, 00 kg 3. x 0,95 = 0, 936 x 0,0 = 93, 00. (a) P (X, 73) = 0, 705 (b) Y = X + X + X 3 N(75 ; 0, 75) P (Y 77) = 0, 00 (c) Z n = X X n N(n 5 ; n 0, 5) mit P (Z n 300) = 0, 95 ergibt sich n = 5. (a) p = (b) P (X > 5) = 5 (c) EX = 6, 875 und V arx = 7, (d) Verteilungsfunktion: 0 : x < 0 F (x) = 8 : 0 x < 5 8 : x < 6 : x < 0 6 : 0 x < 0 : 0 x 6. X - Nettogewinn (abhängig, ob. oder. oder 3. Start erfolgreich ist oder kein Start gelingt) x Verteilung von X: i 0-5 P (X = x i ) 0,8 0,6 0,03 0,008 EX =, 7 Mio $ und V arx = 0, 606 (Mio $) 7. X - Gewinn, es ist P (X = ) =, P (X = ) =, P (X = 0) = EX = 0, 75 Euro Somit beträgt der Einsatz für ein faires Spiel 0,75 Euro. 8. X - Betrag der Dierenz der Augenzahlen beim Würfeln mit zwei Würfeln. x Verteilung von X: i P (X = x i ) Verteilungsfunktion: 0 : x < 0 F (x) = 6 : 0 x < 6 : x < : x < 3 30 : 3 x < 3 : x < 5 : 5 x 9. (a) X - Anzahl richtige Antworten X B(5, ) P (X 3) = P (X = 3) + P (X = ) + P (X = 5) = 0, 035 (b) Y - Anzahl richtige Antworten Y B(5, ) P (Y 3) = P (Y = 3) + P (Y = ) + P (Y = 5) = 0,

5 0. X - Anzahl Fluggäste, die den Flug antreten X B(; 0, 96) P (X 0) = (P (X = ) + P (X = ) + P (X = 3) + P (X = )) = 0, X - Anzahl Druckfehler pro Seite X π(, 5) (a) P (X = 0) = 0, 3 (b) P (X > ) = (P (X = 0) + P (X = ) + P (X = )) = 0, 9 Y - Anzahl Druckfehler auf Seiten Y π(6) (c) P (Y ) = (P (Y = 0) + P (Y = )) = 0, 986. X A π(, ) und X B π(0, 8) Z - Anzahl Fahrzeuge in beiden Richtungen innerhalb von 3 Minuten Z π(3(, + 0, 8)) = π(6) P (Z ) = P (Z < ) = 0, X - Anzahl Würfe bis zur ersten 6 geometrische Verteilung mit p = 6 P (X > 3) = P (X 3) = 0, 5787 und EX = 6. a = weil 3 x dx = Verteilungsfunktion F X : für x [, 3] gilt F X (x) = x t dt = (x ) EX = 7 3 P (X >, 5) = F X (, 5) = 0, 9375, P (, 5 < X <, 5) = F X (, 5) F X (, 5) = 0, 5 5. X n = n (X X n ) N(µ, n ), wenn X i N(µ, ) für i =,..., n P (µ 0, 5 X µ + 0, 5) = 0, 95 n = 5, 6 d.h.für die gewünschte Genauigkeit sind mindestens 6 Messungen nötig. 6. X - Lebensdauer eines Gerätes X exp() Median (Zentralwert): P (X x 0,5 ) = F X (x 0,5 ) = 0, 5 x 0,5 = ln(0, 5) = 0, X - Pausenzeit zwischen zwei Anrufen (in Stunden) X exp(0, 5) (a) P (X > ) = e 0,5 = 0, 6065 und P (X > 0, 5) = e 0,5 = 0, 779 (b) P (X > ( + ) X > ) = P (X > ) = 0, X - χ -verteilt mit 0 Freiheitsgraden (a) P (3, 5 X 0, 8) = F X (0, 8) F X (3, 5) = 0, 95 (b) P (X x) = 0, 99 x = χ 0,99;0 = 3, 9. X - t-verteilt mit 30 Freiheitsgraden P (X t ) = 0, 9 t = t 0,9;30 =, 3 P ( X > t ) = 0, P (X > t ) = 0, 05 t = t 0,95,30 =, 70 5

Mathematik III für MB und ME

Mathematik III für MB und ME Mathematik III für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Sommersemester 2017 Übungsaufgaben Serie 2: Statistik 1 Bei 20 Streichholzschachteln wird jeweils die Anzahl der darin

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Stochastik Musterlösung 4

Stochastik Musterlösung 4 ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale

Mehr

4. Übungsserie: Stetige Zufallsgrößen 8 < ax 2 =100 0 < x < sonst

4. Übungsserie: Stetige Zufallsgrößen 8 < ax 2 =100 0 < x < sonst Stochastik f ur ET SS Juliane.Schuetze@fh-jena.de 4. Übungsserie: Stetige Zufallsgrößen a =. Es sei f() = a( 3) =4 3 : sonst a) Bestimmen Sie a so, dass f eine Verteilungsdichte ist. b) Bestimmen Sie die

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Statistik (Ch/Ph) Schwerpunkte und Aufgaben

Statistik (Ch/Ph) Schwerpunkte und Aufgaben 1 Kombinatorik 1.1 Aufgaben Statistik (Ch/Ph) Schwerpunkte und Aufgaben Eine Münze wird fünfmal geworfen. Es wird notiert, ob Zahl oder Wappen erscheint. Wieviel verschiedene Versuchsprotokolle sind möglich?

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Qualität und Zuverlässigkeit - Statistik Master MB

Qualität und Zuverlässigkeit - Statistik Master MB Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiÿ Sommersemester 2014 Qualität und Zuverlässigkeit - Statistik Master MB Material zum Kapitel 1: Grundbegrie der beschreibenden Statistik Beispiel

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Statistik II für Wirtschaftswissenschaftler

Statistik II für Wirtschaftswissenschaftler Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen

Mehr

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit) Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. Juli 016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenho Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Statistik Übungen WS 2017/18

Statistik Übungen WS 2017/18 Statistik Übungen WS 2017/18 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Musterlösung zu Serie 8

Musterlösung zu Serie 8 Dr. Markus Kalisch Statistik I für Biol./Pharm. Wiss./HST) FS 15 Musterlösung zu Serie 8 1. a) Damit fx) eine Dichte ist, muss die Fläche des Dreiecks gleich 1 sein. Es muss also gelten c = 1. Daraus folgt

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie 8 Termin: 1. Juni 2007 Aufgabe

Mehr

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2 Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k = k=1 n (n + 1). 2 Aufgabe 2. (5 Punkte) Bestimmen Sie das folgende Integral mithilfe partieller

Mehr

Aufgaben zur Wiederholung

Aufgaben zur Wiederholung Fachhochschule Jena University of Applied Sciences Jena Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiÿ / Prof. Dr. H. Dathe Statistik für Business Administration SS 2012 Deskriptive Statistik

Mehr

Lösungen zu Übungsaufgaben Blatt 9

Lösungen zu Übungsaufgaben Blatt 9 Diskrete Zufallsgrößen Zu Aufgabe Die zufällige Anzahl X von Ausfällen eines Servers pro Jahr genüge folgender Verteilung: ai 0 3 4 5 6 >6 pi /0 /0 3/0 /0 /0 /0 /0 0 Ein Ausfall des Servers verursacht

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Embrechts ETH Zürich Sommer 2015 Wahrscheinlichkeit und Statistik BSc D-INFK Name: Vorname: Stud. Nr.: Das Folgende bitte nicht ausfüllen! Aufg. Summe Kontr. Pkte.-Max. 1 10 2 10 3 10 4 10

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen 6. Kontinuierliche Zufallsgrößen Definition: Eine Z. G. ξ ist absolut stetig mit (Wahrscheinlichkeits-) Dichte f : R R, wenn gilt: P ( a ξ < b ) = b a f(x) dx (a < b) allgem. Eigenschaften einer Dichte

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Größe von Unendlich. Statistik. usw. Enthält die Menge. 1. der natürlichen Zahlen N = {1, 2, 3, 4,...}

Größe von Unendlich. Statistik. usw. Enthält die Menge. 1. der natürlichen Zahlen N = {1, 2, 3, 4,...} Größe von Unendlich Enthält die Menge Statistik 1. der natürlichen Zahlen N = {1, 2, 3, 4,...} Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Sommersemester 2012 3 Wahrscheinlichkeitsrechnung

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Serie 11

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Serie 11 D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin Serie 11 1. Frau A und Herr B wollen sich treffen und verabreden sich für 16 Uhr in einem Café. Mit T A bzw. T B bezeichnen wir die

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Statistik Übungen SS 2018

Statistik Übungen SS 2018 Statistik Übungen SS 2018 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr.

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Hochschule Darmstadt Fachbereich MN Prof. Dr. Dietrich Baumgarten Darmstadt, den 9.7.2012 Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Aufgabe 1 2 3 4 5 6 Summe Note Punkte 1 Aufgabe

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Eindimensionale Zufallsvariablen

Eindimensionale Zufallsvariablen Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 7. Mai 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 5 Version: 30. April

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

Wiederholungsklausur DWT

Wiederholungsklausur DWT LÖSUNG Wiederholungsklausur DWT Sommersemester 2008 Hinweis: Alle Antworten sind zu begründen. Insbesondere sollte bei nicht-trivialen Umformungen kurz angegeben werden, weshalb diese Umformungen erlaubt

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Mit welchen Verteilungen lassen sich Lebensdauern modellieren?

Mit welchen Verteilungen lassen sich Lebensdauern modellieren? 5. Übung Aufgabe 1 Ein Prozess zur Herstellung von Flachglas im Durchschnitt 1 Verunreinigung je 5 dm 2 Glasfläche. Welche Verteilung weist die Zahl der Verunreinigungen auf einer 0,5m x 1,0 m großen Fensterscheibe

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen Materialien zur Lösung der folgenden Aufgaben: - in Übung 3 beigefügte Tabelle Wahrscheinlichkeitsverteilungen diskreter und stetiger Zufallsgrößen - Übersicht - beigefügte Tabelle spezieller stetiger

Mehr

Universität Stuttgart Fachbereich Mathematik. Klausur Statistik für Wirtschaftswissenschaftler WS 2010/11. PD Dr. J. Dippon Dipl.-Math. A.

Universität Stuttgart Fachbereich Mathematik. Klausur Statistik für Wirtschaftswissenschaftler WS 2010/11. PD Dr. J. Dippon Dipl.-Math. A. Universität Stuttgart Fachbereich Mathematik PD Dr. J. Dippon Dipl.-Math. A. Madlener Klausur Statistik für Wirtschaftswissenschaftler WS 2010/11 26. Februar 2011 VORNAME: MATRIKELNUMMER: NAME: STUDIENGANG:

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Klausur Stochastik. ME/SD/RE (Ma) (nicht zutreffendes bitte streichen)

Klausur Stochastik. ME/SD/RE (Ma) (nicht zutreffendes bitte streichen) Ernst-Abbe-Hochschule Jena FB Grundlagenwissenschaften Klausur Stochastik Tag der Prüfung: Bearbeitungszeit: Studiengang: 90 min ME/SD/RE (Ma) (nicht zutreffendes bitte streichen) Name: Matrikel-Nr.: Bitte

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert: Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte, 2, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 2 3 4 5

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Wirtschaftsstatistik-Klausur am

Wirtschaftsstatistik-Klausur am Wirtschaftsstatistik-Klausur am 0.07.017 Aufgabe 1 Ein Handy- und PC-Hersteller verfügt über ein exklusives Filialnetz von 900 Filialen. Der Gewinn (in GE) der Filialen ist in der folgenden Tabelle nach

Mehr

Serie 9, Musterlösung

Serie 9, Musterlösung WST www.adams-science.org Serie 9, Musterlösung Klasse: 4U, 4Mb, 4Eb Datum: FS 18 1. Mädchen vs. Knaben 442187 Unter 3000 in einer Klinik neugeborenen Kindern befanden sich 1578 Knaben. Testen Sie mit

Mehr

Wiederholung der Hauptklausur STATISTIK

Wiederholung der Hauptklausur STATISTIK Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine Antwort richtig ist und von denen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Dezember 2011 1 Definition Binomialverteilung Geometrische Verteilung Poissonverteilung 2 Standardisierte Verteilung

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Maathuis ETH Zürich Winter 2010 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

Übungsblatt 10 Beschreibende Statistik und Wahrscheinlichkeitsrechnung

Übungsblatt 10 Beschreibende Statistik und Wahrscheinlichkeitsrechnung Übungsblatt 10 Beschreibende Statistik und Wahrscheinlichkeitsrechnung Beschreibende Statistik: Aufgabe 10.1 Gegeben sind noch einmal die x i und Häufigkeiten n i einer Stichprobe vom Umfang n=200 aus

Mehr

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert: Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte,, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 3 4 5 6 P

Mehr