Musterlösung Übung 6

Größe: px
Ab Seite anzeigen:

Download "Musterlösung Übung 6"

Transkript

1 Musterlösung Übung 6 Hörsaalübung: Abgabe: max. 27 P. Aufgabe. Heißleiter 5 P. Ein NTC-Temperaturfühler soll im medizinischen Bereich eingesetzt werden (Temperaturbereich 36 C bis 45 C). Die Temperaturabhängigkeit des Fühlers wird durch folgende Gleichung beschrieben: R T = R T0 exp[b ( T )] T 0 mit R T0 = 0 kω bei T 0 = 273 K und B = 4052 K. Der Temperaturfühler ist in der Brückenschaltung aus Abbildung eingebaut (U 0 = 0 V). U 0 R R U D R R T Abbildung : Brückenschaltung mit NTC-Temperaturfühler. a) P. Dimensionieren Sie die Widerstände so, da die Brücke bei 36 C abgeglichen ist! weiter auf der nächsten Seite / 0

2 b) 3 P. Zeigen Sie, dass für die Empfindlichkeit des Systems gilt: S = B R R T T 2 (R + R T ) 2 U 0 c) P. Berechnen Sie die Empfindlichkeit bei T = 36 C! Wie hängt die Empfindlichkeit von der Temperatur ab? Lösung. 5 P. a) Die Abgleichbedingung liefert: R R = R R T (36 C) R = R T(36 C) R T (36 C) =0 kω exp[4052 K ( 273 K + 36 K )],77 kω 273 K b) Die Spannung der Brückendiagonale errechnet sich zu: U D = ( R 2R R T ) U R + R 0 T = ( 2 R T R + R T ) U 0 = R R T 2 (R + R T ) U 0 Empfindlichkeit ist definiert als Änderung der Ausgangsgröße pro Änderung der Eingangsgröße. Also hier: S = U D T = T ( 2 R T(T ) R + R T (T ) ) U 0 = T ( 2 + R ) U 0 R T (T ) = T ( + R T T (T ) ) = R T (R T(T )) ( + R 2 R T (T ) ) U 0 = R T R T(T ) (R T (T )) 2 ( + R 2 R T (T ) ) U 0 = R B T 2 R T(T ) ( R T (T )) (R T (T )) 2 2 (R T (T ) + R) 2 U 0 = B R R T(T ) T 2 (R + R T (T )) 2 U 0 2 / 0

3 c) Bei 36 C gilt nach a) R T = R und damit: S(36 C) = B R2 (2T R) 2 U 0 = 4052 K (770 kω) 2 mv 0 V 06 2 (273 K + 36 K) (770 kω) 2 K Die Empfindlichkeit ist also temperaturabhängig und sinkt mit steigender Temperatur. Aufgabe 2. Thermopile 3 P. Ein Thermopile-Sensor auf Siliziumbasis soll zur berührungslosen Temperaturmessung im Pkw eingesetzt werden. Das so gewonnene Signal kann z.b. zur Steuerung der Klimaanlage verwendet werden. Der Sensor erfasst einen Raumwinkel von 0. µm 54,74 mm 2 mm Abbildung 2: Bemaßte Draufsicht und Querschnitt eines Thermopile-Sensors. a) b) 2 P. Welche Strahlungsleistung empfängt der Sensor von einer m entfernten Person bei einer Umgebungstemperatur von 20 C? P. Zum Vergleich: Welche Strahlungsleistung würde bei direkter Sonneneinstrahlung (000 kw h pro Jahr und m 2 ) auf die Empfängerfläche treffen? weiter auf der nächsten Seite 3 / 0

4 c) 2 P. Geben Sie den Zusammenhang zwischen Temperaturdifferenz ΔT Wärmestrom Φ d) thermischem Widerstand R th an. Gehen Sie dafür vom elektrischen Fall aus und überlegen Sie, welche elektrischen Größen äquivalent zu den thermodynamischen Größen sind. Wie berechnet sich R th aus der spezifischen Wärmeleitfähigkeit λ spez? 4 P. Schätzen Sie die Temperaturerhöhung der Sensorfläche für die Fälle in a) und b) ab. Hierfür wird die gesamte Membran als idealer Wärmeleiter und der Rahmen als ideale Wärmesenke angenommen. Es soll also nur die über den schrägen Übergangsbereich zwischen Rahmen und Membran (in der Abbildung gelb) abfließende Wärme betrachtet werden; die Wärmeleitung der Thermoschenkel, der Rahmenecken und der Luft können vernachlässigt werden. Die Wärmeleitfähigkeit des Rahmens (Silizium) beträgt λ spez = 50 W m K. Hinweis: Um den Gesamtwiderstand des Übergangsbereichs auszurechnen müssen Sie ein Integral der Form a x+c dx = a ln (a x + c) lösen. e) f) P. Zeigen Sie rechnerisch, dass es gerechtfertigt war, in d) die Wärmeleitung über die Luft (λ spez = 26,20 mw m K ) zu vernachlässigen. Nehmen Sie für die Länge 0,50 mm an. Hinweis: Die Membran hat eine Ober- und Unterseite.,5 P. Welche Signalspannung erhält man mit 60 Thermopaaren aus Bi/Sb auf der Membran? g),5 P. Warum muss zusätzlich die Umgebungstemperatur erfasst werden? Wie wird dies sinnvoll in das Sensorelement integriert, d.h. welche Art Sensor wird wo angebracht? Lösung 2. 3 P. a) Laut Vorlesung gilt: A S : sichtbare Strahlerfläche; Φ = σ A S A E π a 2 (TS 4 T E 4 ) 4 / 0

5 A E = mm 2 ; a: Abstand = m; T E : Temperatur des Sensors (293 K) Die Membran wird punktförmig angenommen. a φ d Da der Sensor einen Winkel von 0 erfasst, ist die Fläche (ein Kreis mit Radius d/2), die er von einer m entfernten Person gemäß der Skizze sieht: A S = π d2 4 = π (2a tan φ 2 )2 4 = 0,024 m 2 Für die Person ergibt sich ein Strahlungsfluss von Φ Mensch = 808 nw. b) Für die Sonne ergibt sich eine Bestrahlungsstärke von und damit E = 06 W h m h 4 W m 2 Φ Sonne = E 0 6 m 2 also mehr als 40 Mal so viel wie für einen Menschen. c) Temperaturdifferenz ΔT Spannung U = 4 µw 5 / 0

6 Wärmefluss/Strahlungsfluss Φ Strom I thermischer Widerstand R th Widerstand R Damit ist der gesuchte Zusammenhang: ΔT = Φ R th Die Formel für den thermischen Widerstand ergibt sich aus einfachen Überlegungen, analog zum elektrischen Strom bzw. Widerstand. je größer die Leitfähigkeit, desto geringer der Widerstand: R th /λ spez je länger der Weg, desto größer der Widerstand: R th l je größer die Querschnittsfläche, desto geringer der Widerstand: R th /A R th = λ spez l A P. d) Um die Fläche in Abhängigkeit des Wegs auszudrücken wird der tan φ verwendet. Mit φ = 54,74. h(l) = l tan φ mit tan 54,74 = 2 Damit ergibt sich für die Querschnittsfläche A(l) Breite (Dicke Membran + h(l)) A(l) = mm ( µm + l 2) 6 / 0

7 Für den thermischen Widerstand gilt: R th = dl 4 λ spez A(l) 0,50 mm = 4 λ spez 0 mm mm ( µm + l dl 2) = 4 λ spez mm 2 ( ln ( µm + 2 0,50 mm) ln ( µm)) = 4 λ spez mm 2 ln ( µm + 2 0,50 mm ) µm 4 50 W m K mm 2 6,56 = 7,73 K W Nach c) ist dann ΔT Mensch = Φ Mensch R th = W 7,73 K W = 6,25 µk ΔT Sonne = Φ Sonne R th = W 7,73 K W = 88 µk e) Die Wärme der Membran wird über die Vorder- und Rückseite an der Luft abgegeben, die Gesamtfläche ist also: Für dasselbe l wie in d) ergibt sich A = 2 mm 2 R th = λ spez l A = 9,54 03 K W Der Widerstand der Luft ist also mehr als zwei Größenordnungen größer als der des Rahmens und kann daher für eine erste Abschätzung vernachlässigt werden. 7 / 0

8 f) Laut Vorlesung gilt U th = n αδt U th,mensch = µv K ΔT Mensch = 37,50 nv U th,sonne = µv K ΔT Sonne = 5,28 µv g) Wie oben gezeigt ist der Netto-Strahlungsfluss von der Temperatur von Sender und Empfänger abhängig. Da der Sensor dann den Strahlungsfluss linear in die Signalspannung umsetzt, wirkt sich also die Sensortemperatur auf die Anzeige aus. Wäre der Sensor ebenfalls 37 C warm, würde er bei Messung des Menschen 0 V liefern, wäre der Sensor heißer, dann würde die Signalspannung sogar negativ werden. Man integriert auf dem Sensorchiprahmen einen zusätzlichen Temperatursensor, der ein absolutes Temperatursignal liefert. Dies könnte z.b. ein Metallschicht Temperatursensor sein, da sich dieser in der gleichen Technologie herstellen lässt wie die restlichen Strukturen. Ein Thermoelement auf dem Rahmen geht natürlich nicht, da man damit ohne Referenz keine absolute Temperatur messen kann. P. Aufgabe 3. Bolometer 9 P. Zur Verfügung steht ein Bolometer (A Membran = 6, m 2, S Membran = 55,0 0 3 K W ) mit einem an die Membran angekoppelten Pt00-Widerstand. Mit diesem Bolometer soll die Temperatur einer a = 5 m entfernten Heizplatte mit einem Durchmesser von D P latte = m erfasst werden. Die Umgebungstemperatur ist 20 C. a) P. Erklären Sie allgemein die Funktionsweise eines Bolometers! b) 3,5 P. Um welchen Wert ändert sich der Pt00, wenn die Umgebungstemperatur bei ausgeschalteter Heizplatte um C steigt? Welcher scheinbaren Temperatur der Heizplatte entspricht das (Angabe in C)? Hinweis: Sie können eine lineare Kennlinie für den Pt00 annehmen. weiter auf der nächsten Seite 8 / 0

9 c) P. Ergänzen Sie das Bolometer und verschalten Sie es in einer Messbrücke, so dass das Ausgangssignal unabhängig von der Umgebungstemperatur und den Grundwerten der Brückenwiderstände wird! d) 2,5 P. Berechnen Sie das Ausgangssignal der Brücke für eine 200 C heiße Platte, wenn die Brücke (U 0 = 5 V) bei Umgebungstemperatur abgeglichen ist. e) P. Welche anderen Strahlungssensoren (mindestens zwei) kennen Sie? Lösung 3. 9 P. a) Wie bei den meisten Strahlungssensoren wird bei Bolometern die einfallende Strahlung zunächst durch eine Absorbermembran in eine Temperaturänderung umgewandelt. Diese Temperaturänderung führt zu einer Änderung des angekoppelten elektrischen Widerstandes, die dann elektrisch ausgelesen werden kann. P. b) Mit der Umgebungstemperatur steigt auch die Temperatur der Membran und damit die des Widerstandes. Das entspricht einer Änderung des Pt00 um: ΔR P t00 = R 0 A P t K = 0,39 Ω Um die scheinbare Temperatur der Heizplatte zu errechnen, wird zunächst über die Empfindlichkeit der Strahlungsfluss errechnet, der die Membran um C erwärmen würde: ΔT = S Membran Φ Φ K = K 55,0 0 3 K W Damit kann dann die scheinbare Temperatur errechnet werden: Φ = σ A Sender A Empfanger πa 2 = 8,0 0 6 W P. (TSender 4 T Empf 4 anger ) T Sender = Φ 4 σ πa 2 + TEmpf 4 anger A Sender A Empfanger = 546 K = T Sender 273 C = 273 C c) Damit das Ausgangssignal unabhängig von der Umgebungstemperatur wird, muss ein weiterer Pt00 auf dem Chiprahmen angebracht werden, der dort die Umgebungstemperatur misst. Die beiden Pt00 werden dann in einem Zweig einer Messbrücke verschaltet, in dem anderen befinden sich zwei gleich große Widerstände (Abbildung 3). P. 9 / 0

10 U 0 Pt00 (Membran) R 3 U d Pt00 (Rahmen) R 4 Abbildung 3: Wheatstone-Brücke zur Kompensation der Umgebungstemperatur in einem Bolometer. d) Die auf der Membran auftreffende Leistung kann mit der üblichen Formel berechent werden: Φ = σ A Sender A Empfanger πa 2 (TSender 4 T Empf 4 anger ) = 9, W Das führt zu einer Temperaturüberhöhung der Membran um: ΔT Membran = S Membran Φ = 52, K Es handelt sich um eine Viertelbrücke. Daraus ergibt sich eine Diagonalspannung von: U D = 4 U 0 ΔR R 0 = 4 U 0 A P t ΔT Membran ( + A P t ) T Umgebung = 27, V e) Andere Strahlungssensoren sind der Thermopile und der pyroelektrische Strahlungssensor. P. 0 / 0

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 Hörsaalübung: 14.05.018 Abgabe: 1.05.018 max. 30 P. Aufgabe 1. Brückenschaltung 10 P. U 0 R 3 U D R R 4 a) b) Abbildung 1: Wheatstone-Brücke. P. Warum werden zur Messung von Widerständen

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F

Hochschule für angewandte Wissenschaften Hamburg, Department F + F 1 Versuchsdurchführung 1.1 Bestimmung des Widerstands eines Dehnungsmessstreifens 1.1.1 Messung mit industriellen Messgeräten Der Widerstandswert R0 eines der 4 auf dem zunächst unbelasteten Biegebalken

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F

Hochschule für angewandte Wissenschaften Hamburg, Department F + F 1 Versuchsdurchführung 1.1 Bestimmung des Widerstands eines Dehnungsmessstreifens 1.1.1 Messung mit industriellen Messgeräten Der Widerstandswert R 0 eines der 4 auf dem zunächst unbelasteten Biegebalken

Mehr

Labor Elektrotechnik. Versuch: Temperatur - Effekte

Labor Elektrotechnik. Versuch: Temperatur - Effekte Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5 Versuch: Temperatur - Effekte 13.11.2001 3. überarbeitete Version Markus Helmling Michael Pellmann Einleitung Der elektrische Widerstand ist

Mehr

E-Labor im WS / SS. Versuch HS Homogenes Strömungsfeld / Passive Zweipole

E-Labor im WS / SS. Versuch HS Homogenes Strömungsfeld / Passive Zweipole Abteilung Maschinenbau im WS / SS Versuch HS Homogenes Strömungsfeld / Passive Zweipole Gruppe: Verfasser Name Vorname Matr.-Nr. Semester Teilnehmer Teilnehmer BITTE ANKREUZEN Messprotokoll Versuchsbericht

Mehr

Praktikum GEP2 Technische Informatik HAW Hamburg. Versuch 3. Messen nichtelektrischer Größen und kleinster Widerstände.

Praktikum GEP2 Technische Informatik HAW Hamburg. Versuch 3. Messen nichtelektrischer Größen und kleinster Widerstände. Versuch 3 Messen nichtelektrischer Größen und kleinster Widerstände Gruppe: Tisch: Versuchsdatum:.. Teilnehmer: Korrekturen: Testat: Vers. 17/18 Versuch 3 1 / 5 Lernziel Ziel ist die Auseinandersetzung

Mehr

SCHULUNG. Temperaturmesstechnik

SCHULUNG. Temperaturmesstechnik Technische Änderungen vorbehalten Fon +49 771 83160 Fax +49 771 831650 info@bb-sensors.com bb-sensors.com 1 / 12 Inhaltverzeichnis 1. Temperatursensoren... 3 2. Temperatursonden... 4 3. Temperatur... 5

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Thermodynamik 9. März 20 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messbrücken und Leistungsmessung Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer

Mehr

Dipl.- Geol. Martin Sauder / Ö. b. u. v. Sachverständiger für mineralische Baustoffe / Institut für Baustoffuntersuchung und

Dipl.- Geol. Martin Sauder / Ö. b. u. v. Sachverständiger für mineralische Baustoffe / Institut für Baustoffuntersuchung und / Wärmedurchlasswiderstand von Luftschichten Ruhende Luftschicht: Der Luftraum ist von der Umgebung abgeschlossen. Liegen kleine Öffnungen zur Außenumgebung vor und zwischen der Luftschicht und der Außenumgebung

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Versuch A9 - Strahlung. Abgabedatum: 28. Februar 2008

Versuch A9 - Strahlung. Abgabedatum: 28. Februar 2008 Versuch A9 - Strahlung Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Zusammenhang 3 2.1 Raumwinkel.............................. 3 2.2 Strahlungsgrößen...........................

Mehr

a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug

a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug Aufgabe 1: Die Abbildung zeigt eine Reihenschaltung a) und eine Parallelschaltung b) der Widerstände R 1 = 10 MΩ, R 2 = 10 kω und = 1 MΩ an einer konstant Spannungsquelle mit U g = 5 V (Batterie). (5)

Mehr

201 Wärmeleitfähigkeit von Gasen

201 Wärmeleitfähigkeit von Gasen 01 Wärmeleitfähigkeit von Gasen 1. Aufgaben 1.1 Messen Sie die relative Wärmeleitfähigkeit x / 0 (bezogen auf Luft bei äußerem Luftdruck) für Luft und CO in Abhängigkeit vom Druck p. Stellen Sie x / 0

Mehr

Lösung zu Aufgabe 3.1

Lösung zu Aufgabe 3.1 Lösung zu Aufgabe 3.1 (a) Die an der Anordnung anliegende Spannung ist groß im Vergleich zur Schleusenspannung der Diode. Für eine Abschätzung des Diodenstroms wird zunächst die Näherung V = 0.7 V verwendet,

Mehr

Brückenschaltung (BRÜ)

Brückenschaltung (BRÜ) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...

Mehr

Physikepoche Klasse 11. Elektrizitätslehre

Physikepoche Klasse 11. Elektrizitätslehre Physikepoche Klasse 11 Elektrizitätslehre Der elektrische Gleichstromkreis Nur in einem geschlossenen Stromkreis können die elektrischen Ladungsträger vom negativen Pol der Spannungsquelle zum positiven

Mehr

Grundbegriffe der Elektrotechnik

Grundbegriffe der Elektrotechnik Grundbegriffe der Elektrotechnik Inhaltsverzeichnis 1 Die elektrische Ladung Q 1 2 Die elektrische Spannung 2 2.1 Die elektrische Feldstärke E....................................................... 2 2.2

Mehr

Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm

Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm Strom und Magnetismus Musterlösungen Andreas Waeber 5. 0. 009 Elektrischer Strom. Strahlungsheizer: U=5V, P=50W a) P = U = P = 0, 9A U b) R = U = 0, 6Ω c) Mit t=3600s: E = P t = 4, 5MJ. Ohmsche Widerstände

Mehr

Messtechnik, Übung, Prof. Helsper

Messtechnik, Übung, Prof. Helsper Messtechnik, Übung, Prof. Helsper Christoph Hansen chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder

Mehr

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann.

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann. Brückenschaltungen Grolik Benno, Kopp Joachim 2. Januar 2003 Grundlagen des Versuchs. Brückenschaltung für Gleichstromwiderstände Zur genauen Bestimmung ohmscher Widerstände eignet sich die klassische

Mehr

E 3d Dehnungsmessstreifen

E 3d Dehnungsmessstreifen Physikalisches Praktikum für Maschinenbauer Fachbereich Maschinenbau und Verfahrenstechnik Lehrstuhl für Messtechnik & Sensorik Prof. Dr.-Ing. Jörg Seewig Aufgabenstellung Der Versuch soll zunächst mit

Mehr

Wärmeleitung und thermoelektrische Effekte Versuchsauswertung

Wärmeleitung und thermoelektrische Effekte Versuchsauswertung Versuch P2-32 Wärmeleitung und thermoelektrische Effekte Versuchsauswertung Marco A., Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 30.05.2011 1 Inhaltsverzeichnis 1 Bestimmung

Mehr

Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen

Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen Bearbeitet von Herrn M. Sc. Christof

Mehr

10. Thermodynamik Wärmetransport Wämeleitung Konvektion Wärmestrahlung Der Treibhauseffekt. 10.

10. Thermodynamik Wärmetransport Wämeleitung Konvektion Wärmestrahlung Der Treibhauseffekt. 10. 10.5 Wärmetransport Inhalt 10.5 Wärmetransport 10.5.1 Wämeleitung 10.5.2 Konvektion 10.5.3 Wärmestrahlung 10.5.4 Der Treibhauseffekt 10.5.1 Wärmeleitung 10.5 Wärmetransport an unterscheidet: Wärmeleitung

Mehr

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Klausur zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Leibniz Universität Hannover 03.02.2010 Barthold Name, Vorname: Matrikelnummer:

Mehr

*DE A *

*DE A * (19) *DE102015001710A120160818* (10) DE 10 2015 001 710 A1 2016.08.18 (12) Offenlegungsschrift (21) Aktenzeichen: 10 2015 001 710.1 (22) Anmeldetag: 13.02.2015 (43) Offenlegungstag: 18.08.2016 (71) Anmelder:

Mehr

9. Wärmelehre. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Wärmelehre Physik für Informatiker

9. Wärmelehre. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Wärmelehre Physik für Informatiker 9. Wärmelehre 9.5 Wärmetransport 9.5.1 Wärmeleitung 9.5.2 Konvektion 953 9.5.3 Wärmestrahlung 9.5.4 Der Treibhauseffekt 9.5 Wärmetransport Man unterscheidet: Wärmeleitung Energietransport durch Wechselwirkung

Mehr

Klausur im Modul Grundgebiete der Elektrotechnik I

Klausur im Modul Grundgebiete der Elektrotechnik I Klausur im Modul Grundgebiete der Elektrotechnik I am 09.03.2015, 9:00 10:30 Uhr Matr.Nr.: E-Mail-Adresse: Studiengang: Vorleistung vor WS 14/15 berücksichtigen? Ja Nein Prüfungsdauer: 90 Minuten Zur Prüfung

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Auswertung. C16: elektrische Leitung in Halbleitern

Auswertung. C16: elektrische Leitung in Halbleitern Auswertung zum Versuch C16: elektrische Leitung in Halbleitern Alexander FufaeV Partner: Jule Heier Gruppe 434 Einleitung In diesem Versuch sollen wir die elektrische Leitung in Halbleitern untersuchen.

Mehr

Thema Elektrizitätslehre Doppellektion 7

Thema Elektrizitätslehre Doppellektion 7 Natur und Technik 2 Physik Lektionsablauf Thema Elektrizitätslehre Doppellektion 7 Ziele Einblick in das Leben eines Forscher erhalten Das Ohmsche Gesetz herleiten Das Ohmsche Gesetz und die Umformungen

Mehr

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2010/11 Fach: Elektronik,

Mehr

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 05 PHYS300 Grundkurs IIIb Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, othmar.marti@physik.uni-ulm.de) 5. 2. 2003 oder 2.. 2004 Aufgaben. In einer Leitung, die parallel zur x-achse

Mehr

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge Stoßquerschnitt und mittlere freie Weglänge Im idealen Gas findet zwischen zwei Teilchen ein Stoß statt, wenn der Abstand der Fluggeraden den beiden Teilchen, der Stoßparameter b, kleiner ist als die Summe

Mehr

3ω Messung an dünnen Schichten Eine Unsicherheitsanalyse

3ω Messung an dünnen Schichten Eine Unsicherheitsanalyse Bayerisches Zentrum für Angewandte Energieforschung e.v. 3ω Messung an dünnen Schichten Eine Unsicherheitsanalyse S. Rausch AK Thermophysik, Graz 2012 3ω METHODE - PRINZIP Messverfahren zur Bestimmung

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung

Mehr

B57831 M 831. Temperaturmessung Gehäusebauformen. R/R N Nenntemperatur

B57831 M 831. Temperaturmessung Gehäusebauformen. R/R N Nenntemperatur Temperaturmessung Gehäusebauformen B5783 M 83 Anwendung Klimaanlagen Heizungssysteme Merkmale Aluminiumgehäuse Anschlußkabel (DIN 57 28): PVC H03VV-F2 0,7 abisoliert Aderendhülsen PVC-Leitung beständig

Mehr

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen.

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen. Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 13. Juli 2006 Möglicher Abgabetermin:

Mehr

Klausur Messtechnik (Automatisierungstechnik Modul1)

Klausur Messtechnik (Automatisierungstechnik Modul1) Fachhochschule Münster University of Applied Sciences Klausur Messtechnik (Automatisierungstechnik Modul1) Fachbereich Physikalische Technik Messtechnik Prof. Dr. Gerd Klinge 06.02.2012 Name... Vorname:...

Mehr

OPV-Schaltungen. Aufgaben

OPV-Schaltungen. Aufgaben OPVSchaltungen Aufgaben 2 1. Skizzieren Sie die vier für die Meßtechnik wichtigsten Grundschaltungen gegengekoppelter Meßverstärker und charakterisieren Sie diese kurz bezüglich des Eingangs und Ausgangssignals!

Mehr

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis:

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis: Schulversuchspraktikum WS 2000/2001 Redl Günther 9655337 Widerstände 3. und 7.Klasse Inhaltsverzeichnis: 1) Vorraussetzungen 2) Lernziele 3) Verwendete Quellen 4) Ohmsches Gesetz 5) Spezifischer Widerstand

Mehr

2. Musterklausur in K1

2. Musterklausur in K1 Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur in K Die Klausur stellt nur eine kleine Auswahl der möglichen Themen dar. Inhalt der Klausur kann aber der gesamte

Mehr

9. Thermodynamik. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Thermodynamik Physik für E-Techniker

9. Thermodynamik. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Thermodynamik Physik für E-Techniker 9. Thermodynamik 9.5 Wärmetransport 9.5.1 Wärmeleitung 9.5.2 Konvektion 953 9.5.3 Wärmestrahlung 9.5.4 Der Treibhauseffekt 9.5 Wärmetransport Man unterscheidet: Wärmeleitung Energietransport durch Wechselwirkung

Mehr

Planksche Strahlung. Schriftliche VORbereitung:

Planksche Strahlung. Schriftliche VORbereitung: Im diesem Versuch untersuchen Sie die Plancksche Strahlung (=Wärmestrahlung = Temperaturstrahlung). Alle Körper, auch kalte, senden diese elektromagnetische Strahlung aus. Sie wird von der ständigen, ungeordneten

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GNDLGEN DE ELEKTOTECHNK ersuch 2: Messungen an linearen und nichtlinearen Widerständen 1 ersuchsdurchführung 1.1 Linearer Widerstand 1.1.1 orbereitung Der Widerstand x ist mit dem digitalen ielfachmessgerät

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Fragebogen Auswahl Peltier-Element

Fragebogen Auswahl Peltier-Element Fragebogen Auswahl Peltier-Element Inhaltsverzeichnis 1 Einleitung... 3 2 Anwendung / Anordnung / Konfiguration... 3 3 Abmessungen... 4 4 Umgebung... 4 4.1 Temperatur... 4 5 Kalte Seite... 4 5.1 Temperatur...

Mehr

9. Thermodynamik. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Thermodynamik Physik für E-Techniker

9. Thermodynamik. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Thermodynamik Physik für E-Techniker 9. Thermodynamik 9.5 Wärmetransport 9.5.1 Wärmeleitung 9.5.2 Konvektion 953 9.5.3 Wärmestrahlung 9.5.4 Der Treibhauseffekt 9.5 Wärmetransport Man unterscheidet: Wärmeleitung Konvektion Strahlung Energietransport

Mehr

Pyroelektrische. Gerätetechnik. V. Norkus

Pyroelektrische. Gerätetechnik. V. Norkus Institut für Festkörperelektronik Pyroelektrische Infrarotsensoren in der Gerätetechnik V. Norkus Gliederung 1 Einführung 2 Pyroelektrische Infrarotsensoren 3 Eigenschaften pyroelektrischer Sensoren 3.1

Mehr

Nichtlineare Bauelemente - Protokoll zum Versuch

Nichtlineare Bauelemente - Protokoll zum Versuch Naturwissenschaft Jan Hoppe Nichtlineare Bauelemente - Protokoll zum Versuch Praktikumsbericht / -arbeit Anfängerpraktikum, SS 08 Jan Hoppe Protokoll zum Versuch: GV Nichtlineare Bauelemente (16.05.08)

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2005 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

B57045 K 45. Temperaturmessung Gehäusebauformen. R/R N Nenntemperatur

B57045 K 45. Temperaturmessung Gehäusebauformen. R/R N Nenntemperatur Temperaturmessung Gehäusebauformen B57045 K 45 Anwendung Temperaturkompensation (Chassismontage) Temperaturmessung (Chassismontage) Temperaturregelung (Chassismontage) Merkmale Kostengünstig Guter thermischer

Mehr

12 Lösungen von Aufgaben der Lernziel-Tests

12 Lösungen von Aufgaben der Lernziel-Tests Lösungen von Aufgaben der Lernziel-Tests Kapitel Ketten- oder Linearstruktur: α k p k u k f k a E 4 α/α k p /k p + k u /k u + k f /k f + k α /k α (,5 + 5 + 0, + % 8,6% α 8,6% 4 9,8 3 Br [ R 0 + R 0 + ]

Mehr

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre Achtung Fehler: Die Werte für die spezifische Gaskonstante R s haben als Einheit J/kg/K, nicht, wie angegeben,

Mehr

Temperaturmessungen mit Widerstandsthermometern. Allgemeine Informationen

Temperaturmessungen mit Widerstandsthermometern. Allgemeine Informationen Temperaturmessungen mit Widerstandsthermometern Allgemeine Informationen Temperaturmessungen mit Widerstandsthermometern Das Messprinzip der Temperaturmessung mit Widerstandsthermometern beruht auf der

Mehr

Technische Daten für Thermoelemente Allgemeine Informationen

Technische Daten für Thermoelemente Allgemeine Informationen Allgemeine Informationen Thermoelemente Im vorangegangenen Kapitel haben wir unser umfassendes Programm an Thermoelementen vorgestellt. Bei diesen Messelementen, die in der elektrischen Temperaturmessung

Mehr

Wechselstromkreis E 31

Wechselstromkreis E 31 E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde

Mehr

Messtechnik 2 Übersicht

Messtechnik 2 Übersicht Messtechnik 2 Übersicht Grundlagen Geometrische und mechanische Größen Optische Größen Messen aus Bildern Schwerpunktthema Temperatur Druck Durchfluss, Viskosität, Dichte, Füllstand Akustische Größen Ionisierende

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Tutorium Hydromechanik I und II

Tutorium Hydromechanik I und II Tutorium Hydromechanik I und II WS 2017/2018 12.03.2018 Prof. Dr. rer. nat. M. Koch Vorgelet von: Ehsan Farmani 1 Aufgabe 46 Wie groß ist die relative Änderung (%) vom Druck, wenn a) wir die absolute Temperatur

Mehr

Sensorik Labor. Michael Przybilla Moritz Zindler Michael Wilke. Fachhochschule Braunschweig / Wolfenbüttel. Wolfenbüttel,

Sensorik Labor. Michael Przybilla Moritz Zindler Michael Wilke. Fachhochschule Braunschweig / Wolfenbüttel. Wolfenbüttel, FH Wolfenbüttel Michael Przybilla Moritz Zindler Michael Wilke Wolfenbüttel, 03.03.2004 Gliederung Analyse und Optimierung des Strömungskanals Strömungsprofil Entwicklung und Bewertung eines Hitzdraht

Mehr

B57164 K 164. Temperaturmessung. Bedrahtete Scheiben. R/R N Nenntemperatur

B57164 K 164. Temperaturmessung. Bedrahtete Scheiben. R/R N Nenntemperatur Temperaturmessung Bedrahtete Scheiben B57164 K 164 Anwendung Temperaturkompensation Temperaturmessung Temperaturregelung Merkmale Breites Widerstandsspektrum Kostengünstig Lackierte Heißleiterscheibe Anschlußdrähte:

Mehr

Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert

Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert Probeklausur - Einführung in die Physik - WS 04/05 - C. Strassert Erdbeschleunigung g= 9.8 m/s ; sin0 = cos 60 = 0.5; sin 60 = cos 0 = 0.866;. 4 ) Ein Turmspringer lässt sich von einem 5 m hohen Sprungturm

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Inhalt. 1. Aufgabenstellung und physikalischer Hintergrund 1.1. Was ist ein elektrischer Widerstand? 1.2. Aufgabenstellung

Inhalt. 1. Aufgabenstellung und physikalischer Hintergrund 1.1. Was ist ein elektrischer Widerstand? 1.2. Aufgabenstellung Versuch Nr. 03: Widerstandsmessung mit der Wheatstone-Brücke Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor: Batu Klump Inhalt 1. Aufgabenstellung

Mehr

3. Erklären Sie drei Eigenschaften der bidirektionalen Reflektivität (BRDF).

3. Erklären Sie drei Eigenschaften der bidirektionalen Reflektivität (BRDF). Licht und Material Ulf Döring, Markus Färber 07.03.2011 1. (a) Was versteht man unter radiometrischen Größen? (b) Was versteht man unter fotometrischen Größen? (c) Nennen Sie drei radiometrische Größen

Mehr

Physik 4, Übung 5, Prof. Förster

Physik 4, Übung 5, Prof. Förster Physik 4, Übung 5, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

Konstruktion. eines. PT100 - Meßverstärker

Konstruktion. eines. PT100 - Meßverstärker Seite 1 von 10 PT100 - Meßverstärker Seite 2 von 10 Inhaltsverzeichnis Seite 1 Allgem zur Temperaturmessung... 3 1.1 Bauformen PT100... 3 1.2 Widerstandstabelle... 3 2. Aufgabenstellung... 3 3. Konstantstromquelle...

Mehr

Elektrotechnik: Übungsblatt 2 - Der Stromkreis

Elektrotechnik: Übungsblatt 2 - Der Stromkreis Elektrotechnik: Übungsblatt 2 - Der Stromkreis 1. Aufgabe: Was zeichnet elektrische Leiter gegenüber Nichtleitern aus? In elektrischen Leitern sind die Ladungen leicht beweglich, in Isolatoren können sie

Mehr

Basisanforderungen: Erweiterte Anforderungen: Das fertige Protokoll bitte im Aufgabentool von I-Serv unter Abgaben hochladen!

Basisanforderungen: Erweiterte Anforderungen: Das fertige Protokoll bitte im Aufgabentool von I-Serv unter Abgaben hochladen! Basisanforderungen: 1. Erstelle das Modell der Temperaturregelung inkl. Programmierung. 2. Erläutere den Unterschied zwischen einer Steuerung und einer Regelung. 3. Benenne die Sensoren und Aktoren dieser

Mehr

Temperatur-Strahlung

Temperatur-Strahlung Versuch 207 Temperatur-Strahlung Thorben Linneweber Marcel C. Strzys 09.06.2009 Technische Universität Dortmund Zusammenfassung Versuch zur Untersuchung der Thermostrahlung und insbesondere zur Überprüfung

Mehr

Ein- und Ausschaltvorgang am Kondensator ******

Ein- und Ausschaltvorgang am Kondensator ****** 6.2.3 ****** Motivation Bei diesem Versuch werden Ein- und Ausschaltvorgänge an RC-Schaltkreisen am PC vorgeführt. 2 Experiment Abbildung : Versuchsaufbau zum Eine variable Kapazität (C = (0 bis 82) nf)

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?

Mehr

Messtechnik in der Lüftungstechnik

Messtechnik in der Lüftungstechnik Messtechnik in der Lüftungstechnik 27.07.2011 Hans Trinczek GmbH & Co. KG Mess- und Regelungstechnik www.trinczek.com Dipl.-Ing. (FH) Bernd Trinczek Temperatur-Messung Bauformen von Temperaturfühlern:

Mehr

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Schülerlabor Science meets School Werkstoffe & Technologien in Freiberg Versuch: (Sekundarstufe I) Moduli: Physikalische Eigenschaften 1 Versuchsziel Die Messung

Mehr

Berechnungsgrundlagen

Berechnungsgrundlagen Inhalt: 1. Grundlage zur Berechnung von elektrischen Heizelementen 2. Physikalische Grundlagen 3. Eigenschaften verschiedener Medien 4. Entscheidung für das Heizelement 5. Lebensdauer von verdichteten

Mehr

Aufgabensammlung zum Seminar Einführung in die Mess- und Sensortechnik Prozessmess- und Sensortechnik 1

Aufgabensammlung zum Seminar Einführung in die Mess- und Sensortechnik Prozessmess- und Sensortechnik 1 Technische Universität Ilmenau Fakultät für Maschinenbau Institut für Prozessmess- und Sensortechnik Leiter: Univ.-Prof. Dr.-Ing. habil. Thomas Fröhlich Aufgabensammlung zum Seminar Einführung in die Mess-

Mehr

Temperaturmessung. Temperaturmessung. (Paul) Moritz Geske. Betreuer: Inna Kübler (Paul) Moritz Geske

Temperaturmessung. Temperaturmessung. (Paul) Moritz Geske. Betreuer: Inna Kübler (Paul) Moritz Geske Temperaturmessung Betreuer: Inna Kübler 02.11.2010 1 1. Einleitung 2. Elektronische Temperaturmessung 2.1 Thermoelement 2.2 PN-Übergang am Halbleiter 2.3 Thermistoren (PTC, NTC) 2.4 PT100 3. Messschaltungen

Mehr

Aufg. P max 1 12 Klausur "Elektrotechnik" am

Aufg. P max 1 12 Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 12 Klausur "Elektrotechnik" 2 12 3 12 6141 4 10 am 07.02.1997 5 16 6 13 Σ 75 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 16.03.018 Arbeitszeit: 150 min Aufgabe

Mehr

Wahlfach Fertigungstechnik Musterlösung zur Übung L Trennen

Wahlfach Fertigungstechnik Musterlösung zur Übung L Trennen Wahlfach Fertigungstechnik Musterlösung zur Übung L Trennen Prof. Konrad Wegener Thomas Lorenzer SS 2008 1. Offener Schnitt Sie möchten Halbkreise gemäss Abbildung 1 aus Blech stanzen. Der Stempel hat

Mehr

Physik 4 Praktikum Auswertung PVM

Physik 4 Praktikum Auswertung PVM Physik 4 Praktikum Auswertung PVM Von J.W, I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Solarzelle......... 2 2.2. PV-Modul......... 2 2.3. Schaltzeichen........ 2 2.4. Zu ermittelnde

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 05.0.016 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Bild 1 Geometrie (Prinzip)

Bild 1 Geometrie (Prinzip) PTC-Keramik Gesinterte Materialien aus Bariumkarbonat und Titanoxid haben einen positiven Temperaturkoeffizienten (Kaltleiter), d.h. ihr spezifischer elektrischer Widerstand steigt mit zunehmender Temperatur.

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 2 PHYS4 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 2. 4. 25 22. 4. 25 Aufgaben. Das Plancksche Strahlungsgesetz als Funktion der

Mehr

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern (Dr. Hartmut Ehmler) Einführung Die folgenden Überlegungen gelten ganz allgemein für Solarkocher, unabhängig ob es sich um einen Parabolkocher,

Mehr

Bedienungsanleitung. Temperaturfühler M-xx/KS

Bedienungsanleitung. Temperaturfühler M-xx/KS Bedienungsanleitung Temperaturfühler M-xx/KS 1. Herstellung und Vertrieb EPHY-MESS GmbH Tel.: +49 6122 9228-0 Berta-Cramer-Ring 1 Fax: +49 6122 9228-99 65205 Wiesbaden email: info@ephy-mess.de Deutschland

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen STR ING Elektrotechnik 10-1 - 1 1 Übungen und Lösungen 1.1 Übungen 1. LADUNG KRAFTWIRKUNG a) Wieviele Elementarladungen e ergeben die Ladung 5 nc (NanoCoulomb)? b) Mit welcher Kraft F ziehen sich zwei

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Experimentalphysik 2

Experimentalphysik 2 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................

Mehr

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen Repetition Elektrotechnik für Elektroniker im 4. Lehrjahr von Aleander Wenk 05, Aleander Wenk, 5079 Zeihen Inhaltsverzeichnis Temperaturabhängigkeit von Widerständen 1 Berechnung der Widerstandsänderung

Mehr