Einführung i.d. Wissensverarbeitung

Größe: px
Ab Seite anzeigen:

Download "Einführung i.d. Wissensverarbeitung"

Transkript

1 Einführung in die Wissensverarbeitung 2 VO UE SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 Institut für Grundlagen der Informationsverarbeitung TU Graz Inffeldgasse 16b/1

2 Organisation Vortragende: Vorlesung: Dr. Franz Pernkopf (SPSC) Dr. Stefan Häusler (IGI) Übungen: DI Paul Meissner(SPSC) DI Stefan Habenschuss (IGI) Allgemein: VO: Mittwoch, 14:15, HSi13 UE: Dienstag, 13:15 18:00 (3 Gruppen), HSi11 Webpage Newsgroup: tu-graz.lv.ew 2

3 Maschinelles Lernen Arthur Samuel (1959): Machine learning: Field of study that gives computers the ability to learn without being programmed. Problem: Auf Grund der Komplexität des Spiels ist die optimale Strategie nicht bekannt. 3

4 Was ist Wissensverarbeitung? Künstliche Generierung von Wissen aus Erfahrung: Entdecken und Strukturieren von Wissen, Ableiten von neuem Wissen, Kommunikation dieses Wissens. Repräsentation dieses Wissens (im Computer) 4

5 Formen der Wissensverarbeitung Wissensverarbeitung mit sprachlichen Strukturen. Logische Systeme: Aussagenlogik und Prädikatenlogik Heuristische Ansätze, wie z.b. aus den Gebieten Mustererkennung, Neuronale Netze, evolutionäre Algorithmen etc. Computational Intelligence: Formulierung von präzisen logischen Aussagen ist praktisch nicht möglich. Anwendung von heuristischen Methoden 5

6 Wissensverarbeitung mit logischen Systemen Entwurf von Agenten, welche die Welt repräsentieren können... und eines Schlußfolgerungsprozesses, welcher neue Repräsentationen ableitet und diese dazu nutzt, um zu schließen, was zu tun ist. Wumpus-Welt 6

7 Computational Intelligence CI wird angewendet, wenn die Lösung einer Aufgaben schwer mit logischen Sprachen oder klaren Regeln formuliert werden kann. Beispiel: Bilderkennung Meissner Pernkopf Neumann Häusler 7

8 Anwendungsbereiche Recommender systems Amazon.com Online Radio Netflix US online Filmverleih (Datensatz mit 100 Mio. Einträge) 8

9 Anwendungsbereiche NETFLIX Netflix Prize, 1 Mio. US-Dollar für 10% Vorhersagevebesserung 9

10 Weitere Anwendungsbereiche... Gesichts-, Sprach-, Schrifterkennung (Scheckbeträge, zip code) Spam-Erkennung Notierung biologischer Sequenzen, Moleküle, chem. Proben Marktanalysen (e.g. Aktienkursvorhersagen) Fahrzeug- und Personenzählsysteme Fahrzeugsteuerungen u.s.w. 10

11 Lehrveranstaltungsübersicht IGI Kapitel 1 Grundbegriffe des maschinellen Lernens Kapitel 2 Neuronale Netze Kapitel 3 Modellselektion Kapitel 4 Klassische Klassifikationsalgorithmen Kapitel 5 Logik 11

12 Plan für heute: Kapitel 1 Welche Arten des Lernens gibt es? Wie kann man überwachtes Lernen formalisieren? Was genau ist das Lernziel? Wie werden überwachte Lernprobleme allgemein gelöst (Ablauf)? Lernalgorithmus lineare Regression 12

13 Welche Arten des Lernens gibt es? Supervised learning (überwachtes Lernen): Gegeben: Trainingsbeispiele mit Zielwerten (z.b. Zuordnungen) Ziel: Zielwertvorhersage für neue Beispiele (z.b. Marktpreise) Unsupervised learning (unüberwachtes Lernen): Gegeben: Trainingsbeispiele ohne Zielwerte Ziel: Erkennen von Struktur in den Daten Reinforcement learning (verstärkendes Lernen): Gegeben: Trainingsbeispiele mit feedback für gewählte Handlungen Ziel: Minimierung der Kosten von Handlungssequenzen 13

14 Beispiel überwachtes Lernen Neurowissenschaft: Klassifikation von visuellen Stimuli 14

15 Beispiel unüberwachtes Lernen Cluster-Analyse Daten: Entladungsmuster eines auditorischen Neurons der Laubheuschrecke in Reaktion auf verschiedene Schallquellen (Artgenossen, Feinde,...) 15

16 Beispiel unüberwachtes Lernen Blind source separation (Cocktailparty Problem) Independent component analysis Time [ms] 16

17 Beispiel verstärkendes Lernen Steuerung von autonomen Helikoptern. 17

18 Kapitel 1 Wie kann man überwachtes Lernen formalisieren? 18

19 Beispiel Gesichtserkennung Gegeben: Kollektion von Bildern und Kennzeichnungen. Meissner, + Pernkopf, + Neumann, + Häusler, - Kennzeichnungen (labels): + Gebäudezutritt - Kein Gebäudezutritt Ziel: Korrektes Klassifizieren neuer Bilder. Häusler, -?

20 Lernbeispiele f. überwachtes Lernen Gegeben: Eingabewerte und Ausgabewerte X =ℝ d, Y ={ 1, 1} 20

21 Formalisierungsschritte Hypothese Lernalgorithmus Fehlerkriterium 21

22 Hypothese Hypothese, die; -, -n [hü..] (griech.) noch unbewiesene, als Hilfsmittel für eine Erkenntnis benutzte Annahme, Vermutung. Eine Hypothese H führt Vorhersagen durch X =ℝ d, Y ={ 1, 1} 22

23 Klassifikation Klassifikation ist die Zuweisung von Eingabewerten zu diskreten Ausgabewerten: H:X Y wobei Y endlich ist. Beispiel: Pernkopf Häusler Augenfarbe Haarfarbe (Farbton) 23

24 Lineare Klassifikation Einteilungen von Eingabewerten in Klassen basierend auf einer linearen Kombination der Eingabewerte. Beispiel: ℝ 2 Pernkopf Häusler Augenfarbe Haarfarbe (Farbton) 24

25 Binäre lineare Klassifikation Einteilungen von Eingabewerten in 2 Klassen anhand des linearen Klassifikators y = sign w T x =sign w 0 w 1 x 1... w d x d x,w ℝ d Interpretation: Gewichtete Kombination von Expertenmeinungen (z.b. für binäre Attribute) Mehrheitsentscheidung y = sign w 0 w 1 x 1... w d x d Stimme Kombination von Stimmen Experte 1 w1 w2 wd 25

26 Hypothesenklassen Eine Hypothesenklasse H ist eine Menge von Hypothesen. Z.B: Linearer Klassifikator d Hypothesenklasse wird mit dem Vektor w ℝ parametrisiert. y = sign w T x =sign w 0 w 1 x 1... w d x d 26

27 Lernalgorithmus Ein Lernalgorithmus A wählt eine Hypothese H aus der Hypothesenklasse H anhand einer Liste L von l Trainingsbeispielen aus. Gegeben: L = x 1, y 1, x 2, y 2,..., x l, y l L X Y X Y :={ s 1,..., sl l 0 und jedes si X Y } 27

28 Fehlerkriterium Das Fehlerkriterium E y, y quantifiziert die Abweichung der Ausgabe der Hypothese y vom Sollwert y. 28

29 Kapitel 1 Was genau ist das Lernziel? 29

30 Empirischer Fehler Der empirische Fehler ist der Mittelwert des Fehlerkriteriums aller Lernbeispiele Naheliegend: Finde w welches Empirischer Fehler 1 l error L = k =1 E y k, H w, x k l minimiert. Warum ist es sinnvoll den empirischen Fehler zu minimieren? 30

31 Wahrer Fehler Der empirische Fehler dient zur Abschätzung des wahren Fehlers. Empirischer Fehler: 1 l error L = k =1 E y k, H w, x k l Wahrer Fehler:? In welcher Beziehung stehen der empirische und der wahre Fehler? 31

32 Lernphasen Trainingsphase: Dient zur Auswahl der Hypothese aus einer Hypothesenklasse H durch einen Lernalgorithmus anhand von Trainingsdaten. Testphase: Dient zur Betimmung der Qualität der ausgewählten Hypothese durch ein Fehlerkriterium anhand von Testdaten (Generalisierung). Trainingsdaten Testdaten = Ø 32

33 Kapitel 1 Fallbeispiel: Lineare Regression. 33

34 Einschub: Partielle Ableitungen Partielle Ableitungen sind definiert als Ableitungen von Funktionen mehrerer Variablen f wi,..., w d, wenn alle, außer der Variablen nach der abgeleitet wird, festgehalten werden f w 1,..., wi h,.., w d f w 1,..., wi,.., w d f lim h wi h f w2 w1 34

35 Einschub: Partielle Ableitungen Es kann auch nach mehreren Variablen partiell abgeleited werden. f f f,..., w1 wd f w1 w1 f w2 w2 f = f w 35

36 Regression Das Ziel ist Zuweisung (quantitative Vorhersage) von Eingabewerten zu reellwertigen Ausgabewerten: H:X Y wobei Y unendlich ist. Beispiel: Vorhersage des Verbrauchs (in Liter) in Abhängigkeit von 8 Motorattributen. Einfachheitshalber verwenden wir nur ein Attribut. 36

37 Lineare Regression Fuel y y x x Weight Weight 37

38 Optimierung ist analytisch lösbar Minimierung des empirischen Fehlers 2 1 l MSE w = k =1 y k H x k, w l Durch 0 setzen der Ableitung nach w 0 und w i erhält man die optimalen Parameterwerte 38

39 Vorhersagefehler Je größer die Anzahl der Trainingsbeispiele, desto geringer der wahre Fehler. l= Fuel l= y MSE l= l= Anzahl der Trainingsbeispiele x Weight Wir versuchen den Fehler besser zu verstehen. 39

40 Fehlerarten Der strukurelle Fehler misst den Fehler, der auf die limitierte Hypothesenklasse zurückzuführen ist (für unendlich viele Trainingsbeispiele) Der Approximationsfehler gibt an, wie nahe man an der best möglichen Vorhersage liegt und ist zurückzuführen auf die geringe Anzahl von samples. 40

41 Anforderungen für gute Vorhersagen Welche Anforderungen stellen wir an Hypothesen und Lernalgorithmen in Anbetracht dieser Überlegungen. Was ist eine gute Hypothese? Was ist ein guter Lernalgorithmus? 41

42 Qualität einer Hypothese Die Qualität einer Hypothese wird anhand des wahren Fehlers gemessen. error P = E y, H w, x x, y ~P Dieser wird anhand unabhängiger Testdaten T abgeschätzt, welche nicht zum Trainieren (d.h. zur Auswahl der Hypothesenklasse) verwendet wurden. 1 n error T = k =1 E y k, H w, x k n n 42

43 Qualität eines Lernalgorithmus Die Qualität eines Lernalgorithmus A wird zum einen daran gemessen, ob es in der Hypothesenklasse H überhaupt eine Hypothese H mit niedrigem wahren Fehler error P H gibt ( expressibility of H ). Zum anderen wird die Qualität daran gemessen, wie groß die Chance ist dass A schon für eine relativ kurze Liste L von Trainingsbeispielen eine Hypothese H in H findet, deren wahrer Fehler error P H nicht viel größer als der empirische Fehler error L H ist. 43

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Logische Agenten. Einführung in die Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Logische Agenten. Einführung in die Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Logische Agenten Einführung in die Wissensverarbeitung 2 VO 708.560 + 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut

Mehr

Logische Agenten. Einführung in die Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Logische Agenten. Einführung in die Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Logische Agenten Einführung in die Wissensverarbeitung 2 VO 708.560 + 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 12 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Maschinelles Lernen Definition Lernen 2 agnostic -learning Definition

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik.

Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik. Harald Hauptseminarpräsentation Kirschenmann Personenerkennung 1 Inhaltsübersicht Motivation Grundlagen Benchmark Eigene Gesichtserkennung 2 Motivation Baustein einer Microservice Architektur Personenerkennung

Mehr

Maschinelles Lernen II

Maschinelles Lernen II Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen II Niels Landwehr Organisation Vorlesung/Übung 4 SWS. Ort: 3.01.2.31. Termin: Vorlesung: Dienstag, 10:00-11:30.

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

Semiüberwachte Paarweise Klassifikation

Semiüberwachte Paarweise Klassifikation Semiüberwachte Paarweise Klassifikation Andriy Nadolskyy Bachelor-Thesis Betreuer: Prof. Dr. Johannes Fürnkranz Dr. Eneldo Loza Mencía 1 Überblick Motivation Grundbegriffe Einleitung Übersicht der Verfahren

Mehr

1. Lernen von Konzepten

1. Lernen von Konzepten 1. Lernen von Konzepten Definition des Lernens 1. Lernen von Konzepten Lernziele: Definitionen des maschinellen Lernens kennen, Klassifikationen des maschinellen Lernens kennen, Das Prinzip des induktiven

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Industrial Data Intelligence Datenbasierte Produktionsoptimierung. Hannover, HMI Peter Seeberg

Industrial Data Intelligence Datenbasierte Produktionsoptimierung. Hannover, HMI Peter Seeberg Industrial Data Intelligence Datenbasierte Produktionsoptimierung Hannover, 26.04.2017 HMI Peter Seeberg Algorithmus Daten Entscheidung Peter Seeberg / Softing, 2016 Copyright 2016 Softing Industrial.

Mehr

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation Validation Oktober, 2013 1 von 20 Validation Lernziele Konzepte des maschinellen Lernens Validierungsdaten Model Selection Kreuz-Validierung (Cross Validation) 2 von 20 Validation Outline 1 Validation

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Niels Landwehr, Silvia Makowski, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Di 10:00-11:30

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Einführungsveranstaltung Überblick Organisation Literatur Inhalt und Ziele der Vorlesung Beispiele aus der Praxis 2 Organisation Vorlesung/Übung + Projektarbeit. 4 Semesterwochenstunden.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Intelligente Algorithmen Einführung in die Technologie

Intelligente Algorithmen Einführung in die Technologie Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Wie können Computer lernen?

Wie können Computer lernen? Wie können Computer lernen? Ringvorlesung Perspektiven der Informatik, 18.2.2008 Prof. Jun. Matthias Hein Department of Computer Science, Saarland University, Saarbrücken, Germany Inferenz I Wie lernen

Mehr

Das Perzeptron. Volker Tresp

Das Perzeptron. Volker Tresp Das Perzeptron Volker Tresp 1 Einführung Das Perzeptron war eines der ersten ernstzunehmenden Lernmaschinen Die wichtigsten Elemente Sammlung und Vorverarbeitung der Trainingsdaten Wahl einer Klasse von

Mehr

Mustererkennung und Klassifikation

Mustererkennung und Klassifikation Mustererkennung und Klassifikation WS 2007/2008 Fakultät Informatik Technische Informatik Prof. Dr. Matthias Franz mfranz@htwg-konstanz.de www-home.htwg-konstanz.de/~mfranz/heim.html Grundlagen Überblick

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Balanced Manufacturing: Datenbasierte Modellbildung mittels Machine Learning

Balanced Manufacturing: Datenbasierte Modellbildung mittels Machine Learning Balanced Manufacturing: Datenbasierte Modellbildung mittels Machine Learning IFT - Institute for Production Engineering and Laser Technology DI Benjamin Mörzinger Energieeffizienz: Motivation Quelle: science.sciencemag.org

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN

Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN Kapitel LF: I I. Einführung in das Maschinelle Lernen Bemerkungen: Dieses Kapitel orientiert sich an dem Buch Machine Learning von Tom Mitchell. http://www.cs.cmu.edu/ tom/mlbook.html 1 Autoeinkaufsberater?

Mehr

Support Vector Machines, Kernels

Support Vector Machines, Kernels Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen

Mehr

Konzepte der AI: Maschinelles Lernen

Konzepte der AI: Maschinelles Lernen Konzepte der AI: Maschinelles Lernen Nysret Musliu, Wolfgang Slany Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme, TU-Wien Übersicht Was ist Lernen? Wozu maschinelles

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Maschinelles Lernen Entwicklung und aktuelle Anwendungen

Maschinelles Lernen Entwicklung und aktuelle Anwendungen Maschinelles Lernen Entwicklung und aktuelle Anwendungen martin.loesch@kit.edu (0721) 608 45944 Forschungsrichtungen des ML Praxisorientiert Aufgabenorientierte, lernende Systeme Wissenserwerb (Knowledge

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Übersicht. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1

Übersicht. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1 Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Wissen beim Lernen 20. Statistische

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial i Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008 Maschinelles Lernen I Einführung Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 22. April 2008 Inhalt Einführung Lernen Maschinelle Lernverfahren im Überblick Phonetische Anwendungsbeispiele

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Tobias Scheffer Michael Brückner Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Mo 10:00-11:30

Mehr

Maschinelles Lernen. Moderne Methoden der KI: Maschinelles Lernen. Definitionen: Was ist Lernen? Definitionen: Was ist Lernen? 1.

Maschinelles Lernen. Moderne Methoden der KI: Maschinelles Lernen. Definitionen: Was ist Lernen? Definitionen: Was ist Lernen? 1. Moderne Methoden der KI: Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Sommer-Semester 2007 1. Einführung: Definitionen Grundbegriffe Lernsysteme Lernen: Grundbegriffe Lernsysteme Konzept-Lernen Entscheidungsbäume

Mehr

Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2)

Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2) Übersicht Allgemeines Modell lernender Agenten I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading Kapitel V V. Ensemble Methods Einführung Bagging Boosting Cascading V-1 Ensemble Methods c Lettmann 2005 Einführung Bewertung der Generalisierungsfähigkeit von Klassifikatoren R (c) wahre Missklassifikationsrate

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Sozialwissenschaftliche Modelle und Daten SoSe 2010

Sozialwissenschaftliche Modelle und Daten SoSe 2010 Sozialwissenschaftliche Modelle und Daten SoSe 2010 LS Sozialwissenschaftliche Methodenlehre und Sozialstatistik C. Dudel C. Dudel Sozialwissenschaftliche Modelle und Daten SoSe 2010 1 23 1 Formalia 2

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Stützvektormethode 1 Hinführungen zur SVM Katharina Morik, Claus Weihs 26.5.2009 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 1 von 40 2 von

Mehr

Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. martin.loesch@kit.edu (0721) 608 45944. Dipl.-Inform. Martin Lösch

Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. martin.loesch@kit.edu (0721) 608 45944. Dipl.-Inform. Martin Lösch Einführung: martin.loesch@kit.edu (0721) 608 45944 Übersicht Motivation & Hintergrund Naiver Bayes-Klassifikator Bayessche Netze EM-Algorithmus 2 Was ist eigentlich? MOTIVATION & HINTERGRUND 3 Warum Lernen

Mehr

Künstliche Intelligenz

Künstliche Intelligenz George F. Luger 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Künstliche Intelligenz Strategien zur Lösung komplexer

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Sommer-Semester 2008 Konzept-Lernen Konzept-Lernen Lernen als Suche Inductive Bias Konzept-Lernen: Problemstellung Ausgangspunkt:

Mehr

Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen

Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen Niels Landwehr, Paul Prasse, Termine VL Dienstag 12:15-13:45,

Mehr

Logistische Regression

Logistische Regression Logistische Regression Christian Herta August, 2013 1 von 45 Christian Herta Logistische Regression Lernziele Logistische Regression Konzepte des maschinellen Lernens (insb. der Klassikation) Entscheidungsgrenze,

Mehr

Vorlesung 2. Maschinenlernen: Klassische Ansätze I

Vorlesung 2. Maschinenlernen: Klassische Ansätze I Vorlesung 2 Maschinenlernen: Klassische Ansätze I Martin Giese Martin.giese@tuebingen.mpg.de Übersicht! Statistische Formulierung des überwachten Lernproblems! Einfache Klassifikatoren! Regression I. Statistiche

Mehr

Kapitel 5: Ensemble Techniken

Kapitel 5: Ensemble Techniken Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2009 Kapitel 5:

Mehr

Einführung in die Künstliche Intelligenz

Einführung in die Künstliche Intelligenz Einführung in die Künstliche Intelligenz Kapitel 6: Maschinelles Lernen Teil 1 Prof. Dr. Johannes Maucher HdM MIB Version 2.7 15.05.2017 Prof. Dr. Johannes Maucher (HdM MIB) KI Kapitel 6: Maschinelles

Mehr

Bielefeld Graphics & Geometry Group. Brain Machine Interfaces Reaching and Grasping by Primates

Bielefeld Graphics & Geometry Group. Brain Machine Interfaces Reaching and Grasping by Primates Reaching and Grasping by Primates + 1 Reaching and Grasping by Primates Inhalt Einführung Theoretischer Hintergrund Design Grundlagen Experiment Ausblick Diskussion 2 Reaching and Grasping by Primates

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de SS 2011 1 Softcomputing Einsatz

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Bearbeitet von Uwe Lämmel, Jürgen Cleve 4., aktualisierte Auflage 2012. Buch. 336 S. ISBN 978 3 446 42758 7 Format (B x L): 18 x 24,5 cm Gewicht: 717 g Weitere Fachgebiete > EDV,

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Ein selbstmodellierendes System für die Wasserwirtschaft

Ein selbstmodellierendes System für die Wasserwirtschaft Ein selbstmodellierendes System für die Wasserwirtschaft Dipl.-Ing. Dr. ANDRADE-LEAL Wien, im Juli 2001 1 Einleitung, Motivation und Voraussetzungen Künstliche Intelligenz Neuronale Netze Experte Systeme

Mehr

Frequentisten und Bayesianer. Volker Tresp

Frequentisten und Bayesianer. Volker Tresp Frequentisten und Bayesianer Volker Tresp 1 Frequentisten 2 Die W-Verteilung eines Datenmusters Nehmen wir an, dass die wahre Abhängigkeit linear ist, wir jedoch nur verrauschte Daten zur Verfügung haben

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Das Perceptron. Volker Tresp

Das Perceptron. Volker Tresp Das Perceptron Volker Tresp 1 Ein biologisch motiviertes Lernmodell 2 Input-Output Modelle Ein biologisches System muss basierende auf Sensordaten eine Entscheidung treffen Ein OCR System klassifiziert

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz KI Wintersemester 2013/2014 Grundlagen der Künstlichen Intelligenz Marc Toussaint Machine Learning & Robotics Lab Universität Stuttgart marc.toussaint@informatik.uni-stuttgart.de http://ipvs.informatik.uni-stuttgart.de/mlr/marc/

Mehr

in der Versorgungstechnik? Prof. Dr. Michael Krödel

in der Versorgungstechnik? Prof. Dr. Michael Krödel Künstliche Intelligenz (KI) in der Versorgungstechnik? g Was ist KI? Künstliche Intelligenz (KI; engl. artificial i intelligence, AI) ist ein Teilgebiet der Informatik, das sich mit der Automatisierung

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

Ensemble Models - Boosting, Bagging and Stacking

Ensemble Models - Boosting, Bagging and Stacking Ensemble Models - Boosting, Bagging and Stacking Maximilian Schwinger 3. Februar 2004 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Überblick............................... 3 2 Boosting 4 2.1 Beispiel................................

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 23.5.2013 1 von 48 Gliederung 1 Geometrie linearer Modelle: Hyperebenen Einführung von Schölkopf/Smola 2 Lagrange-Optimierung

Mehr

Data Mining auf Datenströmen Andreas M. Weiner

Data Mining auf Datenströmen Andreas M. Weiner Technische Universität Kaiserslautern Fachbereich Informatik Lehrgebiet Datenverwaltungssysteme Integriertes Seminar Datenbanken und Informationssysteme Sommersemester 2005 Thema: Data Streams Andreas

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Teil 5. Maschinelles Lernen

Teil 5. Maschinelles Lernen Teil 5 Maschinelles Lernen Definitionen und Abgrenzungen Was ist Lernen? Zentrale Fähigkeit von intelligenten Systemen in Natur und KI Zielgerichtete Veränderung von Wissen und/oder Verhaltensweisen durch

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Naive Bayes für Regressionsprobleme

Naive Bayes für Regressionsprobleme Naive Bayes für Regressionsprobleme Vorhersage numerischer Werte mit dem Naive Bayes Algorithmus Nils Knappmeier Fachgebiet Knowledge Engineering Fachbereich Informatik Technische Universität Darmstadt

Mehr

Übersicht. Definition Daten Problemklassen Fehlerfunktionen

Übersicht. Definition Daten Problemklassen Fehlerfunktionen Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung

Mehr

Überwachtes Lernen II: Netze und Support-Vektor-Maschinen

Überwachtes Lernen II: Netze und Support-Vektor-Maschinen Überwachtes Lernen II: Klassifikation und Regression - Neuronale Netze und Support-Vektor-Maschinen Praktikum: Data Warehousing und Data Mining Praktikum Data Warehousing und Mining, Sommersemester 2009

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP4 Slide 1 Grundlagen der Programmierung Vorlesung 4 vom 04.11.2004 Sebastian Iwanowski FH Wedel Grundlagen der Programmierung 1. Einführung Grundlegende Eigenschaften von Algorithmen und Programmen

Mehr

Unüberwachtes Lernen

Unüberwachtes Lernen Unüberwachtes Lernen Mustererkennung und Klassifikation, Vorlesung No. 12 M. O. Franz 17.01.2008 Übersicht 1 Hauptkomponentenanalyse 2 Nichtlineare Hauptkomponentenanalyse 3 K-Means-Clustering Übersicht

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Vorlesung Wissensentdeckung in Datenbanken Bias und Varianz Kristian Kersting, (Katharina Morik), Claus Weihs LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund 22.05.2014 1 von

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Artificial Intelligence. Deep Learning Neuronale Netze

Artificial Intelligence. Deep Learning Neuronale Netze Artificial Intelligence Deep Learning Neuronale Netze REVOLUTION Lernende Maschinen Mit lernenden Maschinen/Deep Learning erleben wir aktuell eine Revolution in der Informationsverarbeitung. Neue Methoden

Mehr

Neuronale Netze zur Prognose und Disposition im Handel

Neuronale Netze zur Prognose und Disposition im Handel Sven F. Crone Neuronale Netze zur Prognose und Disposition im Handel Mit einem Geleitwort von Prof. Dr. Dr. h. c. Dieter B. Preßmar GABLER RESEARCH Inhalt XI Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Schnelles Denken - Maschinelles Lernen mit Apache Spark 2

Schnelles Denken - Maschinelles Lernen mit Apache Spark 2 Schnelles Denken - Maschinelles Lernen mit Apache Spark 2 Heiko Spindler Apache Spark - Components Machine Learning Machine learning explores the construction and study of algorithms that can learn from

Mehr