Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H

Größe: px
Ab Seite anzeigen:

Download "Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H"

Transkript

1 104 KAPITEL H Wechselwirkung von Strahlung mit Materie 1. Einleitung In der Elektrodynamik wird der Einfluß der Materie auf die Strahlung mit Hilfe der Stoffkonstanten ε r und µ r berücksichtigt, wobei in der Optik häufig µ r = 1 gilt. Hiermit ist es z.b. möglich, Polarisations- und Intensitätsverhältnisse beim Übergang von Strahlung von einem zum anderen Medium vollständig zu beschreiben. Dies leisten die Fresnelschen Formeln, die aus der Maxwellschen Theorie bei Berücksichtigung der Randbedingungen folgen. Möchte man Aussagen über ε r selbst bekommen, muß man zu einer mikroskopischen Betrachtung übergehen, d.h. untersuchen, wie die Atome und Moleküle in einem Medium auf die Strahlung reagieren. Wir wissen, daß die Dynamik der Elektronen in einem Atom durch eine Wellengleichung beschrieben wird und daß diese im Atom zu Eigenzuständen führt, die diskrete Energien aufweisen. Daher sind auch bei der Emission und Absorption nur bestimmte Energiesprünge E = hν möglich. Diese Energiesprünge widersprechen der klassischen Mechanik, so daß man im allgemeinen aus einer klassischen Betrachtung der Wechselwirkung von Strahlung mit Materie falsche Aussagen erhält. Wir behandeln das Problem trotzdem klassisch, da einige Ergebnisse, z.b. aus der Streutheorie, qualitativ richtig sind und da wir bei den falschen Vorhersagen besser verstehen, warum die Einführung der Quantenmechanik notwendig war. Klassisch hat man es entweder mit freien oder gebundenen Elektronen zu tun, die durch die einfallende Welle zu Schwingungen angeregt werden und ihrerseits als Dipole strahlen. Wir rekapitulieren daher im folgenden einige Grundtatsachen der Dipolstrahlung. Für eine genauere Darstellung verweisen wir auf die Elektrodynamik.. Dipolstrahlung Abb. 177: B und E im Nahfeld eines Dipols Ein Dipol mit sinusförmigem Zeitverhalten p = ex = ex 0 sin ωt hat im Nahfeld, d.h. für Lauf- zeiten der Welle, die klein gegen ihre Schwingungsperiode sind, das Feld eines ruhenden Dipols und B steht senkrecht zu E und zum Radiusvektor r. Die Feldstärke geht mit 1/r 3. Abb. 178: E und B im Fernfeld

2 105 Im Fernfeld hat man ein Feld einer elektromagnetischen Welle, d.h. E B, r; B r. E in der Welle entspricht der Projektion des ursprünglichen Feldes auf die Ebene senkrecht zu. E ϑ = E 0 sin ϑ, I = I 0 sin ϑ Die Abstrahlcharakteristik eines Dipols geht daher mit sin ϑ. 3. Streuung an freien Elektronen a) Polarisation Abb. 179: Polarisationsverhältnisse bei Streuung an Elektronen Auch bei Streuung an gebundenen Elektronen ergeben sich die Polarisationsverhältnisse aus dem Dipolbild (Abb. 179). b) Spektrale Verteilung Man muß beachten, daß bei einer konstanten Elektronendichte keine Streuung möglich ist. Dadurch, daß sich im Streulicht Wellen mit allen möglichen Phasen überlagern, würde die resultierende Intensität Null sein. Gestreut wird also immer an Fluktuationen. Sind diese Fluktuationen inkohärent, so spiegelt sich in der spektralen Verteilung des Streulichtes die Verteilungsfunktion der Elektronen wieder, und man mißt über die Breite die Temperatur der Elektronen: Abb. 180: Linienprofil bei inkohärenter Streuung an freien Elektronen T e Die Gesamtintensität ist ein Maß für die Dichte der Elektronen 0 I(λ)dλ ne

3 106 Abb. 181: Linienprofil des Streulichtes bei kohärenter Streuung Wenn die Fluktuationen der Elektronendichte durch Wellenphänomene im Elektronengas korreliert sind, spricht man von kohärenter Streuung. Das Spektrum spiegelt die charakteristischen Frequenzen der Fluktuationen wider. 4. Streuung an gebundenen Elektronen a) Dispersionstheorie Der Brechungsindex n kann in einer mikroskopischen Theorie über die Polarisierbarkeit der Atome und Moleküle des Mediums berechnet werden. n = ε r = 1 + χ χ ist hierin die Suszeptibilität, d.h. die Polarisierbarkeit aller Teilchen in einem Volumen χ = Nα α ist die Polarisierbarkeit eines Atoms p ist das Dipolment eines Atoms. p = ex = αε 0 E Zur Berechnung von α gehen wir vom gedämpften harmonischen Oszillator aus. Die Bewegungsgleichung im Wellenfeld lautet: x +ω0 x + γ x= e m E 0e iωt ω 0 enthält die rücktreibende Kraft und γ die Dämpfung. Man löst wie bei der erzwungenen Schwingung mit dem Ansatz x = x 0 e iωt, x= iωx, x= ω x ω + ω 0 + iγω x = e m E 0 χ = Nα = ε Ne 1 0 m ω + ω 0 + iγω Der korrekte, aus der Quantenmechanik folgende Ausdruck unterscheidet sich hiervon dadurch, daß im Atom mehrere Frequenzen ω i vorliegen, über die man summieren muß. Der Beitrag jeder Teilschwingung zu χ wird durch die Oszillatorenstärke f ij charakterisiert, wobei man von Übergängen zwischen den Niveaus i und j ausgeht. χ = N je ε 0 m Σ f ij ω + ω i + iγω Aus n = 1 + χ ergibt sich der komplexe Brechungsindex n = nr + in i Für den Fall kleiner Dämpfung kann man n i durch ein Lorentzprofil annähern

4 107 n i ω γ ω ( = γ/) Abb. 18: Real- und Imaginärteil des Brechungsindex n r 1 ω 1 + ω Der Imaginärteil spiegelt die Form einer Absorptionslinie wider, während der Realteil den üblichen Brechungsindex angibt. Man erkennt, daß im Bereich der Absorption dn ist und dω < 0 damit anomale Dispersion vorliegt. Außerhalb ist dn und dort liegen die Gebiete norma- dω > 0 ler Dispersion. Z.B. liegen bei durchsichtigen Medien wie Glas Absorptionsstellen im Ultravioletten und Infraroten. Im Sichtbaren zeigt das Material daher normale Dispersion. b) Warum ist der Himmel blau? Die Streuung von Licht an gebundenen Elektronen nennt man Rayleigh-Streuung. Sauerstoffmoleküle haben Resonanzstellen im Ultravioletten. Da die Feldstärke des Strahlungsfeldes eines Dipols mit der Amplitude der Dipolschwingung geht und diese durch das Verhalten einer Abb. 183: Streuung an Luftmolekülen erzwungenen Schwingung bestimmt ist, gilt E st = E ω ist die Halbwertsbreite der Resonanz. Für ω >> 1 wird E st = E 0 ω, I = I 0 ω ω 4 H Da λ = c ω, ist λ = ω λ H ω und damit I st 1 H λ. 4

5 108 Bei Rayleighstreuung geht die Intensität mit der vierten Potenz der Wellenlänge. Daher wird blaues Licht viel stärker gestreut als rotes, und der Himmel scheint bei seitlicher Beleuchtung blau, bei Durchstrahlung rot. 5. Andere Streueffekte Strahlt man genau mit einer Resonanzwellenlänge ein, erhält man Streulicht durch Resonanzfluoreszenz. Resonanzfluoreszenz eignet sich zum empfindlichen ortsaufgelösten Nachweis von Stoffen. Die Streuung an dem Gitter eines Kristalls, die wegen der kleinen Abstände Röntgenlicht erfordert, heißt Bragg-Streuung. Sie wird zur Untersuchung von Kristallen und zur spektralen Zerlegung von Röntgenlicht eingesetzt. Mie-Streuung findet an Teilchen statt, die deutlich größer als die Wellenlänge der Streustrahlung ist. Comptonstreuung ist Streuung an freien Elektronen im Festkörper mit Photonenenergien von der Größenordnung der Energie der Ruhemasse des Elektrons mc. Bei Comptonstreuung wird Energie auf ein Elektron übertragen und die Frequenz der Strahlung erniedrigt. Der Comptoneffekt ist klassisch nicht erklärbar, aber quantenmechanisch quantitativ beschreibbar. 6. Äußerer Photoeffekt Durch energiereiche Strahlung können Elektronen aus einer Oberfläche ausgelöst werden. Im Abb. 184: Elektronen werden durch Licht aus einer Metalloberfläche ausgelöst klassischen Bild wird die Energie der einfallenden Strahlung, die proportional zum Quadrat der Amplitude ist, verwendet, um die Austrittsarbeit Φ 0 zu überwinden. Der Rest wird in der kinetischen Energie der Elektronen gefunden, d.h. man erwartet ke 0 = Φ mv Beobachtet wird hν = Φ mv Man deutet dies nach Einstein mit der Annahme, daß Licht aus Quanten der Energie hν besteht.

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

6.4 Wellen in einem leitenden Medium

6.4 Wellen in einem leitenden Medium 6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Elektromagnetische Wellen in Materie

Elektromagnetische Wellen in Materie Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden

Mehr

1 Grundprinzipien des Lasers Licht im Hohlraum Atome im Laserfeld Ratengleichungen Lichtverstärkung 13

1 Grundprinzipien des Lasers Licht im Hohlraum Atome im Laserfeld Ratengleichungen Lichtverstärkung 13 1 Grundprinzipien des Lasers 1 1.1 Licht im Hohlraum 1 1.2 Atome im Laserfeld 6 1.3 Ratengleichungen 10 1.4 Lichtverstärkung 13 1.5 Strahlungstransport* 15 1.6 Lichterzeugung mit Lasern 19 Aufgaben 22

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Elektromagnetische Wellen in Materie

Elektromagnetische Wellen in Materie Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden

Mehr

Laserphysik. Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli. Oldenbourg Verlag München

Laserphysik. Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli. Oldenbourg Verlag München Laserphysik Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Grundprinzipien des Lasers

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

Optische Systeme (3. Vorlesung)

Optische Systeme (3. Vorlesung) 3.1 Optische Systeme (3. Vorlesung) Uli Lemmer 06.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 3.2 1. Grundlagen der Wellenoptik 1.1 Die Helmholtz-Gleichung 1.2 Lösungen der Helmholtz-Gleichung:

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der

Mehr

V. Optik in Halbleiterbauelementen

V. Optik in Halbleiterbauelementen V.1: Einführung V. Optik in Halbleiterbauelementen 1. Kontakt 1. 3.. 1. Kontakt Abb. VI.1: Spontane Emission an einem pn-übergang Rekombination in der LED: - statistisch auftretender Prozess - Energie

Mehr

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte)

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Phsik III WS 204/205 Prof Dr A Shnirman Blatt 3 Dr B Narohn Lösung Brewster-Winkel: 20 Punkte

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

5. Elektrodynamik Elektromagnetische Wellen

5. Elektrodynamik Elektromagnetische Wellen 5. Elektrodynamik Elektromagnetische Wellen Quasistatische Näherung: 5.1. Der Maxwellsche Verschiebungsstrom Ladungserhaltung Kontinuitätsgleichung Jedoch: Widerspruch!!! Die Gleichungen der Quasistatik

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch 25. März 2010 Inhaltsverzeichnis 1 Photoeffekt 1 2 Comptoneffekt 3 3 Bragg Streuung 4 4 Strahlungsgesetze 5 1 Photoeffekt Der Photoeffekt wurde erstmals 1839

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Zusätzliche Aspekte der Absorbtion und Emission von Photonen

Zusätzliche Aspekte der Absorbtion und Emission von Photonen Vorlesung 9 Zusätzliche Aspekte der Absorbtion und Emission von Photonen Plancksche Verteilung und thermisches Gleichgewicht: Wir betrachten ein Medium aus Atomen. Die Atome wechselwirken nicht direkt

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2011/2012. Das Spektrum der elektromagnetischen Wellen

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2011/2012. Das Spektrum der elektromagnetischen Wellen Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 011/01 Prof. Dr. F. Kremer Übersicht der Vorlesung am 9.1.01 Das Spektrum der elektromagnetischen Wellen Röntgenspektren UV-VIS-Spektroskopie Infrarot-Spektroskopie

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 14. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 14. 07.

Mehr

Vorlesung 3: Das Photon

Vorlesung 3: Das Photon Vorlesung 3: Das Photon Roter Faden: Eigenschaften des Photons Photoeffekt Comptonstreuung ->VL3 Gravitation Plancksche Temperaturstrahlung ->VL4 Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Maxwell- und Materialgleichungen. B rote = t. divb = 0 D t. j=σ E+ E H D B j

Maxwell- und Materialgleichungen. B rote = t. divb = 0 D t. j=σ E+ E H D B j Maxwell- und Materialgleichungen B rote t divb D roth + j t divd ρ E H D B j elektrische Feldstärke magnetische Feldstärke elektrischeverschiebungsdichte magnetische Flussdichte elektrische Stromdichte

Mehr

Optische Eigenschaften von Metallen und Legierungen

Optische Eigenschaften von Metallen und Legierungen Reine und angewandte Metallkunde in Einzeldarstellungen Herausgegeben von W. Köster Band 22 Optische Eigenschaften von Metallen und Legierungen Mit einer Einführung in die Elektronentheorie der Metalle

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:

Mehr

Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007

Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007 Der Laser Florentin Reiter 23. Mai 2007 Die Idee des Lasers A. Einstein (1916): Formulierung der stimulierten Emission von Licht als Umkehrprozess der Absorption Vorschlag zur Nutzung dieses Effektes zur

Mehr

8 Reflexion und Brechung

8 Reflexion und Brechung Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 28/29 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 2.11.28 8 Reflexion

Mehr

Experimentalphysik 3

Experimentalphysik 3 Optik Experimentalphysik 3 Dr. Georg von Freymann 26. Oktober 2009 Matthias Blaicher Dieser Text entsteht wärend der Vorlesung Klassische Experimentalphysik 3 im Wintersemester 2009/200 an der Universität

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Berechnen

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

FK Ex 4 - Musterlösung Montag

FK Ex 4 - Musterlösung Montag FK Ex 4 - Musterlösung Montag 1 Wellengleichung Leiten Sie die Wellengleichungen für E und B aus den Maxwellgleichungen her. Berücksichtigen Sie dabei die beiden Annahmen, die in der Vorlesung für den

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Handout zum 2. Teil des Vortrages: Röntgenstrahlung

Handout zum 2. Teil des Vortrages: Röntgenstrahlung Handout zum 2. Teil des Vortrages: Röntgenstrahlung Alice Zimmermann, Frédéric Stein 17. Januar 2007 2 Experimente mit Röntgenstrahlung Seminarvortrag im Rahmen des F-Praktikums WS06/07 1 1 Einleitung

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

VL 24 VL Homonukleare Moleküle VL Heteronukleare Moleküle VL Molekülschwingungen

VL 24 VL Homonukleare Moleküle VL Heteronukleare Moleküle VL Molekülschwingungen VL 24 VL 22 22.1. Homonukleare Moleküle VL 23 23.1. Heteronukleare Moleküle VL 24 24.1. Molekülschwingungen Wim de Boer, Karlsruhe Atome und Moleküle, 17.07.2012 1 Zum Mitnehmen Moleküle: Rotation und

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt Kanalstrahlexperimente hatten schwere, positiv geladene Teilchen beim Wasserstoff nachgewiesen Aufgrund von Streuexperimenten postulierte

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

2. Max Planck und das Wirkungsquantum h

2. Max Planck und das Wirkungsquantum h 2. Max Planck und das Wirkungsquantum h Frequenzverteilung eines schwarzen Strahlers Am 6. Dezember 1900, dem 'Geburtsdatum' der modernen Physik, hatte Max Planck endlich die Antwort auf eine Frage gefunden,

Mehr

Ultraviolette Photoelektronenspektroskopie (UPS)

Ultraviolette Photoelektronenspektroskopie (UPS) Ultraviolette Photoelektronenspektroskopie (UPS) hν e - Photoeffekt: (Nobelpreis Einstein 1905): E kin (max) = hν - φ allgemeiner: E kin = hν E bin -φ Φ: Austrittsarbeit [ev], E bin : Bindungsenergie,

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik 23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie

Mehr

Gitterschwingungen in Festkörpern

Gitterschwingungen in Festkörpern in Festkörpern Gitterschwingungen Wie bei den Molekülen wollen wir im folgenden die Dynamik der Festkörper, also Schwingungen des Kristallgitters behandeln Erklärung, Beschreibung Elastische Eigenschaften

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Maxwell- und Materialgleichungen. B rote t. divb 0 D roth j t divd. E H D B j

Maxwell- und Materialgleichungen. B rote t. divb 0 D roth j t divd. E H D B j Maxwell- und Materialgleichungen B rote t divb D roth j t divd E H D B j elektrische Feldstärke magnetische Feldstärke elektrischeverschiebungsdichte magnetische Flussdichte elektrische Stromdichte DrE

Mehr

A. Mechanik (18 Punkte)

A. Mechanik (18 Punkte) Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 23.02.09 Inhaltsverzeichnis 1 Wellen 1 1.1 Allgemeines zu Wellen.................................... 1 1.1.1 Wellengleichung für

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen.1.006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 22.12.2006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c

Mehr

Stark-Effekt für entartete Zustände

Stark-Effekt für entartete Zustände Stark-Effekt für entartete Zustände Die Schrödingergleichung für das Elektron im Wasserstoff lautet H nlm = n nlm mit H = p2 e2 2 m e 4 r Die Eigenfunktion und Eigenwerte dieses ungestörten Systems sind

Mehr

5 Elektronengas-Modell und Polyene

5 Elektronengas-Modell und Polyene 5.1 Übersicht und Lernziele Übersicht Im vorherigen Kapitel haben Sie gelernt, das Elektronengas-Modell am Beispiel der Cyanin-Farbstoffe anzuwenden. Sie konnten überprüfen, dass die Berechnungen für die

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

0.1.1 Exzerpt von B. S. 280f.: Mikrowellen; Reflektion eletromagnetischer

0.1.1 Exzerpt von B. S. 280f.: Mikrowellen; Reflektion eletromagnetischer 1 31.03.2006 0.1 75. Hausaufgabe 0.1.1 Exzerpt von B. S. 280f.: Mikrowellen; Reflektion eletromagnetischer Wellen Elektromagnetische Hochfrequenzschwingkreise strahlen elektromagnetische Wellen ab. Diese

Mehr

Technische Raytracer

Technische Raytracer University of Applied Sciences 05. Oktober 2016 Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Licht und Spektrum 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale:

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

1 Physikalische Hintergrunde: Teilchen oder Welle?

1 Physikalische Hintergrunde: Teilchen oder Welle? Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche

Mehr

Glanz und Farbe der Metalle

Glanz und Farbe der Metalle https://www.itp.uni-hannover.de/zawischa.html Glanz und Farbe der Metalle Dietrich Zawischa ITP, Leibniz University Hannover, Germany Ausgehend von den Maxwellgleichungen soll das Reflexionsvermögen von

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip

0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip 1 05.04.2006 0.1 76. Hausaufgabe 0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip Trifft eine Welle auf Barriere, die idealisiert nur in einem einzigen Punkt durchlässig ist, bildet sich im Öffnungspunkt

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

9. Atomphysik und Quantenphysik 9.0 Atom (historisch)

9. Atomphysik und Quantenphysik 9.0 Atom (historisch) 9. Atomphysik und Quantenphysik 9.0 Atom (historisch) Atom: átomos (gr.) unteilbar. 5-4 Jh. v. Chr.: Demokrit und sein Lehrer Leukippos von Millet entwickeln Theorie der Atome Fragment 125 aus den Schriften

Mehr

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012 9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen

Mehr

5.6. Wellen in Materie (mit Absorption) rot E= B rot H = E E rot rot E= µ rot H = µ E E da rot rot=grad div. e i k r t E x =E 0 x cos k r t x

5.6. Wellen in Materie (mit Absorption) rot E= B rot H = E E rot rot E= µ rot H = µ E E da rot rot=grad div. e i k r t E x =E 0 x cos k r t x 5.6. Wellen in Materie (mit Absorption) Bisher hatten wir ebene Wellen als Lösung der Wellengleichung. E= E 0 e i k r t E x =E 0 x cos k r t x Da die Energiedichte proportional zum Quadrat der elektrischen

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

Molekulare Kerndynamik. Grundlagen

Molekulare Kerndynamik. Grundlagen Grundlagen Bei der Bestimmung der elektronischen Struktur von Molekülen haben wir bis jetzt den Fall betrachtet, daß die Kerne fest sind. Lösung der elektronischen Schrödingergleichung in einem festen

Mehr

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm.

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Prof. Dr. D. Winklmair Wechselwirkung 1/11 Symmetrische Valenzschwingung

Mehr

Einleitung: Experimentelle Hinweise auf die Quantentheorie

Einleitung: Experimentelle Hinweise auf die Quantentheorie Kapitel 1 Einleitung: Experimentelle Hinweise auf die Quantentheorie c Copyright 2012 Friederike Schmid 1 1.1 Historische Experimente ( historisch : Aus der Zeit, in der die Quantentheorie entwickelt wurde)

Mehr

13.5 Photonen und Phononen

13.5 Photonen und Phononen Woche 11 13.5 Photonen und Phononen Teilchen mit linearem Dispersionsgesetz: E = c p, c - Ausbreitungsgeschwindigkeit (Licht- oder Schallgeschwindigkeit). 13.5.1 Photonen Quantisierung der Eigenschwingungen

Mehr

WECHSELWIRKUNG STRAHLUNG-STOFF

WECHSELWIRKUNG STRAHLUNG-STOFF Jürgen Henniger Arbeitsgruppe Strahlungsphysik (ASP) des Instituts für Kern- und Teilchenphysik (IKTP) Andreas-Schubert-Bau 409A henniger@asp.tu-dresden.de 0351 463 32479 / 0173 6864000 WECHSELWIRKUNG

Mehr

Photonen in Astronomie und Astrophysik Sommersemester 2015

Photonen in Astronomie und Astrophysik Sommersemester 2015 Photonen in Astronomie und Astrophysik Sommersemester 2015 Dr. Kerstin Sonnabend I. EIGENSCHAFTEN VON PHOTONEN I.1 Photonen als elektro-magnetische Wellen I.3 Wechselwirkung mit Materie I.3.1 Streuprozesse

Mehr

PROBLEME AUS DER PHYSIK

PROBLEME AUS DER PHYSIK Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New

Mehr

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung Inhaltsverzeichnis 1 Reexions- und Brechungsgesetz 1 1.1 Einführung...................................................... 1 1.2 Snelliussches Brechungsgesetz............................................

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Klassische Theorie der Lichtausbreitung

HANDOUT. Vorlesung: Glasanwendungen. Klassische Theorie der Lichtausbreitung Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Klassische Theorie der Lichtausbreitung Leitsatz: 27.04.2017 In diesem Abschnitt befassen

Mehr