Fourieranalyse und Diskrete Cosinus Transformation (DCT)

Größe: px
Ab Seite anzeigen:

Download "Fourieranalyse und Diskrete Cosinus Transformation (DCT)"

Transkript

1 Fourieranalyse und Disrete Cosinus Transformation (DCT) Eine Ausarbeitung für den Physileistungsurs 12.2 Philipp Julian Münzel, Juni 2005 Mathematical analysis is as extensive as Nature herself Jean Baptiste Joseph Baron de Fourier, franz. Mathematier und Physier Inhalt: 1. Motivation und Einordnung 2. Fourieranalyse als Interpolationsproblem 3. Die Fourier Reihe 4. Berechnung der Fourieroeffizienten aus den Stützstellen mit Hilfe der Trapezregel 5. Auswertung der Fourierreihe an einer Stelle x 6. Auswertung der Fourieroeffizienten und Ihre Bedeutung 7. Die Begrenzung der Genauigeit durch das Sampletheorem 8. Anwendung der Fourieranalyse in der Informati 9. Quellen

2 1. Motivation und Einordnung Viele Vorgänge in Natur und Techni wiederholen sich periodisch. Es handelt sich dabei vielfach um omplexe Schwingungsvorgänge. Für die mathemtaische Analyse ist uns jedoch nur der Sonderfall der harmonischen Schwingung zugänglich, der sich mit Hilfe einer Sinusfuntion beschreiben lässt. J.B.J. Fourier zeigte aber, dass sich jede noch so omplizierte Schwingung als Summe von harmonischen Schwingungen ausdrücen lässt. Das heißt, jeder periodische Vorgang ist das Ergebnis einer Überlagerung von vielen harmonischen Einzelschwingungen. Ziel der Fourieranalyse ist es, die Gleichungen dieser Einzelschwingungen zu finden, um die Gleichung der Gesamtschwingung als Summe dieser Einzelschwingungen schreiben zu önnen. Besonders für die Austi, also die Beschreibung von Schallwellen und die sie verursachenden Schwingungen, wie etwa die Schwingung einer Geigensaite, ist die Fourieranalyse von Bedeutung, weil man mit ihr die für den Klang eines Instrumentes charateristische Verteilung der Obertöne sichtbar machen ann. Auch in der Informati hat die Fourieranalyse eine wichtige Bedeutung. Sie wird zur Speicherung von Audiodaten, zur Datenomprimierung und zur Bildompression eingesetzt. Das beannte Bildformat jpeg beruht auf der Fouriertransformation, ebenso wie das Audioomprimierungsverfahren mp3. 2. Fourieranalyse als Interpolationsproblem Sei [a,b ] R ein abgeschlossenes Intervall und f: [a,b ] R eine schwer auszuwertende stetige Funtion auf [a,b]. Weiterhin seien x 0,x 1 [a,b ] paarweise verschieden und y i =f x i i=0 1 n, dann heißen x 0 Stützstellen und y 0,...,y n Stützwerte. Gegeben sind also n+1 Paare von Werten, die etwa durch Messung oder Abtastung der zu betrachtenden Funtion f aufgenommen worden sind. Man wählt nun die einfacher auszuwertende Funtion f n x so, dass f n x i =f x i i=0 1 n. Dann nennt man die Funtion f n Interpolante zu den Stützstellen x 0. Sie stimmt an den Stützstellen mit der schwer auszuwertenden Funtion f überein. Man approximiert (interpoliert) nun die richtigen Werte der schwierigen Funtion zwischen den Stützstellen durch die einfach zu berechnenden Werte von f n. 3. Die Fourier Reihe Jede periodische Funtion ann mit einer Fourier Reihe dargestellt werden. Der Einfachheit halber wollen wir im Folgenden nur Funtionen von Schwingungen betrachten, die mit periodisch sind, d.h. f x+ =f x,x R. Dann ann f immer als unendliche Reihe der Form a f 0 x = 2 a cos x +b sin x =1 geschrieben werden. Diese Darstellung nennt man Fourier Reihe.

3 Weiterhin stellt die endliche Reihe a n f n 0 x = 2 =1 a cos x +b sin x eine Approximation an f dar. Eine solche endliche Reihe nennt man auch trigonometrisches Polynom. Hierbei ist f x =f n x +O 1, d.h. je größer n, desto besser die Approximation der n omplizierten Schwingung durch die einfach auszuwertende endliche Reihe. Die Fourieroeffizienten a und b, =1 1 n beschreiben, wie sich die Funtion aus bestimmten Frequenzanteilen zusammensetzt, d.h. welche Amplitude die Schwingungen haben, aus denen die Funtion zusammengesetzt ist. Dabei bezeichnet die Wellenzahl, das heißt ist die Frequenz der Schwingung mit der Amplitude a und die dazugehörige Periode. Der Koeffizient a 0 ist der einzige nichtperiodische Anteil und beschreibt die Versetzung der Funtion in y Richtung. 4. Berechnung der Fourier Koeffizienten aus den Stützstellen mit Hilfe der Trapezregel Die Fourieroeffizienten lassen sich berechnen mittels a f x cos x dx =0,1,...,n b f x sin x dx =1,2,...,n Da wir den Term für f(x) nicht ennen (er ist meist gar nicht geschlossen anzugeben) önnen wir sein bestimmtes Integral nur mit Hilfe numerischer Integration bestimmen. Als Approximation an dieses Integral wollen wir die Trapezregel verwenden. Wir integrieren f(x) also so, als wäre sie zwischen den Stützstellen stücweise linear. Diese Fläche önnen wir elementargeometrisch bestimmen. Sinnvollerweise nehmen wir für die Stützstellen natürlich genau die Stützstellen, an denen wir die Funtion abgetastet haben. Tasten wir die Funtion N mal ab und das der Einfachheit halber im Intervall [,], so sind unsere Stützstellen x 0 =,x j = + N j,x =. Zu diesen Stützstellen berechnen sich die n Fourieroeffizienten mithilfe der Trapezregel approximativ so: a f x cos x dx 1 N 1 2 f cos +f x 1 cos x 1...+f x N 1 cos x N f cos N 1 = 2 N j=0 und analog f x j cos + N j +O 1 N 3 weil f =f cos =cos

4 N 1 b 2 N j=0 f x j sin + N j Fassen wir zusammen, was wir gerade gemacht haben: Wir haben aus den disreten Werten y j,j= 0 1 N die Koeffizienten a, =0 1 nund b, =1 1 n gewonnen, die uns die Gewichtung der Schwingung mit der Frequenz angeben. Diese Gewinnung der Koeffizienten aus den disreten Messwerten nennt man für omplexe Stützwerte disrete Fouriertransformation (DFT). In unserem Fall haben wir nur reelle Stützwerte, daher vereinfacht sich diese Transformation zur disreten Cosinustransformation (DCT). 5. Auswertung der Fourierreihe an einer Stelle x Setzt man die Koeffizienten a,b in die Formel der endlichen Fourierreihe ein, so erhält man an den Stützstellen wieder die Stützwerte (das bezeichnet man als invers disrete Fouriertransformation oder IDFT) und an von den Stützstellen verschiedenen Stellen Näherungswerte, die die betrachtete Schwingung beschreiben. Diesen Vorgang, eine Schwingung durch die Auswertung der Fourierreihe zu beschreiben, nennt man Fouriersynthese. 6. Auswertung der Fourieroeffizienten und Ihre Bedeutung Trägt man die Beträge der Fourieroeffizienten a,b über ihre zugehörige Frequenz in einem Diagramm auf, so gibt der Ausschlag bei einer bestimmten Frequenz an, wie star der Anteil dieser Frequenz an der Schwingung ist. Dies ist besonders interessant, wenn die abgetastete Schwingung der Ton eines Musiinstrumentes ist. Dann gibt uns dieses Diagramm nämlich das Spetrum der Grund und Obertöne dieses Instruments an. Man erennt, dass ein großer Ausschlag bei der Grundfrequenz des Tones und weitere leinere Ausschläge bei bestimmten ganzzahligen Vielfachen dieses Grundtones sind. Diese Vielfachen des Grundtones sind die sogeannten Obertöne. Die Reihe der Frequenzen der zu einem Ton gehörenden Obertöne, die sogenannte Obertonreihe ist für jedes Musiinstrument charateristisch und die anschauliche Erlärung dafür, warum ein Ton aus einer Flöte so offensichtlich anders lingt als der gleiche Ton aus einer Geige. Zusammenfassung: Trägt man die Beträge der Fourieroeffizienten über ihre Frequenz auf, so erhält man das für jedes Instrument charateristische Spetrum seiner Obertöne. 7. Die Begrenzung der Genauigeit durch das Sampletheorem Das Abtast oder Sampletheorem sagt aus, dass die Originalfuntion f(t), deren Frequenzspetrum im Frequenzband 0 Hz bis B Hz liegt, durch ihre Ordinaten an äquidistanten Punten eindeutig bestimmt ist, sofern diese Punte nicht weiter als 1 2 B Seunden voneinander

5 entfernt sind. Um aus den abgetasteten Stützwerten das ursprüngliche Signal reproduzieren zu önnen, muss die Abtastrate mindestens doppelt so groß sein wie die der abgetasteten Schwingung. Hat das abzutastende Signal beispielsweise eine Frequenz von 500 Hz, dann muss die Abtastrate über 1 MHz betragen. Zusammengefasst heißt das: Wenn die Distanz unserer Stützstellen Δ= N beträgt, önnen wir 1 mit der Cosinustransfomration nur Frequenzanteile bestimmen, die nicht größer als 2 Δ sind, das heißt deren Periode nicht ürzer ist als 2 Δ. Diese maximal beobachtbare Frequenz heißt Nyquist Frequenz und ist bestimmt durch die Feinheit der Disretisierung, das heißt durch die Anzahl der Messungen pro Zeit. 8. Anwendungen der Fourieranalyse in der Informati Zur Aufnahme, Verabeitung und Speicherung von Audiodaten am Computer wird die Cosinus Tranformation benutzt. Der A/D Wandler der Soundarte tastet das von einem Mirofon ommende Signal ab. Dieses Signal ann entweder unomprimiert als Wave Datei gespeichert werden, welche die tatsächliche Elongation über der Zeit speichert, oder man wendet ein Komprimierungsverfahren wie Mp3 oder Ogg/Vorbis an. Diesen Verfahren liegt unter anderem die modifizierte Cosinustransformation zu Grunde, so dass nur noch Koeffizienten quantisiert ( herömmlich omprimiert) und gespeichert werden. Insbesondere werden Frequenzanteile abgeschnitten, die oberhalb der Nyquistfrequenz liegen, ebenso solche, die das menschliche Ohr nicht wahrnehmen ann. Auch bei der Bildverarbeitung wird die Cosinustransformation benutzt. Beim beannten JPEG Verfahren werden Bilddaten zunächst in das YUV Farbmodell umgewandelt, welches statt Rot Grün und Blauanteilen Helligeit, Farbton und Sättigung speichert (welches dem menschlichen Sehen näher ommt). Dann wird das Bild in 8x8Pixel große Blöce zerlegt und auf jeden dieser Blöce eine zweidimensionale DCT angewendet. Die Frequenzwerte werden dann quantisiert und oberhalb der Nyquistfrequenz liegende Frequenzanteile abgeschnitten. Schließlich arbeiten auch Filter wie Schärfungs und Störfilter mit der Fouriertransformation. 9. Quellen 1. Thomas Hucle, Stefan Schneider, Numeri für Informatier, Julius Springer Verlag 2. Josef Stoer, Numerische Mathemati, Julius Springer Verlag 3. Rudolf Rothe, Höhere Mathemati II, B.G. Teubner Verlag 4.

Messung der Schallgeschwindigkeit über Resonanz

Messung der Schallgeschwindigkeit über Resonanz Messung der Schallgeschwindigeit über Resonanz Lautsprecher Mirofon Frequenzgenerator/Wechselspannung und Verstärer Oszillosop mit Darstellung der Anregung (Kanal 1) und des Mirofon- Signals (Kanal 2)

Mehr

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons.

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons. 1 Vorbereitungen 1.1 Was ist und wofür braucht man Fourieranalysis? Anwendungsgebiete der Fourier-Analysis sind z.b. Signalverarbeitung, Bildverarbeitung, Schaltkreisentwurf, Elektrodynamik, Optik, Akustik,

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

Kapitel 2: Fourieranalyse. Analoge, periodische Signale

Kapitel 2: Fourieranalyse. Analoge, periodische Signale ZHW, NM, 5/, Rur Kapitel : Fourieranalyse Analoge, periodische Signale Inhaltsverzeichnis. EINLEIUNG.... LINEARER MIELWER... 3. LEISUNG UND EFFEKIVWER...3 4. WINKELFUNKIONEN...3 5. FOURIERREIHE...4 6.

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

Computer Vision Group Prof. Daniel Cremers. Die Schnelle Fourier-Transformation

Computer Vision Group Prof. Daniel Cremers. Die Schnelle Fourier-Transformation Computer Vision Group Prof. Daniel Cremers Die Schnelle Fourier-Transformation Wiederholung und Zusammenfassung Komplee Zahlen und n-te Einheitswurzeln Lösungen von n DFT als Polynominterpolation im Kompleen

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

5.3. Anwendungen Fourierentwicklung:

5.3. Anwendungen Fourierentwicklung: 5.3. Anwendungen 5.3.. Fourierentwiclung: Stücweise stetige, -periodische in [-,] Funtion lässt sich als Fourier-Reihe darstellen vgl. Taylor/Potenz-Reihe: a 0 a cos b sin i i ce c e c z a und b heißen

Mehr

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: 5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Praktikumsbeispiele zum Lehrgebiet WR II, Numerische Mathematik und CAS Serie Approximation

Praktikumsbeispiele zum Lehrgebiet WR II, Numerische Mathematik und CAS Serie Approximation TU Ilmenau Institut für Mathemati FG Numerische Mathemati und Informationsverarbeitung PD Dr. W. Neundorf Datei: pb approx.tex Pratiumsbeispiele zum Lehrgebiet WR II, Numerische Mathemati und CAS Serie

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

Robert Denk Proseminar Analysis WS 2016/17

Robert Denk Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars 1 Robert Denk 21.07.2016 Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars Die Grundidee einer Fourierreihe besteht darin, eine Funktion als Überlagerung von Schwingungen,

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion:

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion: Einführung Eine Funktion mittels trigonometrischer Funktionen darzustellen ist das Ziel bei Fourierreihenentwicklung. Als Fourierreihe einer periodischen Funktion f, die abschnittsweise stetig ist, bezeichnet

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Fourieranalyse und -synthese in Experiment und Simulation

Fourieranalyse und -synthese in Experiment und Simulation in Experiment und Simulation 1. Theoretische und technische Grundlagen Analysiert man einen Sinuston am Oszilloskop (erzeugt vom Funktionsgenerator), so erkennt man einen reinen sinusförmigen Verlauf.

Mehr

Der Ton macht die Musik

Der Ton macht die Musik Der Ton macht die Musik Analyse von Tonsignalen mittels Fourier-Transformationen Teilnehmer: Tobias Berchner Holger Hesse Yasir Kaynar Dieu Thuy Linh Tran Viet Son Pham Jonas Pohl Henry Salfner Heinrich-Hertz-Oberschule,

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Medientechnik SS 2011

Medientechnik SS 2011 Medientechni SS 2 Entropie= durchschnittlicher Informationsgehalt pro Zeichen in einer Zeichenette =untere Grenze der zur Kodierung eines Zeichens im Durchschnitt notwendigen Bits 2 prinzipielle Verfahren:

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Relevante Frequenztransformationen

Relevante Frequenztransformationen Relevante Frequenztransformationen Medientechnologie IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Sommersemester 206 Andreas Unterweger (FH Salzburg) Relevante Frequenztransformationen

Mehr

Idee. Man betrachte als Standardbeispiel dieses Kapitels die nicht periodische

Idee. Man betrachte als Standardbeispiel dieses Kapitels die nicht periodische Kapitel 27 Fourier-Transformation 27. Einführung (periodische Fortsetzung; ontinuierliches Spetrum) Die Integraltransformation im Mittelpunt der hier ausgeführten Betrachtungen ist die Fourier-Transformationen.

Mehr

9 Fourier-Transformation

9 Fourier-Transformation 9 Fourier-Transformation Zoltán Zomotor Versionsstand: 5. September 2015, 18:26 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

a) Betrachte das folgende Prinzipbild der Lasertriangulation und beschreibe die Funktionsweise dieses Messverfahrens.

a) Betrachte das folgende Prinzipbild der Lasertriangulation und beschreibe die Funktionsweise dieses Messverfahrens. Aufgabe : Laserabstandsmessung Mit Hilfe der sogenannten Triangulationstechni ann der Abstand eines Objetes mit einem Lasersensor bestimmt werden. Der Messbereich reicht von einigen Millimetern bis zu

Mehr

Mathematik und Musik: Fourieranalyse

Mathematik und Musik: Fourieranalyse Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

Messung & Darstellung von Schallwellen

Messung & Darstellung von Schallwellen Messung Digitalisierung Darstellung Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Messung Digitalisierung Darstellung Überblick Messung

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

7.1 Überlagerung von Schwingungen, Fourier Zerlegung

7.1 Überlagerung von Schwingungen, Fourier Zerlegung Kapitel 7 Schwingungen und Wellen 7. Überlagerung von Schwingungen, Fourier Zerlegung Im Abschnitt über die Bewegungen einzelner Teilchen haben wir uns sehr intensiv mit den Harmonischen Schwingungen beschäftigt,

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

HTBLA Neufelden Fourierreihen Seite 1 von 14. Peter Fischer

HTBLA Neufelden Fourierreihen Seite 1 von 14. Peter Fischer HTBLA Neufelden Fourierreihen Seite von 4 Peter Fischer pe.fischer@atn.nu Fourierreihen Mathematische / Fachliche Inhalte in Stichworten: Fourierreihe, Fourierkoeffizienten, gerade und ungerade Funktionen,

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Medientechnik WS 2012/13

Medientechnik WS 2012/13 Medientechni WS 22/3 Verlustfreie Verfahren Statistische Verfahren Lauflängenodierung Entropie-Kodierung Entropie= durchschnittlicher Informationsgehalt pro Zeichen in einer Zeichenette =untere Grenze

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Inhaltsverzeichnis: NAE Nachrichtentechni und angewandte Eletroni hema Unterpunt Seite Deinitionen zur Fourier-Analse Grundschwingung 5- eilschwingungen 5- Oberwellen 5- Harmonische 5- Amplitude und Phasenlage

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Mathematik, Signale und moderne Kommunikation

Mathematik, Signale und moderne Kommunikation Natur ab 4 - PH Baden Mathematik, Signale und moderne Kommunikation 1 monika.doerfler@univie.ac.at 29.4.2009 1 NuHAG, Universität Wien monika.doerfler@univie.ac.at Mathematik, Signale und moderne Kommunikation

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen

Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen Schwingungen und ihre Filterung unter Verwendung von Ergebnissen aus FEM-Rechnungen AG Qualität im Fachbereich Mathematik Universität Hannover, Welfengarten, D - 3067 Hannover Telephon: +49-5-762-3336

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 Inhalt Fourier reihen Fourier Transformation Laplace Transforamation

Mehr

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie Abschnitt: 2.1 Allgemeine Beschreibung A2.1: Gleichrichtung Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie so erhält man am Ausgang das

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

3. Musterlösung zu Mathematik für Informatiker II, SS 2004

3. Musterlösung zu Mathematik für Informatiker II, SS 2004 . Musterlösung zu Mathemati für Informatier II, SS 004 PETER SCHEIBLECHNER &MICHAEL NÜSKEN Aufgabe. (Differenzen). Bestimme die Differenz f für f : Z! R mit (4 Punte) (i) f (n) n(n ) n. ( f )(n) (n +)n

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-,

Mehr

Kapitel 3 Trigonometrische Interpolation

Kapitel 3 Trigonometrische Interpolation Kapitel 3 Trigonometrische Interpolation Einführung in die Fourier-Reihen Trigonometrische Interpolation Schnelle Fourier-Transformation (FFT) Zusammenfassung Numerische Mathematik II Herbsttrimester 212

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe 4.2! Frequenzspektren, Fourier-Transformation 4.3! Abtasttheorem: Eine zweite Sicht 4.4! Filter! Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Inhaltsverzeichnis Holger Stephan, Tag der Mathemati,. Juni Vortrag. Einleitung........................................ Zahlenfolgen.......................................

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

Eine Herleitung zur Dichtefunktion der Normalverteilung

Eine Herleitung zur Dichtefunktion der Normalverteilung Eine Herleitung zur Dichtefuntion der Normalverteilung Michael D. Pfeifer (michael.pfeifer@hotmail.com) 1. Februar 16 1 Einführung Die Normalverteilung ist für viele wissenschaftliche Anwendungen wesentlich.

Mehr

Digitalisierung von Tönen. Von Paul

Digitalisierung von Tönen. Von Paul Digitalisierung von Tönen Von Paul Was passiert beim hören Tonquelle erzeugt Schallwellen Alle vibrierende Objekte erzeugen Schallwellen. Durch die Vibration wird das Medium stoßweise verdichtet. Schallwellen

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Die Wärmeleitungsgleichung

Die Wärmeleitungsgleichung Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

4. Übung für Übungsgruppen Musterlösung

4. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, FB Informatik der Universität Hamburg). Übung für Übungsgruppen Musterlösung (N. Stein, Institut für Angewandte Physik,

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

10. Periodische Funktionen, Fourier Reihen

10. Periodische Funktionen, Fourier Reihen H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.

Mehr

Kardinalfunktionen. Florian Badt. 2. Juni Universität des Saarlandes, Saarbrücken

Kardinalfunktionen. Florian Badt. 2. Juni Universität des Saarlandes, Saarbrücken Florian Badt 2. Juni 2015 Gliederung Grundlegende Problemstellung Ausgangspunkt: Lu = f Approximation der unbekannten Funktion: u(x) u N (x) = N n=0 a nφ n Minimierung des Residuums R(x; a 0, a 1,...,

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 9 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Gruppenübungen Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani 6..4 Aufgabe 4. (schriftlich

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

Fourier-Reihen & Fourier - Transformation

Fourier-Reihen & Fourier - Transformation Fourier-Reihen & Fourier - ransformation Prof. Dr. Karlheinz Blanenbach Hochschule Pforzheim iefenbronner Str. 65 7575 Pforzheim Überblic / Anwendungen: Die Fourier-ransformation dient beispielsweisezur

Mehr

1 + t dt = ( t) k dt. ( 1) k. k + 1 tk+1

1 + t dt = ( t) k dt. ( 1) k. k + 1 tk+1 6 POTENZREIHEN 161 Wir wollen diese Gleichung für x < 1 noch auf andere Weise herleiten. Es ist ln(1 + x) = x 1 x 1 + t dt = ( t) dt. Die geometrische Reihe = ( t) ist nach dem Majorantenriterium für t

Mehr

Ü b u n g s b l a t t 6

Ü b u n g s b l a t t 6 Mathe für Physiker III Wintersemester 02/03 Walter Oevel 25. 11. 2002 Ü b u n g s b l a t t 6 Abgabe von Aufgaben bis zum 2.12.2002, 11 oo Uhr, im Zettelkasten auf dem D1. Aufgabe 23*: (Die DFT als Lösung

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

43 Fourierreihen Motivation Fourierbasis

43 Fourierreihen Motivation Fourierbasis 43 Fourierreihen 43. Motivation Ähnlich wie eine Taylorreihe (vgl. MfI, Kap. 2) eine Funktion durch ein Polynom approximiert, wollen wir eine Funktion durch ein trigonometrisches Polynom annähern. Hierzu

Mehr

Fourier Reihe. Fourier Transformation. Ma 2 Lubov Vassilevskaya, SS 2008

Fourier Reihe. Fourier Transformation. Ma 2 Lubov Vassilevskaya, SS 2008 Fourier Reihe Fourier Transformation Entwicklung einer Funktion in eine Potenzreihe Eine beliebig oft differenzierbare Funktion f (x) kann in eine unendliche Reihe von Potenzfunktionen x n entwickelt werden

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

Mathematik III Die Fourier-Transformation in Bildern

Mathematik III Die Fourier-Transformation in Bildern Mathematik III Die Fourier-Transformation in Bildern Cornelia Busch D-CHAB 20. Dezember 2018 Eine periodische Funktion f (t)... ... wird zerlegt: f (t) = sin(3t) + cos(5t). f (t) = cos(2t) + sin(3t) +

Mehr