MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN

Größe: px
Ab Seite anzeigen:

Download "MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN"

Transkript

1 MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L = {... ; ; 0; ; ; }, denn x > 0 gilt immer, somit x 4) < 0 x < 4 b) L = { ; 0; }, denn x 4) x + 6) x 4 6) < 0 x 4) [x + 6) x + 4)] < 0 x 4) < 0 x < 4 c) L = {... ; 4; ; ; 0; ; ; 4;...}, denn x 4) x + 00) < 4 x + 4) x 4) x 4 6) x 4) x + 00) < 4 x 4 6) x 4 6) x 4) x + 00) < x 4 6) x 4) [x + 00) x + 4)] < 0 x 4) [ x + 88] < 0 Fall : x 4 < 0 und x + 88 > 0 x < 4 und 44 > x L = { ; 0; } Fall : x 4 > 0 und x + 88 < 0 x > 4 und 44 < x L = {... ; 4; ; ; 4;...}. a) Hinweise zur Konstruktion des Dreiecks ABC: Parallelstreifen im Abstand von h c und Abtragen von Winkel β führt auf B und C. Antragen der Mittelsenkrechte m BC Antragen von r u an B oder C) schneidet m BC im Umkreismittelpunkt M Zeichnen des Umkreises. Schnittpunkt des freien Schenkels mit dem Umkreis ergibt A. b) Hinweise zur Konstruktion des Dreiecks ABC: Parallelstreifen im Abstand von h c und Abtragen von Winkel β führt auf B und C. Schnittpunkt der beiden Parallelstreifen zu den beiden Schenkeln von β im Abstand von r i alternativ: ein Parallelstreifen und w β ) liefert den Mittelpunkt M des Inkreises. Zeichnen des Inkreises. Thaleskreis über MC schneidet den Inkreis in D alternativ: Verdoppelung des Winkels <) M CB) Verlängerung von CD alternativ: freier

2 Schenkel von < ) M CB) schneidet freien Schenkel von β in A. Hinweise zur Konstruktion des Dreiecks ABC: Berechnung von α und β mit LGS α β = 4, α + β = 0 α = 58, β = 44 ) Konstruktion nach WSW alternativ: Zeichnen von AC und Abtragen des Winkels α β = 4 in A Antragen von γ schneidet freien Schenkel in D. Kreis um D mit Radius DA schneidet freien Schenkel von γ in B. c). a) AACD = AACP gleiche Grundseite AC und gleiche Ho he) AABCD = AABC + AACD = AABC + AACP = AABP b) ) AABC 0 = AABC gleiche Grundseite AB und gleiche Ho he) AAP C 0 = AAP D gleiche Grundseite AP und AP C 0 D) AABC = AABC 0 = AABP + AAP C 0 = AABP + AAP D = ADBP ) Parallele zu AB durch C AP bzw. BP ) schneidet die Parallele in C 0 Parallele zu P B bzw. P A) durch C 0 liefert D auf AB Schraffur des Lo sungsdreiecks 4. a) b) ) n = 5 und d = 4 ) c) ) ) d kann 0, 4, 5, 6, 7 sein. d=0 d=6 d=4 d) ) ) 5. a) ) ) ) d=7 d=5 s. Figur II d=n d = n ) + Zu einer Figur mit n Punkten und maximalem d kommen mit Punkt n immer ho chstens zwei Dreiecke hinzu, d. h. n hat den Vorfaktor. Weil das erste Dreieck zuna chst geschlossen werden muss, muss der Term fu r n = den Wert ergeben. : 5 6 e = 5 e alternativ: Fu r das Rezept muss man,5 kg Erdbeeren. Wahl fu r 5 e kaufen, denn die beno tigten kg entsprechen 45 der zu kaufenden Menge. 5 kg 4 =,5 kg). : 4,50 e =,50 e alternativ: Fu r das Rezept muss man kg Erdbeeren. Wahl fu r,50 e kaufen, denn die beno tigten kg entsprechen der zu kaufenden Menge. kg =,5 kg). 5,40 e : 5 x e =,50 e

3 c) 6. a) Jeans ist b) Wenn,5 kg Erdbeeren. Wahl,50 e kosten, dann ergibt sich ein Kilopreis von,50 e :,5 =,50 e 5 = 5,40 e. : a) 6 e =,50 e alternativ: Fu r,50 e bekommt sie,50 e : 6 e =,5 kg Erdbeeren. Wahl).,5 Da = 8 sind, wurden weggeputzt. =,5,5 z. B. 0% 0%), % 0%), 8% 0%) oder 0%,%), 00% 00%))je,0) 6 r ) : 5 ) = 4,5 r ) : ) r = 0, + 0,r alternativ: r = 0r )) einwandfrei fehlerhaft Summe Test ergibt erste Wahl zweite Wahl Dies ist der Anteil an allen produzierten Jeans, die sowohl fehlerhaft sind als auch als zweite Wahl erkannt werden. c) oder alternativ: ) d) ) pa < pb, Pauls Behauptung ist korrekt. pa = Pfehlerhafte Jeans im A-Store) = pb = Peinwandfreie Jeans im B-Store) = 80 0 ) Pauls Behauptung stimmt auch in diesem Fall: 50 < Test ergibt erste Wahl zweite Wahl Summe einwandfrei fehlerhaft Summe Jeans ist b) Summe a) ) P. Kugel weiß ) = 8 wa 0 sa Baumdiagramm: 7 ) P WW oder SS ) = ) PWB SA ) = = 4 8 b) ) PWW)= + = ) PWW A) = 6 = wb sb wb sb 6 0

4 MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE B. a) ) L = { ; 0; ;...} 8x + x 4x > 4x 6 4x + x > 4x 6 x > 6 x > 6 x > ) L = { } x = x + 0x = 0x = 0x 0,5 = x b) ) y = 40 ) richtiges Zahlenpaar, z. B. x = 806, y = 40 oder x =, y = 404) ) richtiges Zahlenpaar, z. B. x =, y = 404. a) Koordinatensystem mit Dreieck ABC b) ) Einzeichnen von Punkt E Spiegeln des Punktes E ) 5 cm A AEB = 5 ) B 5 5) Einzeichnen der Spiegelachse im 45 -Winkel zum Ursprung 4) Die Aussage stimmt mit richtiger Begründung, z. B. A ABC : A AEB = 7,5 cm :,5 cm = : 5 = 60 % alternativ: Verhältnisse der Höhen) c) <) EAE = 60, <) BEA = 0, <) AE B = 0, <) E BE = 0. a) Dreieck ABC mit Beschriftung Parallelstreifen mit 4,5 cm Antragen von α Berechnen von γ = 70 Antragen von γ b) Dreieck ABC mit Beschriftung Zeichnen der Seite c und Antragen von α Zeichnen der Winkelhalbierenden c) ) Dreieck ABC mit Beschriftung Zeichnen von c und Kreisbogen um A mit r = 6 cm und Kreisbogen um B mit r = 5 cm ) Zeichnen des Inkreises Konstruktion zweier Winkelhalbierenden

5 4. a) : 65 4,4... b) entsprechen 05 % : ,... c) 6 % 800 : ,6... % d) ) entsprechen 00 % : 4 ) entsprechen 00 % entsprechen 50 % : 5. a) ) 5 0 = ) ) 4 0 = ) 5 ) 0 = ) 5 b).) 4 0 = ) 5 ).) = 5.) + = ) ) richtiges Ereignis z. B. einmal schraffiertes Feld, einmal unschraffiertes Feld 6. a) : , 4... b) Plastiktüten Minuten = Minuten : : 556 = 0 08,7... c) 767-mal 5, Mrd 0 cm 5 Mrd cm cm = m = km km : 00 km = 766,6... d) Tüten je Einwohner 7 von 40 5 % 0,05 65 =,5 7. a) ) Möglichkeit : 70 Maschen 5 8 Möglichkeit : 6 Maschen

6 8 ) zu Möglichkeit : 58 Reihen 4 zu Möglichkeit : 60 Reihen 5 4 b) ) 0 g ) 7 Knäuel 0 g : 50 g 6,4 Knäuel c) richtige Länge und Breite des Schals, z.b. 0 cm 5 cm 50 g : 4 g d) Begründung 56 = 5 6 z. B = 6

7 MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE C. a) ) x = x + = 0 x = ) x = 8 6x = 7x 8 6x = 7x 6x = 7x ) x = 5 5 x + = 5 x = b) a = U b) : a = U b. a) 00 % entsprechen 75 Schülern. 48 % entsprechen 84 Schülern. % entspricht,75 Schülern. b) ) = ) = = ) Streifendiagramm mit Beschriftung c) ) 65 englische) Meilen 5 Minuten entsprechen englischen) Meilen. ) 84 Kilometer pro Stunde 5 : 0,6 = 8, a) 5 % entsprechen 6,6 cm. 00 % entsprechen 44 cm. % entspricht 0,44 cm. b) cm enstprechen 56,5 %. 5 cm 6 cm = cm. 6 cm entsprechen 00 %. cm entspricht 6,5 %. c) b = 8,4 cm 00 % entsprechen 4 cm. % entspricht 0,4 cm. 5 % entsprechen, cm. Fläche zweites Rechteck: A = 5, cm b = 5, cm : cm 4. a) Hinweise zur Konstruktion des Fünfecks ABCED mit Beschriftung:

8 z. B. Zeichnen der Strecke AB mit a = 5 cm Parallele zu AB im Abstand von h =,5 cm Antragen von α D als Schnittpunkt des freien Schenkels von α und der Parallele Antragen von β = α C als Schnittpunkt des freien Schenkels von β und der Parallele Kreisbogen um C mit dem Radius r = 6,4 cm Kreisbogen um D mit dem Radius r = 6,4 cm Bezeichnung des Schnittpunktes mit E und Verbinden zum Fünfeck ABCED b) Strecke DC = 0 cm A Fünfeck ABCED = 8,75 cm A Dreieck DCE = 0 cm 4 cm : A Dreieck DCE = 40 cm : A Dreieck DCE = 0 cm A Trapez ABCD = 5 cm + 0 cm),5 cm : A Trapez ABCD = 7,5 cm : A Trapez ABCD = 8,75 cm 5. a) 87,5 kg V Würfel = 5 cm 5 cm 5 cm V Würfel = 65 cm 5 cm V Würfel = 5 65 cm 5 65 cm 0 = cm cm, g/cm g b) ) Länge: 5 5 cm = 5 cm Breite: 4 5 cm = 00 cm Höhe: 5 cm = 75 cm ) 50 Würfel müssen ergänzt werden. Anzahl Würfel Quader: Würfel 60 Würfel 0 Würfel 6. a) 6000 m 8 cm cm b) 0 cm 5 km = 5000 m 5000 m = cm cm : c) Hinweise zur Konstruktion des Dreiecks mit Beschriftung der Eckpunkte: Zeichnen der Seite AB Antragen des Winkels Abtragen der Seite AC Strecke BC: 4,75 km genauerer Wert: 4,5) Messen der Strecke BC: 5,7 cm genauerer Wert: 5,67) 5,7 cm cm genauerer Wert: 45 8,)

9 7. a) ) h h ) ) = 7 40 ) = ) =,5 % h z. B. 80 entsprechen 00 %. entsprechen,5 %. 6 entsprechen,5 %. b) ) 500 P ) = ), );, );, ) P, ) = 6 P, ) = 4 4 );, )

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE A. L = { 5} oder x = 5, denn x 5 = 0 oder x 5 = 0 x = 5 oder x = 5 x = 5 oder x = 5 L = {... ; ; ; 0; 4; 5;...}, denn x 5 >

Mehr

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = {2; 5} b) L = {3; 4; 6; 7;...}, denn (x 5) 10 (x 5 32) < 0 (x 5) 10 < 0 gilt immer für x 5 deshalb (x 5 32)

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = { 5; 0; 5}, denn x = 0 oder x 5 = 0 oder x 3 + 125 = 0 x = 0 oder x = 5 oder x 3 = 125 x = 0 oder x = 5 oder

Mehr

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a 8 b 24 c z. B. 4 1 2 P2. a 20 % b 28 % 22 + 20 110 + 40 = 22 110 oder = 42 150 2 3 2, 2 1 1 2

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 16 b) 11 c) 16 P2. a) 5 % b) 70 % P3. a) x ist das Taschengeld (in e), das Jonas (pro Woche)

Mehr

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 60 b) 11 c) eine Lösung aus z. B. {(8 3); (8 5); ( 8 3); ( 8 5); (16 1); (16 15); (30,5 30);...}

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 48 b) 4 c) z. B. (4 1) oder x = 4, y = 1 (auch möglich: (2 8), (1 19), (5 1) ( 4 1), (0, 5 39,

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = {1} oder x = 1, denn: x + 2 = 3 b) L = {... ; 7, 6, 2, 3,...}, denn: x + 2 > 3 oder x + 2 < 3 x > 1 oder x < 5 c) L = { 4;

Mehr

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 7,50 b) 3 c) z. B. (1 1,25) P2. a) 528 b) um 150 % 84 entsprechen 100 % oder 210 entsprechen

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = { 5; 0; 5}, denn: x = 0 oder x = ±5 oder x = 5 b) L = {1; 2; 3; 4}, denn: x > 0 und 125 x 3 > 0 oder x < 0

Mehr

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. 2. a) L = { 81; 0; 9} x + 81 = 0 oder 27x 2 = 0 oder x 9 = 0 b) L = { 8;... ; 1; 1;... ; 8} 27x 2 > 0 (gilt immer

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) (1) L = { 8; 6; 8}, denn (x + 6) 2 = 0 oder x 2 64 = 0 x + 6 = 0 oder x 2 = 64 x = 6 oder x = 8 oder x = 8 (2)

Mehr

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 2 b) 2 1 oder 19 9 9 ) c) 50 P2. a) 15 % b) 48 Lehrkräfte) 4 der Lehrkräfte waren gesund. 5 alternativ:

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 5; 3}, denn: (x + 5) 2 = 0 oder x 3 = 0 x + 5 = 0 oder x 3 = 0 x = 5 oder x = 3 b) L = {... ; 7; 6; 4; 5;...}, denn: x +

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L = { 1; 0; 1}, denn: x 2 < 36 25 5 6 < x < 6 5 b) L = {... ; 3; 2; 1}, denn: 1 4 x(9 25x2 ) > 0 Fall 1: x > 0 und (9 25x 2 ) >

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) x = 3 b) y = 35 c) z = 200 % oder 2 P2. β = 70 δ = 15 ε = 75 P3. Sie betrug 250 g. (300 g entsprechen

Mehr

MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 20/202 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L = {0; ; 2; 3}, denn: x (3 x) 0 Fall : x (3 x) = 0 x = 0 oder x = 3 Fall 2: x (3 x) > 0 (x > 0 und 3 x > 0) oder (x

Mehr

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 6 e, denn 5,60 e 30 168 e 168 e : 28 (5,60 e 2) : 28 0,40 e P2. a) 75 % b) 25 % c) 62,5 % P3.

Mehr

ist Scheitelwinkel des Dreiecks CDE.

ist Scheitelwinkel des Dreiecks CDE. MATHEMATIK-WETTBEWERB 008/009 DES LANDES HESSEN 3. RUNDE LÖSUNGEN. a) L = { 5; ; }, denn: (x + ) = 0 oder (x 4) = 0 oder (x 3 + 5) = 0 b) L = { 4; 3; ; 0;...}, denn: (x + ) ist gleich Null für x =, sonst

Mehr

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) 1) L = { 3; 2} 2) L = { 3; 1; 2; 3} 3) L = { 2; 1; 0; 1}, denn x 2 < 0 und x + 3 > 0 oder x 2 > 0 und x + 3 < 0, somit x < 2 und

Mehr

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN. 1. a) x = a + 1 ax + 3x = ax + x + 2a + 2 2x = 2a + 2. für a 1 und L = für a = 1

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN. 1. a) x = a + 1 ax + 3x = ax + x + 2a + 2 2x = 2a + 2. für a 1 und L = für a = 1 MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) x = a + ax + 3x = ax + x + 2a + 2 2x = 2a + 2 b) x = 7 für a und L = Q für a = x( + a) = 7( + a) c) x = a a für

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 16; 0; 9} b) L = { 2; 2; 3} c) L = Z (x + 1)(x + 1)(x 1)(x 1) = (x + 1)(x 1)(x + 1)(x 1) d) L = {... ; 1; 0; 1; 2; 3; 4}

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. Anzahl 12 3 15 8 Preis (e),20 1,05 5,25 2,80 P2. a) 12,5 % b) 0 g 28 g entsprechen 70 % P3. a) (1),

Mehr

Mathematik-Wettbewerb 2003/2004 des Landes Hessen

Mathematik-Wettbewerb 2003/2004 des Landes Hessen Mathematik-Wettbewerb 003/004 des Landes Hessen 1. RUNDE - LÖSUNGEN DER AUFGABENGRUPPE A - PFLICHTAUFGABEN P1. a) (45 48) = + 3 = 19 b) 5@[ 60 + ( 38 )] = 5@[ 60 40] = 500 c) 4 : (1 60) = 4 : ( 48) = 0,5

Mehr

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 9; 7; 7}, denn: x 2 49 = 0 oder x + 9 = 0 x 2 = 49 oder x = 9 b) L = {... ; 9; 8; 6; 5;... ; 5; 6; 8;...}, denn: x 2 49 >

Mehr

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN 3. RUNDE LÖSUNGEN DER AUFGABENGRUPPE A 1. a) x 2 (1 x 2 ) > (x 2 + 7) (x 2 7) L = {8, 9, 10, } c { 8, 9, 10, } b) (x 4 16) (x + 3) (x 2 + 25) = 0 L = { 3, 2, 2} c) (x 3 4) 2 16 > 0 L = Z ( {0, 1, 2} d)

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 5 2 (oder 2,5) (= 6 5 3) b) 6 5 ( = 1 3 3 1 6 5 ) ( c) 3 2 (oder 1,5) (= 56 3) 1 3 = 5 2 1) P2.

Mehr

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = { 6; 6; 7} (x 6) (x + 6) = 0 oder (x 7) = 0 b) L = {2; 8} (x 3 7) = 1 (oder (x 3 8) (x 8) = 0) c) L = {...

Mehr

Lösungen Geometrie-Dossier Kreis 2 - Kreiskonstruktionen. Diese Aufgabe entspricht genau der Grundkonstruktion 2 (Genaueres kannst du dort nachlesen).

Lösungen Geometrie-Dossier Kreis 2 - Kreiskonstruktionen. Diese Aufgabe entspricht genau der Grundkonstruktion 2 (Genaueres kannst du dort nachlesen). Seiten 12-19 Aufgaben Kreiskonstruktionen (Achtung, Lösungen z.t. verkleinert gezeichnet) 1. 1. Mittelsenkrechte von PQ (Der Kreismittelpunkt muss auf der Mittelsenkrechten von zwei Kreispunkten liegen)

Mehr

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = {2} oder x = 2 x + 1 = 3 b) L = { 3; 2; 1; 0; 1; 2; 3} (x 2 9) 3 < 27 (oder (x 3)(x + 3) < 3) x 2 9 < 3 x

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN 2. RUNDE - LÖSUNGEN DER AUFGABENGRUPPE A 1. a) x 2 (x 3) $ 0 L = {0} c {3, 4, 5, } b) x(x 3) $ 0 L = {, 2, 1, 0} c {3, 4, 5, } c) x 3 9x = 0 x(x 2 9) =

Mehr

Mathematik-Wettbewerb 2004/2005 des Landes Hessen

Mathematik-Wettbewerb 2004/2005 des Landes Hessen Mathematik-Wettbewerb 2004/2005 des Landes Hessen 2. RUNDE LÖSUNGEN DER AUFGABENGRUPPE A 1. a) L = {0, 12} b) 16@x 3 x 5 = 0 Y x 3 (16 x 2 ) = 0 Y L = { 4, 0, 4} c) L = {13, 14, 15, } da immer (x 2 + 5)

Mehr

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an: G = Z. a) (x + 7) 2 = 100 b) (x + 7) 2 > 18 c) (2x 4) 2 (2x + 4) 2 < 64

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A. 1. a) L = { a; a} für a 0: L = {0; a} d) für a = 0: L = { 1; 1}

MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A. 1. a) L = { a; a} für a 0: L = {0; a} d) für a = 0: L = { 1; 1} MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A 3. RUNDE LÖSUNGEN 1. a) L = { a; a} b) für a = 0: L = {0} für a 0: L = {} c) für a = 0: L = { 3; 3} für a = 4: L = { 5; 5} a 0 und a 4:

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 1. Alle Eckpunkte mit Z verbinden 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k 0.5) C 3. Parallelverschieben CB // durch C B 4. AB //

Mehr

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014 Examen Kurzfragen (sortiert) VI. Dreiecke 24. Juni 2014 VI. Dreiecke Frage 1 Wie werden im rechtwinkligen Dreieck die beiden Seiten genannt, die dem rechten Winkel anliegen? VI. Dreiecke Frage 1 Wie werden

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k = 0.5) C 3. Parallelverschieben CB // durch C B 4. AB // durch B A 5. AE // durch A E 6.

Mehr

Abschlussprüfung 2012 Mathematik 1. Serie

Abschlussprüfung 2012 Mathematik 1. Serie Abschlussprüfung 01 Mathematik 1. Serie 1. a) Löse folgende Gleichung nach x auf: 5 x x 6 x 6x HN : x( x 6) ( x6) 5x HN HN HN x18 5x HN 18 8x 16 :8 x L b) Nenne die drei grössten ganzen Zahlen, welche

Mehr

Qualiaufgaben Konstruktionen

Qualiaufgaben Konstruktionen Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 203/204 DES LANDES HESSEN 3. RUNDE LÖSUNGEN. a) L = { 2; 2} oder x = 2 und x = 2, denn x 7 28 = 0 oder x + 2) 7 = 0 b) L = { 3; 0; }, denn x = 0 oder x 3) 2 = 4x 2 x = 0 oder x 3

Mehr

Lösungen zu den Aufgaben 7. Klasse

Lösungen zu den Aufgaben 7. Klasse Lösungen zu den Aufgaben 7. Klasse Beachte: Einheit bei allen Geometrieaufgaben: 1 Kästchenlänge 1 cm 1. Achsen- und Punktsymmetrie Achsenspiegelung: Punktspiegelung: 1 Lösungen zu den Aufgaben 7. Klasse

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Begründen in der Geometrie

Begründen in der Geometrie Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Ortslinien und Konstruktionen

Ortslinien und Konstruktionen Ortslinien und Konstruktionen Dr. Elke Warmuth Sommersemester 2018 1 / 17 Ortslinien Konstruktionen Dreieckskonstruktionen 2 / 17 Wo liegen alle Punkte P, die von einem Punkt M den gleichen Abstand r haben?

Mehr

Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen)

Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Klasse 7 Mathematik Vorbereitung zur Klassenarbeit Nr. 4 im Mai 2019 Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Checkliste Was ich alles können soll Ich kenne den Begriff

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

Elementare Geometrie Wiederholung 3

Elementare Geometrie Wiederholung 3 Elementare Geometrie Wiederholung 3 Thomas Zink 10.7.2017 1.Schwerpunkt und Teilverhältnis, V13, Es seien A, B, C, D Punkte, die auf einer Geraden liegen, und so dass A B und C D. AB = λ CD λ = AB CD.

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π =

= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π = Seiten 5 / 6 ufgaben Kreis 1 1 a) u Kreis r 15 30 cm ( 94.5 cm) Kreis r 15 5 cm ( 706.86 cm ) b) u Kreis r d 5.6 cm ( 17.59 cm) Kreis r.8 7.84 cm ( 4.63 cm ) c) u Kreis r 99 198 cm ( 6.04 cm) Kreis r 99

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse

Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse k mam 1. näher bei M als bei A (Entfernung von 2 Punkten) 2. weniger als 35mm von A entfernt (Entf. von

Mehr

Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben.

Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben. Übungen A1 Konstruiere ein Dreieck ABC und dessen Umkreismittelpunkt aus den folgenden Angaben. a) A( 4 2), B(2 2), C(2 4) b) a = 5cm, b = 4cm und c = 8cm A2 Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt

Mehr

PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilpru fung, Modul 2. Einfu hrung in die Geometrie

PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilpru fung, Modul 2. Einfu hrung in die Geometrie PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilpru fung, Modul Einfu hrung in die Geometrie Abbildung 01 Abbildung 0 Wintersemester 011/1 10. Februar 01 Abbildung 0 Klausur zur ATP, Modul,

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Geometrie, Einführung

Geometrie, Einführung Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Einführung in Geonext

Einführung in Geonext Einführung in Geonext von Konrad Brunner Downloadquelle: Regionale Lehrerfortbildung Neue Unterrichtsmethoden im Mathematikunterricht Termin: Ort: 27.03.2003 von 09.30 Uhr bis 16.00 Uhr Städtische Rudolf-Diesel-Realschule,

Mehr

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2016/2017 ES LANES HESSEN 2. RUNE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = { 1} 8x 2 = 10 oder 8x 2 = 10 x = 3 2 oder x = 1 b) L = { 3; 2; 1;... ; 3} 8x + 2 < 30 oder 8x + 2 > 30 8x

Mehr

Die Mittelsenkrechte im deduktiven Aufbau

Die Mittelsenkrechte im deduktiven Aufbau Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1

Mehr

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc. AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE:

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE: BMT8 2009-1 - A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN NAME: KLASSE: PUNKTE: 1 NOTE: Aufgabe 1 Ein Würfel der Kantenlänge 2 cm wird, wie in der Abbildung dargestellt, durch

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2)

6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2) Name: Geometrie-Dossier 6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2) Inhalt: Berechnungen in Kreis und Kreissektoren (Bogenlängen, Umfang, Durchmesser, Fläche) In- und Umkreis eines Vielecks

Mehr

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2.

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2. 3.6 m 1.69 m 6 m 1.69 m Seiten 9 / 10 / 11 1 Vorbemerkung: Alle abgebildeten Dreiecke sind ähnlich (weil sie lauter gleiche Winkel haben). Also gilt jeweils: 2 kurze Seite Dreieck 1 kurze Seite Dreieck

Mehr

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P) SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Bernhard Storch. Spar-Paket VORSCHAU

Bernhard Storch. Spar-Paket VORSCHAU Fit mit Bernhard Storch VielfachTests für Mathematik 11 50 Tests mit Lösungsstreifen und Notenschlüssel Spar-Paket Konstruktionen Kongruenz Konstruktion von Dreiecken 1 Konstruktion von Dreiecken 2 Linien

Mehr

DREIECKSFORMEN 1. Station 1 (H1) Gib an, um welche Form von Dreieck es sich jeweils handelt! Teile dabei nach Winkel und nach Seiten ein!

DREIECKSFORMEN 1. Station 1 (H1) Gib an, um welche Form von Dreieck es sich jeweils handelt! Teile dabei nach Winkel und nach Seiten ein! Station 1 (H1) DREIECKSFORMEN 1 Gib an, um welche Form von Dreieck es sich jeweils handelt! Teile dabei nach Winkel und nach Seiten ein! Station 1 LÖSUNG a) Spitzwinkliges Dreieck und gleichschenkliges

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe

Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe PH Heidelberg, Fach Mathematik Klausur zur Akademischen Vorprüfung Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe Wintersemester 12/13 12. Februar 2013 Aufgabe 8: Definieren Nr.

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr