Hawkes Prozesse Grundlagen

Größe: px
Ab Seite anzeigen:

Download "Hawkes Prozesse Grundlagen"

Transkript

1 Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem Messraum (Ω, F). Definition (Punktprozess). Ein adaptierter càdlàg Prozess N mit N =, N t N für alle t und N t {, 1} für alle t heißt Punktprozess. Hierbei sei mit N := N N der Sprungprozess von N bezeichnet. Definition. (Previsible & Optionale σ-algebra) (i) Wir definieren die optionale σ-algebra O über Ω R + durch O := σ ( X : Ω R + R X ist adaptiert und càdlàg ). (ii) Wir definieren die previsible σ-algebra P über Ω R + durch P := σ ( X : Ω R + R X ist adaptiert und linksstetig ). Bemerkung. Man kann zeigen, dass jeder optionale Prozess X messbar bzgl. F B(R + ) ist. Weiter ist jeder previsible Prozess X auch optional (und somit auch messbar). Korollar. Es gilt P = σ ( {A {} : A F } {A (s, t] : s < t und A F s } ). Definition. (i) Wir bezeichnen mit M die Menge aller gleichgradig integrierbaren Martingale. (ii) Wir bezeichnen mit V die Menge aller adaptierten càdlàg Prozesse A mit A =, sodass jeder Pfad von lokal beschränkter Variation ist. (iii) Wir bezeichnen mit V + die Menge aller A V mit monoton wachsenden Pfaden. (iv) Definiere A := {A V E[Var(A) ] < }. (v) Definiere A + := {A V + E[Var(A) ] < }. Satz (Previsibler Kompensator). Es sei A A + loc. Dann existiert ein bis auf Ununterscheidbarkeit eindeutiger previsibler Prozess A p A + loc, sodass A A p M loc. Korollar. Jeder Punktprozess N ist lokal beschränkt. Insbesondere ist N A + loc. Bemerkung. Wir finden also zu jedem Punktprozess N einen previsiblen Prozess N p A + loc, sodass N N p M loc. Dieser wird auch als Intensität bezeichnet.

2 15. Februar 218 Zufällige Maße Es sei (E, τ) ein polnischer Raum mit Borel-σ-Algebra E. Wir bezeichnen mit Ω die Menge Ω R + E, mit Õ die σ-algebra O E und mit P die σ-algebra P E. Definition (Zufällige Maße). Ein zufälliges Maß auf R + E ist eine Familie µ = {µ(w; dt, dx) ω Ω} von nichtnegativen Maßen auf (R + E, B(R + ) E ) mit der Eigenschaft µ(w; {} E) = für alle ω Ω. Zusätzlich fordern wir, dass die Abbildung ω µ(ω, A) messbar bezüglich F ist für alle A B(R + ) E. Definition (Integration bezüglich zufälliger Maße). Es sei W eine Õ-messbare, reellwertige Abbildung auf Ω. Es folgt, dass die Abbildung (t, x) W (ω, t, x) messbar ist für alle ω Ω. Weiter definieren wir den Integralprozess W µ durch W µ t (ω) := W (ω, s, x)µ(ω, ds, dx), falls W (ω, s, x) µ(ω, ds, dx) < [,t] E und W µ t (ω) := sonst. Definition (Optionale zufällige Maße). [,t] E (i) Ein zufälliges Maß µ heißt optional (previsibel), falls der Prozess W µ optional (previsibel) für jede optionale (previsible) Abbildung W ist. (ii) Ein optionales zufälliges Maß heißt integrierbar, falls 1 µ A + (iii) Ein optionales zufälliges Maß heißt P-σ-endlich, falls eine strikt positive previsible Abbildung V auf Ω existiert, sodass V µ A + ; Dies ist äquivalent dazu, dass eine Partition A n P von Ω existiert, sodass 1 An µ A + für alle n N. Definition (N-wertige zufällige Maße). Ein N-wertiges zufälliges Maß µ ist ein zufälliges Maß mit folgenden Eigenschaften: µ(ω, {t} E) 1. Für A B(R + ) E ist µ(, A) eine N-wertige Abbildung. µ ist optional und P-σ-endlich. Definition (Erweiterte Poissonmaße). (i) Ein erweitertes Poissonmaß auf R + E bezüglich einer Filtration (F t ) t ist ein N-wertiges zufälliges Maß µ, sodass gilt: Das positive Maß m auf R + E, mit m(a) := E[µ(A)], ist σ-endlich. Für jedes s R + und jedes A B(R + ) E, sodass A (s, ) E und m(a) <, ist die Zufallsvariable µ(, A) unabhängig von F s. (ii) Das Maß m heißt Intensität von µ. (iii) Falls m({t} E) = für alle t R +, so heißt µ Poissonmaß. Gilt zusätzlich m(dt, dx) = dt F (dx), wobei F ein positives σ-endliches Maß auf (E, E ) ist, so heißt µ homogenes Poissonmaß.

3 Hawkes Prozesse Es sei im Folgenden nun G = (S, E) ein abzählbarer Graph mit Knoten i S und orientierten Kanten e E. Schreibe e = (j, i) E für eine orientierte Kante von dem Knoten j zu dem Knoten i. Weiter seien mit ϕ = (ϕ ji ) (j,i) E, wobei ϕ ji : [, ) R, und mit (h i ) i S, wobei h i : R [, ), eine zu den Kanten, bzw. zu den Knoten assoziierte Familie von Funktionen gegeben. Definition 1 (Hawkes-Prozess). Ein Hawkes-Prozess mit Parametern (G, ϕ, h) ist eine Familie von Zählprozessen (Z i t) t,i S, sodass: (i) Für alle i, j S mit i j gilt: (Z i t) t und (Z j t ) t springen fast sicher nie gleichzeitig. (ii) Für alle i S gilt: Der Kompensator (Λ i t) t von (Z i t) t hat die Form Λ i t = wobei der Prozess (λ i t) t gegeben sei durch λ i t = h i j i Der Prozess (λ i t) t heißt Intensitätsprozess von (Z i t) t. λ i s ds, ϕ ji (t s) dzs j. (1) Ein Hawkes-Prozess heißt linear, falls h i (x) = µ i + x, wobei µ i für alle i S. Existenz und Eindeutigkeit Es sei nun mit (π i (ds, dz)) i S eine Familie von iid (F t ) t -Poissonmaßen mit Intensitätsmaß m(ds dz) = λ 2 auf [, ) [, ) bezeichnet. Definition 2 (Hawkes-Prozesse als Lösung einer SDE). Eine Familie (Z i t) t,i S von (F t ) t -adaptierten càdlàg Prozessen heißt Hawkes Prozess mit Parametern (G, ϕ, h), falls für alle i S und für alle t gilt: Z i t = 1 { z h i ( j i s Lemma (Äquivalenz der Definitionen eines Hawkes-Prozess). ϕ ji (s u) dz j u)} π i (ds, dz) fast sicher. (2) a) Ein Hawkes-Prozess im Sinne von Definition 2 ist ein Hawkes Prozess im Sinne von Definition 1. b) Sei auf (Ω, F, (F t ) t, P) ein Hawkes Prozess (Z i t) t,i S nach Definition 1 gegeben. Dann existiert auf einem (erweiterten) Wahrscheinlichkeitsraum ( Ω, F, ( F t ) t, P) eine Familie (π i (ds, dz)) i S von iid ( F t ) t -Poissonmaßen mit Intensitätsmaßen m(ds, dz) = λ 2 auf [, ) [, ), sodass (Z i t) t,i S ein Hawkes-Prozess nach Definition 2 ist.

4 15. Februar 218 Voraussetzung 1. Es seien (c i ) i S nicht-negative Konstanten, (p i ) i S positive Gewichte und Φ : [, ) [, ) eine lokal integrierbare Funktion. Es gelte außerdem: i) Für alle i S und für alle x, y R: h i (x) h i (y) c i x y ii) i S h i ()p i < iii) Für alle t [, ) und für alle j S: c i p i ϕ ji (t) p j Φ(t) Beispiel. i j (i) Im Falle einer endlichen Menge S ist die Voraussetzung 1 erfüllt, falls h i Lipschitz für alle i S, ϕ ji lokal integrierbar für alle (j, i) E und p i = 1 für alle i S. (ii) Sei S = Z d und E = {(i, j) S S : i j {, 1}}. Die Voraussetzung 1 ist erfüllt mit p i = 2 i, c i = c > und Φ lokal integrierbar, sodass h i Lipschitz mit Konstante c für alle i S, p i h i () < und ϕ jk (t) Φ(t) für alle i S, für i S alle x, y R, für alle (j, k) E und für t. (iii) Für S = Z + und E = {(i, i + 1) : i S} ist die Voraussetzung 1 erfüllt, falls eine lokal integrierbare Funktion Φ und Konstanten c i und a i für alle i S existieren, sodass h i (x) h i (y) c i x y und ϕ i(i+1) (t) a i Φ(t) für alle t. (iv) Ist S = Z d, E = S S und existiere eine Konstante c >, eine lokal integrierbare Funktion Φ und eine nichtwachsende Funktion a : [, ) [, ), so ist die Voraussetzung 1 erfüllt, falls i S a( i ) <, h i () c und h i (x) h i (y) c x y für alle i S und ϕ ji (t) a( i j )Φ(t) für alle (i, j) E und t. Satz (Existenz und Eindeutigkeit). Unter Voraussetzung 1 existiert ein bis auf Ununterscheidbarkeit eindeutiger Hawkes-Prozess (Z i t) t,i S nach Definition 2 mit der Eigenschaft, dass i S p ie[z i t] < für alle t.

5 Propagation of Chaos Voraussetzung 2. Es seien h : R [, ) und ϕ : [, ) R Funktionen mit h(x) h(y) h lip = sup x y < und ϕ L 2 loc ([, ). x y Für N 1 sei G N = (S N, E N ) ein Graph mit Knotenmenge S N = {1,..., N} und Kantenmenge E N = {(i, j) i, j S N }. Setze h N i = h für alle i S N und ϕ N ij = 1 N ϕ für alle (i, j) E N. Definition (Grenzwertgleichung). Sei π(ds, dz) ein Poisson Maß auf [, ) [, ) mit Intensitätsmaß λ 2. Die Gleichung Z t = 1 {z h( s ϕ(s u)de( Z u))} heißt Grenzwertgleichung ( limit equation ). π(ds, dz) t Satz (Existenz und Eindeutigkeit). Unter Voraussetzung 2 existiert eine eindeutige Lösung ( Z t ) t zu der Grenzwertgleichung, sodass (E( Z t )) t lokal beschränkt ist. Bemerkung. Eine Lösung ( Z t ) t der Grenzwertgleichung ist ein verallgemeinerter Poisson Prozess auf [, ). Es sei mit D([, ), R) die Menge der R-wertigen càdlàg Funktionen auf [, ) und mit P(D([, ), R)) die Menge der Wahrscheinlichkeitsmaße auf D([, ), R) bezeichnet. Satz. Es gelte die Voraussetzung 2 und es sei mit (π i (ds, dz)) i=1,...,n eine Familie von iid Poisson Maßen gegeben (mit Intensitätsmaß λ 2 ). i) Zu N 1 lassen sich ein Hawkes-Prozess (Z N,1 t,..., Z N,N t ) t mit den Paramtern (G N, ϕ N, h N ) und eine iid Familie ( Z t) i t,i=1,...,n von Lösungen zu der Grenzwertgleichung konstruieren, sodass für alle T > und alle i = 1,..., N gilt: ( E sup Z N,i t [,T ] ) Z t i C T 1 N, wobei die Konstante C T > nur von h, ϕ und T abhängt. ii) Es gilt die mean-field approximation : 1 N N i=1 δ (Z N,i t ) t L ( ( Z t ) t ) in Wahrscheinlichkeit für N Wobei P(D([, ), R)) mit der Topologie der schwachen Konvergenz ausgestattet sei, die assoziiert ist zu der gleichmäßigen Konvergenz auf kompakten Intervallen (auf D([, ), R)).

6 15. Februar 218 Anhang Lemma 1. Sei φ : [, ) R lokal integrierbar und α : [, ) R cadlag, von lokal endlicher Variation und α() =. Dann gilt für alle t s φ(s u) dα(u) ds = s φ(s u) dα(u) ds = φ(t s)α(s)ds. Lemma 2. Sei φ : [, ) [, ) lokal integrierbar und g : [, ) [, ) lokal beschränkt. 1. Sei u eine lokal beschränkte nicht negative Funktion, sodass für alle t u t g t + φ(t s)u s ds. Dann ist abhängt. sup u t C T sup g t t [,T ] t [,T ] für eine Konstante C T, die nur von T und φ 2. Sei (u n ) n N eine Folge von nicht negativen lokal beschränkten Funktionen, sodass für alle t und für alle n N Dann gilt abhängt. sup t [,T ] n N u n+1 t φ(t s)u n s ds. u n t C T für eine Konstante C T, die nur von T, u und φ 3. Sei (u n ) n N eine Folge von nicht negativen lokal beschränkten Funktionen, sodass für alle t und für alle n N u n+1 t g t + φ(t s)u n s ds. Dann gilt φ abhängt. sup t [,T ] n N sup u n t C T für eine Konstante C T, die nur von T, u, g und Lemma 3. Seien X, Y zwei nicht negative Zufallsvariablen. Dann gilt E [ 1 {z X} 1 {z Y } ] dz = E[ X Y ].

7 Lemma 4. Sei π ein zufälliges erweitertes Poissonmaß mit Intensität m. Dann gilt für jede beschränkte, previsible Abbildung W : (Ω R + E, P) R [ ] E W (ω; s, z)π(ω; ds, dz) = E [ W (ω; s, z) ] m(ds, dz). R + E R + E Lemma 5. Sei h : R [, ) Lipschitz und ϕ : [, ) R lokal integrierbar. Dann besitzt die Gleichung ( s ) m t = h ϕ(s u)dm u ds t (3) eine eindeutige nichtfallende lokal beschränkte Lösung der Klasse C 1 ([, )). Lemma 6. Sei durch (Q N ) N 1 eine Folge von symmetrischen Wahrscheinlichkeitsmaßen auf D([, ), R) N gegeben. Für φ 1,..., φ k C b (D([, ), R)) und k 1 gelte: lim N φ 1 (x 1 ) φ k (x k )dq N (x 1,..., x N ) = k i=1 φ i (x)dq(x) für Q ein Wahrscheinlichkeitsmaß auf D([, ), R). Dann gilt: X N = 1 N N δ Xi Q in Verteilung. i=1 Literatur [1] Sylvain Delattre, Nicolas Fournier, Marc Hoffmann, Hawkes Processes On Large Networks, Université Paris-Diderot, Université Pierre-et-Marie Curie, Université Paris- Dauphine, 216. [2] Jean Jacod, Albert N. Shiryaev, Limit Theorems For Stochastic Processes, Springer- Verlag, 2. Edition, 22. [3] Alain-Sol Sznitman, Topics In Propagation Of Chaos, Springer-Verlag, 1. Edition, 1991.

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016 Stoppzeiten und Charakteristische Funktionen Tutorium Stochastische Prozesse 15. November 2016 Inhalte des heutigen Tutoriums Im heutigen Tutorium besprechen wir: (1) Eindeutigkeit von Maßen ohne schnittstabilen

Mehr

Stochastische Prozesse

Stochastische Prozesse Albert-Ludwigs-Universität Freiburg Vorlesungsskript Stochastische Prozesse apl. Prof. Dr. Stefan Tappe Wintersemester 2017/18 Abteilung für Mathematische Stochastik Inhaltsverzeichnis 1 Grundlegende

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Schwache Lösungen von SDEs und das lokale Martingalproblem

Schwache Lösungen von SDEs und das lokale Martingalproblem Inhalt Schwache Lösungen von SDEs und das lokale Martingalproblem Christin Strampe February 16, 211 Christin Strampe () SDEs und das lokale Martingalproblem February 16, 211 1 / 24 Inhalt Motivation Schwache

Mehr

Stochastische Analysis

Stochastische Analysis Stochastische Analysis SS1 von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 6. Mai 21 Inhaltsverzeichnis 1 Motivation / Einführung 4 1.1 Motivation anhand

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Allgemeine Punktprozesse

Allgemeine Punktprozesse Allgemeine Punktprozesse Michael Auchter 17. Mai 2010 Seite 2 Allgemeine Punktprozesse 17. Mai 2010 Inhaltsverzeichnis Definitionen Definition von Punktprozessen Das Intensitätsmaß Stationarität, Isotropie

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

8 Die quadratische Variation, und die Integration bzgl. stetiger Semimartingale

8 Die quadratische Variation, und die Integration bzgl. stetiger Semimartingale 8 Die quadratische Variation, und die Integration bzgl. stetiger Semimartingale 8.1 Der quadratische Variationsprozess eines stetigen, lokalen Martingals 8.3 Die quadratische Variation einer reellen Brownschen

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

7 Poisson-Punktprozesse

7 Poisson-Punktprozesse Poisson-Punktprozesse sind natürliche Modelle für zufällige Konfigurationen von Punkten im Raum Wie der Name sagt, spielt die Poisson-Verteilung eine entscheidende Rolle Wir werden also mit der Definition

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

Markierte Punktprozesse und zufällige Tesselationen

Markierte Punktprozesse und zufällige Tesselationen und zufällige Tesselationen Seminar stochastische Geometrie und ihre Anwendungen 7. Dezember 2009 und zufällige Tesselationen Gliederung 1 2 3 und zufällige Tesselationen Gliederung 1 2 3 und zufällige

Mehr

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren Universität Hamburg Fachbereich Mathematik Schwerpunkt Mathematische Statistik und Stochastische Prozesse Bundesstr. 55 D-20146 Hamburg Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung

Mehr

Terminologie Stochastischer Prozesse

Terminologie Stochastischer Prozesse Terminologie Stochastischer Prozesse Nikolai Nowaczyk 2014-03-31 Dieses Script ist die Ausarbeitung zum einem Vortrag, gehalten im Seminar zur Wahrscheinlichkeitstheorie im SS 14 an der Uni Regensburg.

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Strassen Type Theorems Proseminar Stochastik

Strassen Type Theorems Proseminar Stochastik Strassen Type Theorems Proseminar Stochastik Cecelie Hector Universität Hamburg Fachbereich Mathematik SoSe 2004 Vortrag am 25.06.04 Definition (a). Ein topologischer Raum E heißt polnisch, wenn es eine

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

Abgabetermin: 5. Mai 2017, Uhr

Abgabetermin: 5. Mai 2017, Uhr Übungsblatt Nr. 1 26. April 2017 1. Sei F k, k K, eine Familie von σ-algebren, wobei K eine beliebige Menge ist. Zeigen Sie, daß F d = k K F k ebenfalls eine σ-algebra ist! Beweisen Sie, daß die Vereinigung

Mehr

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume Extremalpunkte und der Satz von Krein-Milman Seminar zu ausgewählten Kapiteln der Banachraumtheorie Vortrag von Michael Hoffmann 1 Lokalkonvexe topologische Vektorräume Im folgenden betrachten wir stets

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit

2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit 2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit a) Fortsetzungssatz, Eindeutigkeit Es wird gezeigt, dass jedes Prämaß µ auf einem Ring R zu einem Maß µ auf A(R) fortgesetzt werden kann, d.h. µ kann

Mehr

Stochastische Integration Stochastische Differentialgleichungen Stochastische Partielle Differentialgleichungen. Dominic Breit

Stochastische Integration Stochastische Differentialgleichungen Stochastische Partielle Differentialgleichungen. Dominic Breit Dominic Breit 14.12.213 Outline 1 Stochastische Integration 2 3 Brwonsche Bewegung (1) Eine Brownsche Bewegung W = (W t ) t [,T ] über einem Wahrscheinlichkeitsraum (Ω, F, P) ist ein zeitstetiger stochastischer

Mehr

Itô-Integation. M. Gruber Zusammenfassung

Itô-Integation. M. Gruber Zusammenfassung Itô-Integation M. Gruber 15. 5 215 Zusammenfassung Itô-Integral für elementare Integranden, Martingaleigenschaft des Itô-Integrals, Itô-Isometrie, Quadratische Variation des Itô-Integrals, Itô-Integration

Mehr

Markierte Punktprozesse und abstrakte kollektive Modelle

Markierte Punktprozesse und abstrakte kollektive Modelle Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Markierte Punktprozesse und abstrakte kollektive Modelle Anke Todtermuschke 21. Oktober 2011 Gliederung 1 Modellierung einer Folge

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

3 Bedingte Erwartungswerte

3 Bedingte Erwartungswerte 3 Bedingte Erwartungswerte 3.3 Existenz und Eindeutigkeit des bedingten Erwartungswertes E A 0(X) 3.6 Konvexitätsungleichung für bedingte Erwartungswerte 3.9 Konvergenzsätze von Levi, Fatou und Lebesgue

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

KAPITEL 1. Martingale

KAPITEL 1. Martingale KAPITEL 1 Martingale 1.1. Stochastische Prozesse Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Das heißt, Ω ist eine Menge, F ist eine σ-algebra auf Ω, und P ein Wahrscheinlichkeitsmaß auf (Ω, F ). Zuerst

Mehr

2 Martingale in stetiger Zeit

2 Martingale in stetiger Zeit 2 Martingale in stetiger Zeit Ziel dieses Abschnitts ist es die wichtigsten Resultate für Martingale aus diskreter Zeit in stetige Zeit zu übertragen. Wie zu erwarten ist treten in stetiger Zeit einige

Mehr

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm 31.05.2010 Page 2 Brownsche Bewegung 31.05.2010 Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche

Mehr

Universität Leipzig, SoSo 2013

Universität Leipzig, SoSo 2013 Vorlesung Wahrscheinlichkeitstheorie I Universität Leipzig, SoSo 2013 Prof. Dr. Max v. Renesse renesse@uni-leipzig.de Sprechstunde: Di 13.15-14.45, A 337 Übungen: Mo 11.15 -- 12.45 A 314 K. Zimmermann

Mehr

5 Zufallsvariablen, Grundbegriffe

5 Zufallsvariablen, Grundbegriffe II. Zufallsvariablen 5 Zufallsvariablen, Grundbegriffe Def. 12 Es seien (Ω 1, E 1,P 1 ) und (Ω 2, E 2,P 2 ) Wahrscheinlichkeitsräume. Eine Abbildung X : Ω 1 Ω 2 heißt E 1 E 2 meßbar, falls für alle Ereignisse

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen

Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen Michael Schönlein, Fabian Wirth Im Rahmen des Forschungsprojekts: Stabilität, Robustheit und Approximation großskaliger

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

22 Charakteristische Funktionen und Verteilungskonvergenz

22 Charakteristische Funktionen und Verteilungskonvergenz 22 Charakteristische Funktionen und Verteilungskonvergenz Charakteristische Funktionen (Fourier-Transformierte liefern ein starkes analytisches Hilfsmittel zur Untersuchung von W-Verteilungen und deren

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

10 Der Satz von Radon-Nikodym

10 Der Satz von Radon-Nikodym uch im Sinne einer Vorabinformation vor der Stochastik-Vorlesung wollen wir abschließend kurz absolut stetige Maße und den Satz von Radon-Nikodym streifen. Definition 10.1. Seien (, M) ein messbarer Raum

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

Grundlagen der Verteilungskonvergenz zufälliger Funktionen (vorläufige Version)

Grundlagen der Verteilungskonvergenz zufälliger Funktionen (vorläufige Version) KAPITEL 7 Grundlagen der Verteilungskonvergenz zufälliger Funktionen (vorläufige Version) In diesem Kapitel tragen wir die wichtigsten Grundlagen über die Verteilungskonvergenz zufälliger Funktionen zusammen,

Mehr

Vorlesungsskript: Martingale

Vorlesungsskript: Martingale Vorlesungsskript: Martingale von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 25. Februar 2010 Inhaltsverzeichnis 4 Martingale 2 4.1 Einführung.......................................

Mehr

Eindimensionale Stochastische Differentialgleichungen Mit Verallgemeinerter Drift Bzgl. Stetiger Lokaler Martingale DISSERTATION

Eindimensionale Stochastische Differentialgleichungen Mit Verallgemeinerter Drift Bzgl. Stetiger Lokaler Martingale DISSERTATION Eindimensionale Stochastische Differentialgleichungen Mit Verallgemeinerter Drift Bzgl. Stetiger Lokaler Martingale DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer.

Mehr

Formelsammlung Analysis I & II

Formelsammlung Analysis I & II Formelsammlung Analysis I & II Wichtige eindimensionale Integrale: { x s dx = s+ xs+ + C falls s log x + C falls s = exp(x dx = exp(x + C cos(x dx = sin(x + C sin(x dx = cos(x + C sinh(x dx = cosh(x +

Mehr

4 Gleichgradige Integrierbarkeit, Stoppzeiten und Martingale

4 Gleichgradige Integrierbarkeit, Stoppzeiten und Martingale 4 Gleichgradige Integrierbarkeit, Stoppzeiten und Martingale 4.2 Filtrationen und kanonische Filtrationen 4.3 Supermartingale, Martingale bzw. Submartingale bzgl. der Filtrationen (A t ) t I 4.4 Gleichgradig

Mehr

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten Kapitel 4 Stochastische Grundlagen An dieser Stelle möchte ich auf einige stochastische Grundlagen eingehen, die bisher im Kapitel 3 Anwendung gefunden haben und im Folgenden Anwendung finden werden. Grundproblem

Mehr

Studienbegleitende Prüfung Stochastik 2

Studienbegleitende Prüfung Stochastik 2 Universität Karlsruhe (TH) Institut für Stochastik Prof. Dr. N. Bäuerle Name: Vorname: Matr.-Nr.: Studienbegleitende Prüfung Stochastik 2 27. März 2007 Diese Klausur hat bestanden, wer mindestens 20 Punkte

Mehr

Stochastische Prozesse Stoffzusammenfassung

Stochastische Prozesse Stoffzusammenfassung Stochastische Prozesse Stoffzusammenfassung Joachim Breitner 7. August 2018 Diese Zusammefassung ist natürlich alles andere als vollständig und zu knapp, um immer alle Aussagen mit Voraussetzungen korrekt

Mehr

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

Kapitel II. Brownsche Bewegung. Literatur: Karatzas, Shreve (1999, Chap. 2).

Kapitel II. Brownsche Bewegung. Literatur: Karatzas, Shreve (1999, Chap. 2). Kapitel II Brownsche Bewegung Literatur: Karatzas, Shreve (1999, Chap. 2). Gegeben: Wahrscheinlichkeitsraum (Ω, A, P) mit Filtration F = (F t ) t I, wobei I = [0, [. Definition 1. W = (W t ) t I Brownsche

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011 Zufällige stabile Prozesse und stabile stochastische Integrale Stochastikseminar, Dezember 2011 2 Stabile Prozesse Dezember 2011 Stabile stochastische Prozesse - Definition Stabile Integrale α-stabile

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

A. STOCHASTISCHE PROZESSE UND STOPPZEITEN 109

A. STOCHASTISCHE PROZESSE UND STOPPZEITEN 109 A. STOCHASTISCHE PROZESSE UND STOPPZEITEN 19 A. Stochastische Prozesse und Stoppzeiten In dieser Vorlesung arbeiten wir immer auf einem Massraum (Ω, F), der gross genug ist, um alle definierten Objekte

Mehr

Gaußsche Felder und Simulation

Gaußsche Felder und Simulation 3 2 data_2d_1.dat data_2d_2.dat data_2d_64.dat data_2d_128.dat 1-1 -2-3 1 2 3 4 5 6 7 Gaußsche Felder und Simulation Benedikt Jahn, Aaron Spettl 4. November 28 Institut für Stochastik, Seminar Zufällige

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 11. Oktober 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 11. Oktober 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 11. Oktober 2013 3 Fortsetzung von Prämassen zu Massen Der Begriff des Prämasses ist nicht ausreichend, um eine geschmeidige Integrationstheorie

Mehr

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457.

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457. Exkurs A: Bedingte Erwartungswerte, bedingte Verteilungen (Ω, A, P ) sei W-Raum, X : Ω IR P-quasiintegrierbar, F A Unter - σ- Algebra. E(X F) = E P (X F) (Version des) bedingter Erwartungswert von X unterf

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Kapitel 7. Martingale 1

Kapitel 7. Martingale 1 Kapitel 7 Martingale 1 7.1 Definition: a) (Ω, F) sei ein messbarer Raum. Eine Filtration (oder Filtrierung) ist eine aufsteigende Folge F = (F n ) n N von Teil-σ-Algebren von F, d.h. F n F n+1 F für n

Mehr

Brownsche Bewegung: Eine Einführung

Brownsche Bewegung: Eine Einführung Brownsche Bewegung: Eine Einführung Batu Güneysu Institut für Mathematik Humboldt-Universität zu Berlin Greifswald, 18.04.2018 Batu Güneysu Brownsche Bewegung: Eine Einführung 1 / 14 Wir fixieren m N und

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Liste wichtiger Stammfunktionen

Liste wichtiger Stammfunktionen Liste wichtiger Stammfunktionen Funktion Stammfunktion x n, x ln(x) n R \ { } n + xn+ ln( x ) x ln(x) x a x, a > sin(x) cos(x) sin 2 (x) cos 2 (x) x 2 x 2 a x ln(a) cos(x) sin(x) (x sin(x) cos(x)) 2 (x

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Orthogonalpolynome Einführung, Eigenschaften und Anwendungen 1 Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Seminar zur Numerik im SS 2018, Universität zu Köln 10.

Mehr

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen Kapitel 6 Suffiziente Statistiken In diesem Kapitel untersuchen wir einen weiteren statistischen Begriff, der eng mit Likelihoodfunktionen zusammenhängt und mit der Frage nach eventuell möglicher Datenreduktion

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

1 Bedingte Erwartungswerte

1 Bedingte Erwartungswerte Die folgenden Regeln sind das alltägliche Handwerkszeug für den Umgang mit bedingten Erwartungen und werden in diesem Abschnitt, allerdings ohne Beweise, zitiert. Es ist durchaus eine lohnenswerte Übung,

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse

Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse Universität Ulm Degang Kong 8.01.010 1 Inhaltsverzeichnis 1. Ungerichtete Linienprozesse als Faserprozesse. Planare Faserprozesse.1 Grundlagen.

Mehr

Gesetze der großen Zahlen

Gesetze der großen Zahlen Kapitel 0 Gesetze der großen Zahlen 0. Einführung Im ersten Kapitel wurde auf eine Erfahrungstatsache im Umgang mit zufälligen Erscheinungen aufmerksam gemacht, die man gewöhnlich als empirisches Gesetz

Mehr

7 Der Satz von Girsanov

7 Der Satz von Girsanov 7 Der Satz von Girsanov Der Satz von Girsanov wird uns eine neue Perspektive auf die Rolle des Drifts liefern. Die Prozesse Brownsche Bewegung B t, Brownsche Bewegung mit Drift X t = B t + µt haben wir

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 24/25 Universität Karlsruhe 7. März 25 Priv-Doz. Dr. D. Kadelka Klausur zur Vorlesung Stochastik II Dauer: 9 Minuten Name: Vorname: Matrikelnummer: Diese Klausur

Mehr

Das Prinzip der Suchmaschine Google TM

Das Prinzip der Suchmaschine Google TM /9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,

Mehr

Charakteristische Funktionen

Charakteristische Funktionen Kapitel 9 Charakteristische Funktionen Jeder Wahrscheinlichkeitsverteilung auf (, B 1 ) (allgemeiner: (R n, B n )) ist eine komplexwertige Funktion, ihre charakteristische Funktion, zugeordnet, durch die

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Wahrscheinlichkeitstheorie Dr. C.J. Luchsinger 2 Zufallsgrössen Bevor wir uns den Zufallsgrössen zuwenden (2.3), wollen wir noch kurz 2 Themen vorholen: Allgemeine Bemerkungen zu Abbildungen und Mengen

Mehr

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse 2 Halbgruppen von Übergangswahrscheinlichkeiten Markov-Prozesse Im Folgenden sei (X, B) ein (polnischer) Messraum und T = [0, ) oder T = N 0 Definition 21 Eine Familie (P t ) t T von (X, B) mit Übergangswahrscheinlichkeiten

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012 Darstellungssatz von Riesz in vollständig regulären Räumen Carina Pöll 0726726 Wintersemester 2012 Inhaltsverzeichnis 1 Einleitung 1 2 Definitionen und Resultate aus der Topologie 1 3 Der Darstellungssatz

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

Inhalt. Einführung. Deterministische Mosaike. Zufällige Mosaike. Mathematische Analyse. Statistik. Schluss

Inhalt. Einführung. Deterministische Mosaike. Zufällige Mosaike. Mathematische Analyse. Statistik. Schluss Zufällige Mosaike: Eine Einführung Zhanlong Tao, Tobias Krejci 27.05.2008 Seite 2 Zufällige Mosaike 27.05.2008 Zhanlong Tao, Tobias Krejci Einführung Inhalt Einführung Deterministische Mosaike Zufällige

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

1. Übungsblatt zu Stochastische Prozesse

1. Übungsblatt zu Stochastische Prozesse 1. Übungsblatt zu Stochastische Prozesse Aufgabe 1: Es sei (X n ) n N0 ein stochastischer Prozess mit abzählbarem Zustandsraum E. Man zeige: (X n ) n N0 ist genau dann eine Markov-Kette, wenn für alle

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Institut für angewandte Mathematik Wintersemester 2009/10 Andreas Eberle, Matthias Erbar, Bernhard Hader Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Bitte diese Felder in Druckschrift ausfüllen

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr