6 Di erentialrechnung, die Exponentialfunktion

Größe: px
Ab Seite anzeigen:

Download "6 Di erentialrechnung, die Exponentialfunktion"

Transkript

1 6 Di erentialrechnung, die Exonentialfunktion 6. Exonentialfunktion Wir führen die Exonentialfunktion ein, die eine stetige Funktion mit folgenden Eigenschaften ist: ex(x + y) =ex(x)ex(y) (8) ex(0) =, ex() = e wobei e die Euler sche Zahl ist ( n! ( + n )n = e). Wir können mithilfe der angeführten Eigenschaften zeigen, dass die Exonentialfunktion ex(x) =e x für x 2 IR ist. Proof. Für natürliche Zahlen kann man mit Hilfe von (8) zeigen, dass ex(n) = e n. Ebenso dass ex(/n) die n-te Wurzel aus e ist, wobei wir wieder (8) verwenden: ex( n + n )=ex( n )ex( n )=[ex( n )]2 ex( n + n + n )=[ex( n )]3... ex( n n )=[ex( n )]n Wenn wir ex() = e verwenden, haben wir dann schliesslich ex( n )=e n. Aus = ex(0) = ex(x x) =ex(x)ex( x) folgt dass ex( x) = ex(x). Damit ist die Exonentialfunktion ex als e x für alle rationalen Zahlen definiert. Nachdem die irrationalen Zahlen beliebig gut durch rationale Zahlen aroximiert werden und ex stetig ist ex(x) =e x fr alle x 2 IR. Die Exonentialfunktion ex(x) ist stetig (für alle x 2 IR), streng monoton steigend und es gilt (ohne Beweis): ex(x) =. (9) x!0 x Wir können den Definitionsbereich auf C erweitern, wobei wir 8 verwenden: ex(z) =ex(x + iy) =ex(x)ex(iy) 6 x, y 2 IR; und z = x + iy

2 Mit der Eulerschen Formel ex(i') = cos(') + i sin(') können wir dem Ausdruck ex(iy) einen Sinn geben. Somit ist ex(z) =e x (cos(y)+i sin(y)) x, y 2 IR; und z = x + iy Noch zwei nützliche Formeln: sin(') = ei' e i' 2i cos(') = ei' + e i' 2 Der natürliche Logarithmus Die Umkehrfunktion zur Exonentiafunktion ist der natürliche Logarithmus ln(x), definiert für x>0. Der ln(x) ist stetig (für alle x>0), streng monoton steigend, und: 6.2 Di erentialrechnung ln() = 0 ln(e) = ln(x y) = ln(x)+ln(y), ln( x ) = ln(x) ln(y), y a ln(x) = (ln(x)) a. Um zu unserer Motivation zurückzukehren: Unser Ziel ist es, in (6) den Limes für h! 0 zu berechnen. Leider führt auch das, wenn s and der Stelle t stetig ist, auf einen unbestimmten Ausdruck, nämlich 0/0, und wir können im Allgemeinen nicht garantieren, dass es den Grenzwert gibt. Momentangeschwindigkeit ) Ableitung Wir nennen die Funktion f an der Stelle x 0 di erenzierbar, wennder Grenzwert existiert f 0 f(x 0 + h) f(x 0 ) (x 0 )=. Den Grenzwert f 0 (x 0 ) nennt man Ableitung der Funktion f an der Stelle x 0. f heisst di erenzierbar, wennf an jedes x 2 A (Definitionsbereich von f) di erenzierbar ist. 7

3 Beisiele: ) Wir suchen die Ableitung von f(x) =x n : f 0 f(x 0 + h) f(x 0 ) (x 0 + h) n x n 0 (x 0 ) = (x 0 + h x 0 )[(x 0 + h) n +(x 0 + h) n 2 x x n [(x 0 + h) n +(x 0 + h) n 2 x x n 0 ]= h!0 = nx n 0. 0 ] = 2) Sei f(x) = x. Um die Ableitung zu berechnen, verwenden wir: h = x 0 +h x 0 =( x 0 + h) 2 ( x 0 ) 2 =( x 0 + h x 0 )( x 0 + h+ x 0 ) f 0 f(x 0 + h) f(x 0 ) x0 + h (x 0 ) = x0 + h x0 h!0 ( x 0 + h x0 )( x 0 + h + x 0 ) h!0 ( x 0 + h + x 0 ) = 2. x 0 x0 Verwenden wir (9) können wir die Ableitung der Exonentialfunktion ex(x) berechnen: [ex(x)] 0 = ex(x + h) ex(x) = ex(x)ex(h) ex(x) = ex(x)(ex(h) ) = ex(x) Ableitung der Winkelfunktionen: Zuerst zeigen wir dass sin h =, Proof. sin h<h<tan h (geometrisch) 8

4 cos h =0,Proof:0ale cos h ale sin 2 h Mit diesen zwei Grenzwerten können wir die Ableitung von sin berechnen. [sin(x)] 0 h!0 sin(x + h) sin(x) h sin(x) cos(h) + cos(x)sin(h) sin(x) cos(h) sin(h) = sin(x) + cos(x) = cos(x) analog für [cos(x)] 0 = sin(x). Ableitungsregeln (Grundrechnungsarten) Seien f und g di erenzierbare Funktionen, dann gelten folgende Regel: Faktorregel: [cf(x)] 0 = cf 0 (x) Bs. (5 ex(x)) 0 = 5(ex(x)) 0 =5ex(x) Summenregel: [f(x)+g(x)] 0 = f 0 (x)+g 0 (x) Bs. (x 3 +sin(x)) 0 =3x 2 + cos(x) Produktregel: Sei f g an x di erenzierbar dann gilt: [f(x)g(x)] 0 = f 0 (x)g(x)+f(x)g 0 (x) [f(x)g(x)] 0 h!0 f(x + h)g(x + h) f(x)g(x) h f(x + h)g(x + h) f(x)g(x + h)+f(x)g(x + h) f(x)g(x) h!0 ale h f(x + h) g(x + h) f(x) g(x + h) g(x) + f(x) h!0 h h = f 0 (x)g(x)+f(x)g 0 (x) Bs. (x 3 sin(x)) 0 =3x 2 sin(x)+x 3 cos(x) Kettenregel: [f Bs. g(x)] 0 =[f(g(x))] 0 = f 0 (g(x)) g 0 (x) 9

5 . [(5x + ) 2 ] 0 = 2(5x + ) 5 = 0(5x + ) e x 2 0 = e x 2 0 x 2 ( x 2 ) 0 = e x 2 2 x ( 2x) 2 = xe x 2 x 2 sin(x 3 ) 0 = cos(x 3 ) (3x 2 ) 4. x 0 q = (x ) 0 = q q (x ) /q (x ( ) )= q x q Quotientenregel (für g(x) 6= 0): ale f(x) 0 = f 0 (x)g(x) f(x)g 0 (x) g(x) g 2 (x) x x 2 = 3x2 (x 2 + 4) (x 3 + 2)2x +4 (x 2 + 4) 2 = x4 + 2x 2 4x (x 2 + 4) 2 Als Anwendung der Kettenregel können wir Ableitung von Umkehrfunktionen aufschreiben. Sei f an x und die Umkehrfunktion f an y = f(x) di erenzierbar. Dann wenden wir die Kettenregel auf f f = id! f f x)) 0 =(f ) 0 (f(x)) f 0 (x) =id 0 (x) = : Bs. f (y) 0 = f 0 (f (y))). Der natürliche Logarithmus, als Umkehrfunktion zur Exonentialfunktion: ex(ln(x)) = x, x>0, und ln(ex(y) =y, 8y 2 IR hat dann die Ableitung: (ln(x)) 0 = ex 0( ln(x)) = ex(ln(x)) = x 20

6 2. [arcsin(x)] 0 = sin 0 (arcsin(x)) = cos(arcsin(x)) = sin 2 (arcsin(x)) = x 2 3. [arctan(x)] 0 = tan 0 (arctan(x)) = + tan 2 (arctan(x)) = +x 2 Wir können auch x a mit a 2 IR ableiten: (x a ) 0 =[ex(ln(x) a)] 0 =ex(a ln(x))] a(ln(x)) 0 = a ex(a ln(x)) x = axa x = axa Die Ableitung der allgemeinen Exonentialfunktion a x können wir mithilfe von a x =ex(ln(a) x) berechnen: (a x ) 0 =[ex(ln(a) x)] 0 =ex(x ln(a)) ln(a) =a x ln a Weiteres Beisiel: f(x) =x x =ex(x ln(x)): f 0 (x) =(x x ) 0 =ex(x ln(x)) (ln(x)+x/x) =x x (ln(x) + ) Somit können wir folgende Ableitungen aufschreiben: Höhere Ableitungen f(x) f 0 (x) c 0 x x a (a 2 IR) ax a e x e x sin(x) cos(x) cos(x) sin(x) ln(x) x Seien f : A! IR und f 0 : A! IR diferrenzierbar. di erenzierbar ist, dann ist Wenn f 0 in x 2 A f 00 =(f 0 ) 0 (x) die zweite Ableitung von f an der Stelle x. Andere Notation: f 0 (x) = df dx und f 00 (x) = d2 f dx 2 = f (2). 2

7 Wir können wiederum die Frage nach der Di erenzierbarkeit von f 00 stellen, und diesen Prozess fortsetzen. Somit nennen wir f an x k-mal differenzierbar, wennf (k )-Mal di erenzierbar ist und die (k )-Ableitung f (k ) di erenzierbar an x ist. Beisiele. f(x) =ex(x): 2. f(x) =sin(x): 3. f(x) =a x ; f (n) (x) =(lna) n a x 4. f(x) =x 3 +2x 2 x + 5. f(x) = x x f 0 (x) = f (n) =ex(x) f 0 (x) = cos(x) f 00 (x) = sin(x) f (3) (x) = cos(x) f (4) (x) = sin(x)... f 0 (x) = 3x 2 +4x f 00 (x) = 6x +4 f (3) (x) = 6 f (4) (x) = x x > 0 2x x < 0 =2 x f 00 (x) nicht möglich an x = Eigenschaften di erenzierbarer Funktionen Mittelwertsatz der Di erentialrechnung Satz 5. Sei f :[a, b]! IR stetig auf [a, b] und di erenzierbar auf (a, b), dann existiert ein y 2 (a, b) so dass: f 0 (y) = f(b) b f(a) a 22

8 Steigung der Sekanten durch a und b ist gleich der Steigung der Tangenten in y. Regel von de l Hosital Satz 6. Sei ale a < b ale und f,g : (a, b)! IR di erenzierbare Funktionen, so dass g 0 (x) 6= 0und g(x) 6= 0fürallex 2 (a, b). Angenommen der Grenzwert f 0 (x) x!b g 0 (x) existiert, und es gilt zusätzlich x!b f(x) = x!b g(x) =0oder dann ist f(x) x!b g(x) = f 0 (x) x!b g 0 (x) Dieselbe Aussage gilt auch für x!a. Bs. ) x! x 2) x!0 x e x ; Kurvendiskussion sin(x) x!0 x sin(x) x sin(x) x!0 cos(x) sin(x)+x cos(x) x!0 sin(x) 2 cos(x) x sin(x) = 0; Sei f(x) eine Funktion und f 0 ihre Ableitung. Alle Punkte, die f 0 (x) =0 erfüllen, heißen stationäre Punkte., d.h. die Tangente ist dort horizontal. x ist ein lokales Maximum von f wenn es ein " existiert, sodass 8y 2 (x ",x+ ") gilt f(x) f(y); x ist ein lokales Minimum von f wenn es gilt f(x) ale f(y) 8y 2 (x ",x+"). Stationäre Punkte sind entweder Minima, Maxima, oder Sattelunkte.. Wenn f(x) an x 2 (a, b) einlokales Extremum (Maximum oder Minimum) annimmt, dann ist x ein stationärer Punkt f 0 (x) = Monotonie Eine Funktion heisst monoton steigend (fallend) in einem Intervall I, wennf(y) f(x) (bzw. f(y) ale f(x)) falls y>x, 8x, y 2 I 23

9 Wenn die Ableitung von f in (a, b) ositiv ist, f 0 (x) 0, 8x 2 (a, b), dann ist f monoton steigend; für f 0 (x) > 0 ist f streng monoton steigend. Wenn f monoton steigend ist, dann ist f 0 (x) 0 Entsrechende Aussagen gelten auch für fallende Funktionen. Bew. mit Mittelwertsatz der Di erentialrechnung. 3. Hinreichende Bedingung für lokale Extrema Sei f zweimal di erenzierbar und f 0 (x) =0 undf 00 (x) > 0 dann ist x ein lokales Minimum. lokales Maximum. Wenn f 00 (x) < 0, dann ist x ein 4. Konvexität Eine Funktion ist konvex im Intervall I, wenn 8x, y 2 I gilt dass f( x +( )y) ale f(x)+( )f(y) 0 ale ale Sei f zweimal di erenzierbar auf I. f ist genau dann konvex, wenn f 00 (x) 0 8x 2 I. (f ist konkav, wenn f 00 (x) ale 0.) 5. Globale Extrema Globale Extrema sind entweder lokale Extrema oder werden am Rand des gewählten Bereichs angenommen. Beisiel: Kurvendiskussion für f(x) = (x )2 (x 4) x. Nullstellen f(x) = 0 an x =undx = 4. Singularität bei x =0 f(x) x!0 + = ; f(x) = + x!0 Extremwerte f 0 (x) = 0 an x =, + 3und f 00 () < 0 ) lokales Maximum f 00 ( + 3) > 0 ) lokales Minimum f 00 ( 3) > 0 ) lokales Minimum 3. 24

10 Wendeunkte f 00 (x) = 0 an 3 4 x<0:f 00 (x) > 0 ) f konvex auf (, 0) 3 4 >x>0:f 00 (x) < 0 ) f konkav auf (0, 3 4). x> 3 4:f 00 (x) > 0 ) f konvex auf ( 3 4, ). Skizze. Globale Extrema von f(x) auf [, 5]: das lokale Minimum ist ein globales Minimum auf [, 5] und das globale Maximum ist am Rand bei x = 5. 25

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 8. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 9, 207 Grenzwerte Korollar 5.2.2 (Bernoulli-de l Hôpital) Seien f, g : [a, b] R stetig und differenzierbar

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 7 MINT Mathkurs SS 2017 1 / 25 Vorlesung 7 (Lecture 7) Differentialrechnung differential

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Differentiation und Taylorentwicklung. Thomas Fehm

Differentiation und Taylorentwicklung. Thomas Fehm Differentiation und Taylorentwicklung Thomas Fehm 4. März 2009 1 Differentiation in R 1.1 Grundlagen Definition 1 (Ableitung einer Funktion) Es sei f eine Funktion die auf dem Intervall I R definiert ist.

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 7 MINT Mathkurs WS 2016/2017 1 / 20 Stetigkeit einer Funktion (continuity of a

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler

Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler Tutorium: Analysis und lineare Algebra Differentialrechnung Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Differenzenquotient Der Di erenzenquotient ist de niert als f(x) x f(x) f(x 0)

Mehr

Kapitel 5: Differentialrechnung

Kapitel 5: Differentialrechnung Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23 Gliederung 1 Grundbegriffe 2 Abbildungen

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Mathematik zum Mitnehmen

Mathematik zum Mitnehmen Mathematik zum Mitnehmen Zusammenfassungen und Übersichten aus Arens et al., Mathematik Bearbeitet von Tilo Arens, Frank Hettlich, Christian Karpfinger, Ulrich Kockelkorn, Klaus Lichtenegger, Hellmuth

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 7 4 DIFFERENZIERBARKEIT Sei dazu 0 < ρ < s < r. Dann gilt lim sup k k a k

Mehr

2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16

2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16 Vorkurs 4. Mathematik Ableiten WS 2015/16 Tag Einführendes Beispiel Vernachlässigen wir den Luftwiderstand, so können wir in hinreichender Näherung für den freien Fall eines Körpers s(t) = 5t 2 als Weg-Zeit-Abhängigkeit

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

3.2 Funktionsuntersuchungen mittels Differentialrechnung

3.2 Funktionsuntersuchungen mittels Differentialrechnung 3. Funktionsuntersuchungen mittels Differentialrechnung 46 3. Funktionsuntersuchungen mittels Differentialrechnung In diesem Abschnitt betrachten wir Funktionen f: D, welche je nach Bedarf zumindest ein-

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

Differentialrechnung

Differentialrechnung KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg elementarer Funktionen Gegeben: f : D R, mit D R und a > 0, b R. Dann gilt: f(x) f (x) 1 ln x x 1 log a x x ln a e x e

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Kapitel 5. Differenzialrechnung für Funktionen einer Variablen

Kapitel 5. Differenzialrechnung für Funktionen einer Variablen Kapitel 5. Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen

Mehr

Differentialrechnung. Mathematik I für Chemiker. Daniel Gerth

Differentialrechnung. Mathematik I für Chemiker. Daniel Gerth Differentialrechnung Mathematik I für Chemiker Daniel Gerth Überblick Differentialrechnung Dieses Kapitel erklärt: Was man unter den Ableitungen einer Funktion versteht. Wie man die Ableitungen einer Funktion

Mehr

Nicht differenzierbare Funktionen

Nicht differenzierbare Funktionen Nicht differenzierbare Funktionen Wir haben schon ein Beispiel gesehen (senkrechte Tangente). Differenzierbare Funktionen sind stetig wegen den Grenzwertregeln: 0 f (x) + f(x) (u x) f(u) f(x) u x Also

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

2 Differenzialrechnung für Funktionen einer Variablen

2 Differenzialrechnung für Funktionen einer Variablen 2 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 39 3. Differentialrechnung Einführung Ableitung elementarer Funktionen Ableitungsregeln Kettenregel Ableitung

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

Differenzialrechnung

Differenzialrechnung Mathematik I für Biologen, Geowissenschaftler und Geoökologen 19. Dezember 2007 Grenzwerte einiger Funktionen notwendige Bedingung hinreichende Bedingung : Die Funktion f : D R d mit D R m hat den Grenzwert

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

Die Ableitung einer Funktion

Die Ableitung einer Funktion Die Ableitung einer Funktion I. Definition der Ableitung Definition. Sei I R ein Intervall und f : I R. 1) f eißt differenzierbar an x 0 I, wenn der Grenzwert f(x) f(x 0 ) lim = f (x 0 ) x x 0 x x 0 existiert.

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

Kapitel 5 Differential- und Integralrechnung in einer Variablen

Kapitel 5 Differential- und Integralrechnung in einer Variablen Kapitel 5 Differential- und Integralrechnung in einer Variablen Inhaltsverzeichnis DIE ABLEITUNG... 3 DEFINITIONEN... 3 EIGENSCHAFTEN UND ABLEITUNGSREGELN... 4 TAYLOR SCHE FORMEL UND MITTELWERTSATZ...

Mehr

Kapitel 6. Differentialrechnung. 6.1 Die Ableitung einer Funktion

Kapitel 6. Differentialrechnung. 6.1 Die Ableitung einer Funktion Kapitel 6 Differentialrechnung 6. Die Ableitung einer Funktion 6.2 Rechenregeln 6.3 Mittelwertsätze 6.4 Die Regeln von L Hospital 6.5 Konvexe Funktionen 6.6 Wichtige Ungleichungen und l p Normen 6. Die

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Differenzierbarkeit. Klaus-R. Loeffler. 1 Hinführung, Definition und unmittelbare Folgerungen

Differenzierbarkeit. Klaus-R. Loeffler. 1 Hinführung, Definition und unmittelbare Folgerungen Differenzierbarkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Hinführung, Definition und unmittelbare Folgerungen 1 1.1 Hinführung.......................................... 1 1.2 Definition der Differenzierbarkeit..............................

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Kapitel 8 DIFFERENZIERBARKEIT

Kapitel 8 DIFFERENZIERBARKEIT Kapitel 8 DIFFERENZIERBARKEIT In diesem Paragraph ist J ein Intervall in R. Fassung vom 7. Juli 00 Claude Portenier ANALYSIS 67 8. Der Begri der Ableitung 8. Der Begri der Ableitung DEFINITION Seien f

Mehr

Der Differenzenquotient

Der Differenzenquotient Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 06. Dezember 06 Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur. Übung In

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 6. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 6. Übung: Woche vom bis Übungsaufgaben 6. Übung: Woche vom 17. 11. bis 21. 11. 2014 Heft Ü1: 9.1 (d,n,t); 9.2 (b,h,i); 9.3 (b,e); 9.4 (b,e,f) Übungsverlegung (einmalig!): Gruppe VIW 02 nach Mo., 5. DS; WIL C 204 (für Mittwoch,

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Wirtschaftsmathematik: Formelsammlung (V1.40)

Wirtschaftsmathematik: Formelsammlung (V1.40) Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

f(f 1 (w)) = w f 1 (f(z)) = z Abbildung 21: Eine Funktion und ihre Umkehrfunktion

f(f 1 (w)) = w f 1 (f(z)) = z Abbildung 21: Eine Funktion und ihre Umkehrfunktion Mathematik für Naturwissenschaftler I 2.8 2.8 Umkehrfunktionen 2.8. Definition Sei f eine Funktion. Eine Funktion f heißt Umkehrfunktion, wenn f (w) = z für w = f(z). f darf nicht mit f(z) = (f(z)) verwechselt

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr