400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen

Größe: px
Ab Seite anzeigen:

Download "400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen"

Transkript

1 4 Schwingungen 41 Pendel 4 Untersuchung von oszillierenden Systemen

2 um was geht es? Schwingungen = Oszillationen Beschreibung von schwingenden Systemen Methoden zur Analyse, Modellierung und Simulation oszillierender Systeme

3 Oszillierende Populationen im Lotka-Volterra-Modell Zellzahl N i / 1 Zellen Zeit t / U N(t) M(t) Zeit t / U

4 411 Energiebetrachtung eines ungedämpften Federpendels

5 411 Ziele Harmonische Schwingungen energetisch beschreiben können Definitionen für Frequenz. Periode und Amplitude kennen

6 411 Theorie Auslenkung von Gleichgewichtszustand: s(t) s(t) m

7 F D D s 411 Theorie Auslenkung von Gleichgewichtszustand: s(t) Federkraft F D s(t) m

8 F D D s dw FD ds D s ds 411 Theorie Auslenkung von Gleichgewichtszustand: s(t) Federkraft F D s(t) m

9 F D D s dw FD ds D s ds 411 Theorie Auslenkung von Gleichgewichtszustand: s(t) W D s ds 1 Ds Federkraft F D s(t) m

10 F D D s dw FD ds D s ds 411 Theorie Auslenkung von Gleichgewichtszustand: s(t) W D s ds s(t) 1 Ds Federkraft F D Energieerhaltung: 1 mvˆ 1 Dsˆ m

11 411 Theorie 1 s 1 v ˆ D ˆ m Energieerhaltung: 1 mvˆ 1 Dsˆ s^ v^ s(t) v(t) Zeit t Periode T

12 411 Theorie 1 s 1 v ˆ D ˆ m Energieerhaltung: 1 mvˆ 1 Dsˆ s^ v^ s(t) v(t) Zeit t Periode T vˆ sˆ D m

13 41 Kräftebetrachtung des ungedämpften Federpendels

14 41 Ziele Herleitung der Bewegungsgleichung via Kräftebetrachtung für Pendel verstehen ungedämpftes, harmonisches Pendel mit graphischem Modelleditor modellieren und simulieren können

15 F D D s 41 Theorie Auslenkung von Gleichgewichtszustand: s(t) Federkraft F D s(t) m

16 F D D s D ma FD D s a s m 41 Theorie Auslenkung von Gleichgewichtszustand: s(t) Federkraft F D s(t) m

17 F D D s D ma FD D s a s m 41 Theorie Auslenkung von Gleichgewichtszustand: s(t) Federkraft F D s(t) s d s D m m

18 d s s 41 Theorie Analytische Lösung für die Bewegungsgleichung? Ansatz:

19 d s s 41 Theorie Analytische Lösung für die Bewegungsgleichung? Ansatz: s( t) sˆ sin( t) s( t) sˆ cos( t)

20 d s s v( t) s ( t) sˆ cos( t) v cos( t) 41 Theorie Analytische Lösung für die Bewegungsgleichung? Ansatz: s( t) sˆ sin( t) s( t) sˆ cos( t)

21 d s s v( t) s ( t) sˆ cos( t) v cos( t) 41 Theorie Analytische Lösung für die Bewegungsgleichung? Ansatz: s( t) sˆ sin( t) s( t) sˆ cos( t) vˆsˆ D/ msˆ

22 d s s 41 Theorie Numerisches Lösen der Bewegungsgleichung (mit graphischem Modelleditor?

23 d s s 41 Theorie Numerisches Lösen der Bewegungsgleichung (mit graphischem Modelleditor ds v Kernidee: Zerlegung in Gleichungen.Ordnung dv D m s

24 d s s 41 Theorie Recap: Definitionen Frequenz und Periode T s^ v^ 1 s 1 v ˆ D ˆ m s(t) v(t) Zeit t T 1 Periode T

25 413 gedämpftes Federpendel

26 413 Ziele Prinzip der Modellierung (aus Abschnitt 41) auf gedämpfte Systeme erweitern können Begriffe Resonanz und lineare Dämpfung erklären können Mit Computersimulationen Systemeigenschaften / Verhalten charakterisieren können

27 413 Theorie d s s + Reibungskraft F R

28 413 Theorie d s s + Reibungskraft F R d s ds s

29 413 Theorie d s ds s + Reibungskraft F R Lösung? s(t) / m Zeit t / s

30 413 Theorie d s ds s + Reibungskraft F R Lösung: Ansatz s(t) / m Zeit t / s

31 413 Theorie d s ds s + Reibungskraft F R Lösung: Ansatz t s( t) se ˆ sin( t)

32 413 Theorie d s ds s + Reibungskraft F R Lösung: Ansatz t s( t) se ˆ sin( t) ds sˆ e t cos( t) e t sin( t)

33 413 Theorie + Reibungskraft F R Lösung: Ansatz s ds s d ) sin( ˆ ) ( t se t s t ) cos( ) sin( ) ( ˆ ) sin( ) cos( ˆ t e t e s s d t e t e s ds t t t t

34 413 Theorie d s ds s Ansatz einsetzen s e t e t t t ˆ ( ) sin( ) cos( ) t t sˆ e cos( t) e sin( t) t ˆ s e sin( t)

35 413 Theorie Ansatz einsetzen s e t e t t t ˆ ( ) sin( ) cos( ) t t sˆ e cos( t) e sin( t) t ˆ s e sin( t) ( sin( t) )sin( t) cos( t) sin( t) cos( t)

36 413 Theorie Ansatz einsetzen ) sin( ) sin( ) cos( ) cos( ) )sin( ( t t t t t ) )sin( ( ) sin( ) )sin( ( t t t

37 413 Theorie Ansatz einsetzen ) sin( ) sin( ) cos( ) cos( ) )sin( ( t t t t t ) sin( ) sin( ) sin( ) sin( ) )sin( ( ) sin( ) )sin( ( t t t t t t t

38 413 Theorie Schlussbemerkung: Modellierung für Dämpfung und Anregung ma m s d s F D F R F A

39 413 Theorie

40 413 Theorie

41 414 mathematisches Pendel

42 414 Ziele harmonische und nichtharmonische Schwingungen unterscheiden können Methodik der Modellierung auf math. Pendel erweitern können

43 414 Theorie l ma F Rück mg sin m F G F N F D s

44 414 Theorie l ma F Rück mg sin m F N s d s g sin s l F G F D

45 414 Theorie l ma F Rück mg sin m F G F N F D s d s g d sin g l s l sin

46 414 Theorie l d g l sin m F G F N F D s lim sin 1 d g l

47 s(t) v(t) 4 6 s(t) v(t) 4 6 s(t) v(t) Zeit t / s Zeit t / s Zeit t / s c 1 a 1 b Aufgaben sin d g l 1 sin lim d g l Auslenkung s(t) / m Geschwindigkeit v(t) / m/s Auslenkung s(t) / m Geschwindigkeit v(t) / m/s Auslenkung s(t) / m Geschwindigkeit v(t) / m/s

48 41 Phasendiagramme

49 41 Ziele Phasendiagramm als weitere Darstellungsform interpretierten können Aus Phasendiagramm Systemverhalten herauslesen können Aus Eigenwerten Form des Phasendiagramms bestimmen können

50 41 Theorie Geschwindigkeit v 1 cm/s Auslenkung s 1 cm a b Geschwindigkeit v.64 cm/ Auslenkung s.8 c Auslenkung s 3. m Geschwindigkeit v -6. m/s 3.3 m/s c

51 41 Theorie Wie kann ein lineares DGL- System analytisch gelöst werden? dx a 11 x a 1 y dy a 1 x a y

52 41 Theorie du 1 a 11 u 1 a 1 u a 13 u 3 Wie kann ein lineares DGL- System analytisch gelöst werden? du a 1 u 1 a u a 3 u 3 du 3 a 31 u 1 a 3 u a 33 u 3

53 41 Theorie analytisches Lösungsverfahren u u u a a a a a a a a a u u u k ik i u u a

54 u a i ik u k 41 Theorie analytisches Lösungsverfahren (n x n-system)

55 u a i det( a ik ik u k ik ) 41 Theorie analytisches Lösungsverfahren (n x n-system) Eigenwerte n

56 u a i det( a ik ik u k ik ) ( a ) x ik n ik n 41 Theorie analytisches Lösungsverfahren (n x n-system) Eigenwerte n Eigenvektor x n

57 u a i det( a ik ik u k ik ) ( a ) x ik n ik n 41 Theorie analytisches Lösungsverfahren (n x n-system) zeitunabh. Eigenwerte n zeitunabh. Eigenvektor x n Ansatz: u i ( t) ( t) x x n n 1 ( t) x1 ( t) x 3( t) 3

58 41 Theorie Ansatz einsetzen in DGL: k ik i u u a ) ( ) ( ) ( ) ( ) ( x t x t x t x t t u n n i d x d x d x du i

59 41 Theorie du i d1 d d x x x 3 1 3

60 41 Theorie Das Problem reduziert sich also auf das Lösen von: d i i i x i

61 41 Theorie Das Problem reduziert sich also auf das Lösen von: d i i i x i i i i

62 41 Theorie Das Problem reduziert sich also auf das Lösen von: d i i i x i i i i ( t) i e t i

63 41 Theorie Die Lösung ist somit durch die Eigenwerte bestimmt: t t t i e x e x e x t u 3 1 ) ( () () ) (

64 y y y x x x Zentrum, 1 und rein imaginär Zentrum, 1 und rein imaginär, mit negativem Realteil Zentrum, 1 und rein imaginär, mit positivem Realteil y y y x x x stabiler Knoten, 1 und reell, negativ instabiler Knoten, 1 und reell, positiv Sattelpunkt, 1 und reell, 1 <

65 4 Untersuchung eines Systems mit gekoppelten Pendeln

66 4 Ziele Eigenwertverfahren auf gekoppelte Pendelsysteme anwenden können gekoppelte Pendelsysteme modellieren und mit Computer simulieren können

67 4 Theorie ma F F 1 1 k / m s s ( s s ) k k k k m m m

68 4 Theorie s s s 1 1 k / m k k k k m m m

69 s s s 1 1 s s s s Theorie k k k k m m m

70 4 Theorie dsi a s ik k a ik k k k k m m m

71 4 Theorie

72 4 Theorie Schwingungs-Modi:

73 Zeit t / s Zeit t / s b Pendel 1 Pendel Zeit t / s c a Auslenkung s(t) / cm Auslenkung s(t) / cm Auslenkung s(t) / cm

74

75 43 Fouriertransformation

76 43 Ziele Begriff Spektrum erklären können Methode einer DFT (sin-ft und cos-ft) erklären können FT zur Schwingungsanalyse verwenden können

77

78 43 Theorie Periodisches Signal lässt sich durch eine diskrete Summe von cos- und sin- Funktionen darstellen Fourier-Synthese f ( t) 1 a an cos( n t) bn sin( n t) n1

79 Theorie Bsp. Sägezahnkurve f ( t) n1 1 n sin( n t)

80 43 Theorie Inverses Problem: Wie lassen sich die Koeffizienten a n und b n aus gegebenem Signal finden Fourier-Analyse f ( t) 1 a an cos( n t) bn sin( n t) n1

81 43 Theorie Kernidee: Betrachtung des folgfenden Integrals: c x f ( x) g( x) dx x 1

82 43 Theorie c x x 1 f ( x) g( x) dx Wert von c für x 1 = und x =?

83 43 Theorie c x x 1 f ( x) g( x) dx Wert von c für x 1 = und x =?

84 43 Theorie Spez. Wahl für g(x): cos(x), sin(x) bzw. cos(t), sin (t) 1 ) ( ) ( x x dx x g x f c t n t f T b t n t f T a T n T n ) sin( ) ( ) cos( ) (

85

86

87 FT

88

89 44 Chaotische Systeme, chaotische Oszillationen

90 44 Ziele chaotisches Verhalten eines Systems charakterisieren können Begriff des Attraktors erklären können verschiedene Darstellungsweisen für Daten von oszillierenden Systemen anwenden können

91 dx s( Y X ) 44 Theorie und Aufgaben Bsp. Lorentz-Gleichungen dy rx Y XZ dz XY bz

92 X X X = ; Y = Z = 1; b =.5; r = 7; s = 1.5; Runge-Kutta mit t = Time (Second) X : Current X Zeit t -1 X =.; Y = Z = 1; b =.5; r = 7; s = 1.5; Runge-Kutta mit t = Time (Second) X : Current X Zeit t X = ; Y = Z = 1; b =.5; r = 7; s = 1.51; Runge-Kutta mit t = Time (Second) X : Current 1 X Zeit t X = ; Y = Z = 1; b =.5; r = 7; s = 1.511; Runge-Kutta mit t =.1-1 X = ; Y = Z = 1; b =.5; r = 7; s = 1.5; - Runge-Kutta mit t = Time (Second) X : Current 1 X Zeit t Time (Second) X : Current Zeit t -1 X = ; Y = Z = 1; b =.5; r = 7; s = 1.5; - Runge-Kutta mit t = Time (Second) X : Current Zeit t

93

94 44 Aufgaben Generierung von Zufallssignalen ( Rauschen) bzw. Zufallszahlen Anwendungen: - Rauschgeneratoren - Monte Carlo- Simulationen N(t) Zeit t / d

95 44 Aufgaben Generierung von Zufallssignalen ( Rauschen) bzw. Zufallszahlen Bsp: Numerische Lösung von dn N N

96 N(t) 1 N(t) (a) 4 (b) Zeit t / Einheiten U Zeit t / Einheiten U N(t) N(t) (d) 4 (c) Zeit t / Einheiten U Zeit t / Einheiten U

97 1 1 8 N(t) Häufigkeit / Anzahl Werte = = Zeit / U = = Werte N(t) Zeit / U = = Häufigkeit / Anzahl Werte Werte = = N(t) Zeit / U = 5 = Häufigkeit / Anzahl Werte Werte = 5 =.5 N(t) = 7 = Zeit / U Häufigkeit / Anzahl Werte Werte = 7 =.7 N(t) Zeit / U = 3 = Häufigkeit / Anzahl Werte Werte = 3 = 3.1

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

3. Kinematik und Schwingungen

3. Kinematik und Schwingungen 3. Kinematik und Schwingungen 1 3.1. Kinematik Als Nächstes wollen wir Bewegungen beschreiben z.b. die einer Cataglyphis 2 Zuallererst brauchen wir ein Koordinatensystem um die Positionen überhaupt zu

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering Medizinische Biophysik Stephan Scheidegger ZHAW School of Engineering Modelle in der medizinischen Biophysik Inhalt ROETGETECHIK Teil A Systembiophysik (Kapitel 1-4) Teil B Strahlenbiophysik (Kapitel 5-8)

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons.

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons. 1 Vorbereitungen 1.1 Was ist und wofür braucht man Fourieranalysis? Anwendungsgebiete der Fourier-Analysis sind z.b. Signalverarbeitung, Bildverarbeitung, Schaltkreisentwurf, Elektrodynamik, Optik, Akustik,

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

PRÜFUNG AUS MATHEMATIK 3

PRÜFUNG AUS MATHEMATIK 3 (8 P.) Berechnen Sie das Integral tan(ln x) dx. x (8 P.) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y 2y + 2y = x 2 + 5 cos x. (8 P.) Entwickeln Sie f(x) = sin(x) für x [ π/2, π/2] mit

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Systeme gewöhnlicher Di erentialgleichungen. Ordnung

Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme. Ordnung De nition Für eine gegebene n n-matrix A(x) =(a ij (x)) n i,j=, deren Elemente Funktionen von x sind und einer gegebenen rechten Seite

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Allgemeine Mechanik Musterlo sung 5.

Allgemeine Mechanik Musterlo sung 5. Allgemeine Mechanik Musterlo sung 5 U bung HS 203 Prof R Renner Gekoppelte Pendel Wir betrachten ein System aus zwei gleichen mathematischen Pendeln der La nge l = l2 = l mit Massen m = m2 = m im Schwerefeld

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen FB IW - Meschede Ingenieurmathematik (MB 0.09.018 Klausur Ingenieurmathematik - Lösungen Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 3 4 5 6 7 8 Summe Note Punkte Die Klausur

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

12. Differentialgleichungen (kurz)

12. Differentialgleichungen (kurz) 12. Differentialgleichungen (kurz) [Literatur: Teschl05, Bd. 2, S. 171-197] 12.1. Wozu braucht man Differentialgleichungen? Am 28. Juli 2006 stürzte in Köln ein Kran samt Lastwagen um. Was war passiert?

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Vorlesung 10+11: Roter Faden:

Vorlesung 10+11: Roter Faden: Vorlesung 10+11: Roter Faden: Heute: Harmonische Schwingungen Erzwungene Schwingungen Resonanzen Gekoppelte Schwingungen Schwebungen, Interferenzen Versuche: Computersimulation, Pohlsches Rad, Film Brücke,

Mehr

2. Anfangswertprobleme 2. Ordnung

2. Anfangswertprobleme 2. Ordnung Zu einem Anfangswertproblem 2. Ordnung gehören folgende Daten: Eine Differenzialgleichung 2. Ordnung: ẍ t f [ x t, ẋ t,t ] Die Anfangsbedingungen: x 0 x 0, ẋ 0 ẋ 0 Das zu untersuchende Zeitintervall: t

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 5. März 2014 Inhaltsverzeichnis 1 Einleitung 1 2 Anwendungen der Differentialgleichungen 2 2.1 Radioaktiver

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

Differentialgleichungen für Ingenieure Lösung Klausur Juli

Differentialgleichungen für Ingenieure Lösung Klausur Juli Technische Universität Berlin Fakultät II Institut für Mathematik SS 0 Dozentin Dr Penn-Karras Assistentin Dr C Papenfuß Differentialgleichungen für Ingenieure Lösung Klausur Juli Rechenteil Aufgabe 8

Mehr

12. Differentialgleichungen (kurz)

12. Differentialgleichungen (kurz) 12. Differentialgleichungen (kurz) [Literatur: Teschl05, Bd. 2, S. 171-197] 12.1. Wozu braucht man Differentialgleichungen? Am 28. Juli 2006 stürzte in Köln ein Kran samt Lastwagen um. Was war passiert?

Mehr

Lineare Differentialgleichungen erster und zweiter Ordnung

Lineare Differentialgleichungen erster und zweiter Ordnung Lineare Differentialgleichungen erster und zweiter Ordnung Jörn Loviscach Versionsstand: 11. Mai 2009, 18:13 1 DGLn erster Ordnung mit konstanten Koeffizienten Eine Differentialgleichung hat zwei Zutaten:

Mehr

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung:

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: (3q.6) folgt auch direkt, wenn ein exp-ansatz für x(t),

Mehr

Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten

Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten Physikprüfung: Schwingungen und Radioaktivität Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten Teil A: Kurzfragen Hinweise:! keine Hilfsmittel (Taschenrechner, FoTa, Formelblatt) erlaubt! numerische

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen T0: Rechenmethoden WiSe 20/2 Prof. Jan von Delft http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen Aufgabe. (**)

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell

Mehr

Was gibt es in Vorlesung 6 zu lernen?

Was gibt es in Vorlesung 6 zu lernen? Was gibt es in Vorlesung 6 zu lernen? Beispiele für Schwingfähige Systeme - Federpendel - Schwerependel - Torsionspendel Energiebilanz Schwingungen gedämpfte Schwingungen - in der Realität sind praktisch

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

Übungsblatt 13 Ausgabe: 11. Juli 2018

Übungsblatt 13 Ausgabe: 11. Juli 2018 Universität Stuttgart 1. Institut für Theoretische Physik Prof. Dr. Jörg Main Übungen zur Vorlesung Physik auf dem Computer Sommersemester 218 Übungsgruppenleiter: Robin Bardakcioglu rhb@itp1.uni-stuttgart.de;

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung,

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, Phasenebene Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, können als Kurven u = f (u, u ), t (u(t), v(t)), v = u, in der sogenannten Phasenebene visualisiert werden. Dabei verläuft

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

x=r cos y=r sin } r2 =x 2 y 2

x=r cos y=r sin } r2 =x 2 y 2 6. Grenzzyklen Grenzzyklen eistieren in Systemen, die nach einer äußeren Störung wieder ein stabiles periodisches Verhalten annehmen. Sie sind eine weitere Ursache für periodisches Verhalten. 6.1. Modell

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Computersimulationen in der Astronomie

Computersimulationen in der Astronomie Computersimulationen in der Astronomie Fabian Heimann Universität Göttingen, Fabian.Heimann@stud.uni-goettingen.de Astronomisches Sommerlager 2013 Inhaltsverzeichnis 1 Differentialgleichungen 3 1.1 Beispiele.....................................

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

Ferienkurs zur Analysis 1 Taylor, Fourier, Matrixexponential und Differentialgleichungen

Ferienkurs zur Analysis 1 Taylor, Fourier, Matrixexponential und Differentialgleichungen Technische Universität München Department of Physics Ferienkurs zur Analysis Taylor, Fourier, Matrixexponential und Differentialgleichungen Freitag, 23.03.202 Sascha Frölich Inhaltsverzeichnis Taylorreihen

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

Lineare Differenzen- und Differenzialgleichungen

Lineare Differenzen- und Differenzialgleichungen Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen

Mehr

7.2 Die Wellengleichung

7.2 Die Wellengleichung 66 7 Partielle Differenzialgleichungen 7.2 Die Wellengleichung Die schwingende Saite Bei der schwingenden Saite handelt es sich um einen frei verformbaren, gewichtslosen Faden, der unter Spannung steht

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten:

Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten: Kapitel 3 Nichtlineare Systeme 3. Logistische Gleichung Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten:

Mehr

Probeklausur Höhere Mathematik II für Elektrotechniker

Probeklausur Höhere Mathematik II für Elektrotechniker I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

2 Die Schritte zum Ziel

2 Die Schritte zum Ziel 2 Die Schritte zum Ziel 2.1 Ein einfaches Modell aufstellen Um zu verstehen, wie ein Segway die Balance hält, betrachten wir ein etwas einfacheres Problem: Wir wollen herausfinden, wie sich ein inverses

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr