Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2"

Transkript

1 Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik Sommersemester 018 Vorlesung: Boris Bergues ausgegeben am Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am Aufgabe 8: Kurzfragen zur Atomphysik Teil A. Drehimpulskopplung und Spin (ohne Magnetfeld) Lösungsvorschlag: ) Drehimpulskopplung und Spin (ohne Magnetfeld): k) Welche Werte nehmen s und m s beim Elektron an. s = 1 und m s = ± 1 l) Welche möglichen Werte für j gibt es für die folgenden Orbitale: 1s, f, 3d, p, 1d, 4s, 5g? Geben Sie die Notationen nl j für die Kombinationen an. Mit j = l ± s folgt: j(1s) = j(4s) = 1 4s 1 j(3d) = 3 oder 5 j(p) = 1 oder 3 j(5g) = 7 oder 9 Die Orbitale f und 1d existieren nicht. m) Welche Werte kann m j jeweils annehmen? Alle ganzen Zahlen zwischen j und j 3d 3 p 1 5g 7 und 3d 5 und p 3 und 5g 9 n) Erklären Sie das Zustandekommen der Feinstrukturaufspaltung im Wasserstoffatom. Es koppeln der Bahndrehimpuls und der Spin zum Gesamtdrehimpuls: L + S = J. Das magnetische Moment des Spins (mit zwei Einstellmöglichkeiten) koppelt an das Magnetfeld, das durch die Bewegung des e um den Kern entsteht (Kreisstrom). o) In wieviele Niveaus spaltet jedes Orbital nl auf? Jedes Orbital spaltet in zwei Niveaus auf, da j = l ± 1. p) Von welchen Quantenzahlen hängt die Energie eines Orbitals unter Berücksichtigung der Spin-Bahn-Kopplung ab? Die Aufspaltung ist nur von n und j abhängig.

2 q) Wie groß ist die Aufspaltung der Niveaus verschiedener j im Vergleich zur Energiedifferenz der einzelnen Schalen? Sie ist etwa 4 bis 5 Größenordnungen kleiner. r) Nennen sie einen Grund, warum die Vorstellung des Spins beim Elektron als Drehimpuls einer rotierenden Kugel nicht korrekt sein kann? Das Elektron ist ein Elementarteilchen und gilt als punktförmig. Da es keine Ausdehnung hat, kann es klassisch auch keinen Drehimpuls tragen. 3) Zeeman Effekt: s) Erklären Sie, weswegen ein äußeres Magnetfeld Einfluss auf die Energieniveaus im Atom hat. Der Drehimpuls der Elektronen erzeugt ein magnetisches Moment, welches dann an das Magnetfeld koppelt und so zu einer Energieauspaltung der Zustände unterschiedlichen Drehimpulses führt. t) Was ist der Unterschied zwischen dem normalen und dem anormalen Zeeman Effekt? Beim Zeeman-Effekt vernachlässigt man den Spin. Er gilt also nur für Systeme mit S = 0. Im Gegensatz dazu wird beim anomalen Zeeman-Effekt die Kopplung an den Gesamtdrehimpuls (also Bahndrehimpuls und Spin) beschrieben. u) Was sagt der g-faktor (Landè-Faktor) aus? Er hat den Wert g = und beschreibt, dass ein innerer Drehimpuls (Spin) doppelt so stark an ein Magnetfeld koppelt, wie ein äußerer Bahndrehimpuls. v) Von welcher Quantenzahl hängt die Aufspaltung der Energieniveaus beim normalen Zeeman Effekt ab? m l w) Welche energetischen Abstand haben die Niveaus beim normalen Zeeman Effekt? Wie hängt dieser von n oder l ab? Der Abstand der Niveaus ist E = µ B B und somit unabhängig von n und l. x) Die Kopplung welcher Größen muss beim anormalen Zeeman Effekt betrachtet werden? Das magnetische Moment resultierend aus dem Gesamtdrehimpuls J = L + S koppelt an ein externes Magnetfeld. y) Wieviele verschiedene Energieniveaus existieren für die folgenden Orbitale aufgrund des anomalen Zeeman Effektes: 1s, p, 3p, 3d? Geben Sie hierbei die korrekte Notation der Atomniveaus an. Die Notation ist nl j und jedes Niveaus spaltet in j + 1 Niveaus auf - beschrieben durch m j : 1s 1 p 1 p 3 3p 1 3p 3 3d 3 3d 5 : Niveaus : Niveaus : 4 Niveaus : Niveaus : 4 Niveaus : 4 Niveaus : 6 Niveaus

3 z) Diskutieren Sie mit Ihrer Gruppe und dem Dozenten alle noch offenen Fragen. Alles klar, oder? Aufgabe 9: Röntgenstrahlung a) Skizzieren Sie einen experimentellen Aufbau einer Röntgenröhre. Benennen Sie hierbei alle relevanten Komponenten. b) Erklären Sie, durch welche beiden Prozesse in einer Röntgenröhre Röntgenstrahlung generiert wird. Zeichnen Sie hierzu das Spektrum der Strahlung in untenstehende Grafik ein und erklären Sie die auftretenden Strukturen. c) Markieren Sie in obiger Grafik die sogenannte Grenzwellenlänge λ G der Röntgenstrahlung und erklären Sie das Zustandekommen dieser scharfen Kante im Spektrum. d) Damit Elektronen durch den Photoeffekt aus einer bestimmten Metalloberfläche herausgeschlagen werden können, sei eine Austrittsarbeit von 4 ev notwendig. Welche Beschleunigungsspannung muss in einer Röntgenröhre mindestens eingestellt werden, damit die entstehende Röntgenstrahlung Elektronen aus diesem Metall auslösen kann? e) Welche Wellenlänge müssen einfallende Photonen haben, damit Elektronen nach der Photoemission aus oben genannter Metalloberfläche eine Geschwindigkeit von 3 Promille der Lichtgeschwindigkeit haben (nicht-relativistische Rechnung)?

4 Lösungsvorschlag A9 a) Anhand folgender Zeichnung kann man die Funktionsweise einer Röntgenröhre sehen: Elektronen, die z.b. aus einer Heizspule (Kathode K, Heizspannung U h ) emittiert werden, werden in einem evakuierten System durch eine Beschleunigungsspannung U a (typischerweise von mehreren 10 kv) auf eine Anode beschleunigt. Diese wird normalerweise aufgrund der hohen Wärmeentwicklung gekühlt. b) Im unten dargestellten Bild sieht man beispielhaft das Röntgenspektrum einer Rhodiumanode. Die beschleunigten e treffen auf die Anode und erzeugen zum einen kontinuierliche Bremsstrahlung, die aufgrund der Abbremsung der Elektronen im Coulombfeld der Atomkerne entsteht. Dieses Bremsstrahlungsspektrum ist nicht anodenspezifisch und lässt sich durch Anlegen unterschiedlicher Beschleunigungsspannungen verändern. Zum anderen gibt es charakteristische strahlung, die vom Anodenmaterial abhängt und sich in den scharfen Peaks äußert. Diese kommen dadurch, dass Elektronen durch Stöße mit den einfallenden Elektronen aus den inneren Schalen der Anodenatome herausgeschlagen werden. Die anschließende Kaskade der Elektronen aus den höheren Schalen sorgt für die materialspezifischen Linien (Hier sieht man die sogenannten K-Linien, die entstehen, wenn Elektronen von höheren Schalen auf die erste fallen.) c) Gibt ein Elektron seine gesamte kinetische Energie an ein Photon ab, erhält dieses die volle Energie. Diese Maximalenergie entspricht einer minimalen Wellenlänge, die also als Abbruchkante im Spektrum zu sehen ist.

5 d) Die Spannung muss mindestens 4 V betragen, da die Elektronen 4 ev Energie benötigen, um diese nach Teilaufgabe c) vollständig an ein Photon abgeben zu können (Sie dürfen auch mehr Energie haben). e) Es gilt: E kin = 1 mv = hc λ W A λ = hc W A + 1 = 197 nm m(0.003c) Hierbei ist λ die gesuchte Wellenlänge des Photons und W A die Austrittsarbeit des Metalls. Aufgabe 30: Spektroskopie von Natrium a) Benennen Sie die vier Quantenzahlen, die den Zustand eines Elektrons in einem Atom eindeutig festlegen. Nennen Sie außerdem die Werte, die diese Quantenzahlen jeweils annehmen dürfen. Vernachlässigen Sie für diesen Aufgabenteil die Spin-Bahn-Kopplung. Es liegt kein Magnetfeld an. b) Wieviele Elektronen hat ein neutrales Na-Atom? Zeichnen Sie die Belegung der Elektronen in den einzelnen Atomniveaus in ein Termschema ein. Betrachten Sie hierbei den Grundzustand des Atoms. c) Geben sie sowohl die Elektronenkonfiguration (Schreibweise z.b. 1s s...), als auch das Termsymbol S+1 L J des Na-Atoms im Grundzustand an. d) Weswegen bezeichnet man das Na-Atom als wasserstoffartiges Atom? Nennen Sie ein beliebiges anderes im elektrisch neutralen Zustand als wasserstoffähnlich zu bezeichnendes Atom, das schwerer ist als Natrium. Regt man das Natrium-Atom durch externe Energiezufuhr an, so kann das Valenzelektron (das ungepaarte Elektron in der obersten Schale) auf das 4p-Orbital verschoben werden. Das Elektron wird dann nach kurzer Zeit wieder in den Grundzustand zurückfallen und dabei Licht der Energie E γ aussenden (siehe folgendes, unvollständiges Termschema): Misst man die Energie dieser Spektrallinie mit hoher Auflösung, stellt man allerdings fest, dass eigentlich zwei eng benachbarte Linien mit einem Energieunterschied von weniger als 10 4 ev ausgesandt werden.

6 e) Erklären Sie qualitativ das Zustandekommen dieser Feinstruktur-Aufspaltung. Gehen Sie hierbei auch darauf ein, weswegen es genau zwei Linien sind und von welchen Quantenzahlen die Energie der Elektronenniveaus abhängt. f) Sie legen nun ein externes Magnetfeld an das Atom an. Müssen Sie für Natrium den normalen oder den anomalen Zeeman-Effekt berücksichtigen? Begründen Sie ihre Entscheidung kurz. g) Leiten Sie hieraus ab, in wieviele Niveaus verschiedener Energie das Orbital nl j = 4p 3 aufspaltet. Lösungsvorschlag A30 a) Hauptquantenzahl n mit n N Bahndrehimpulsquantenzahl l mit l [0; n 1] in ganzzahligen Schritten magnetische Quantenzahl, bzw. z-komponente des Bahndrehimpulses m l mit m l [ l; l] in ganzzahligen Schritten z-komponente des Spins m s = ± 1 b) Natrium hat 11 Elektronen. c) Die Elektronenkonfiguration ist 1s s p 6 3s 1 oder auch abgekürzt [Ne]3s 1. Da S = 1, L = 0 und J = 1, ist das Termsymbol S 1. d) Bis auf das äußere Valenzelektron im s-orbital sind alle Schalfen gefüllt. Dies ist z.b. auch bei Kalium so. e) Die Spin-Bahn-Kopplung führt zum Gesamtdrehimpuls J = L + S. Im semiklassischen Bild ist die Vorstelleung, dass das magnetische Moment des Spins an das Magnetfeld der Bahnbewegung des Elektrons koppelt. Es ergeben sich die Möglichkeiten für die Gesamtdrehimpulsquantenzahl j = l ± s = l ± 1 - also zwei Werte. Da die Energie nur von n und j abhängt und somit das p-orbital in Niveaus aufspaltet, das s-orbital aber nicht aufspaltet, ergeben sich zwei unterschiedliche Linien. f) Anomaler Zeeman Effekt, da Spin 0. g) Es gibt j + 1 = 4 verschiedene Energieniveaus - jeweils eines für m j = ± 1 ; ± 3

Übungen zur Physik der Materie 1 Blatt 10 - Atomphysik

Übungen zur Physik der Materie 1 Blatt 10 - Atomphysik Übungen zur Physik der Materie 1 Blatt 10 - Atomphysik Sommersemester 018 Vorlesung: Boris Bergues ausgegeben am 14.06.018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 0.06.018 Hinweis: Dieses Übungsblatt

Mehr

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 07.06.2018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 12.06.2018

Mehr

Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld. Jonas J. Funke

Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld. Jonas J. Funke Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld Lösung Jonas J. Funke 0.08.00-0.09.00 Aufgabe (Drehimpulsaddition). : Gegeben seien zwei Drehimpulse

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

Drehimpulse und Atomniveaus für PdM1

Drehimpulse und Atomniveaus für PdM1 Drehimpulse und Atomniveaus für PdM1 Nils Haag, 31.5.2018 1) Drehimpuls in der Quantenmechanik 1a) Kugelkoordinaten In Atomen macht das Rechnen mit kartesischen Koordinaten kaum Sinn, da die zu lösenden

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

FK Ex 4 - Musterlösung 08/09/2015

FK Ex 4 - Musterlösung 08/09/2015 FK Ex 4 - Musterlösung 08/09/2015 1 Spektrallinien Die Natrium-D-Linien sind emittiertes Licht der Wellenlänge 589.5932 nm (D1) und 588.9965 nm (D2). Diese charakteristischen Spektrallinien entstehen beim

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019 Lösungen der Abituraufgaben Physik Harald Hoiß 26. Januar 2019 Inhaltsverzeichnis 1. Wasserstoffatom 1 1.1. Spektren.............................................. 1 2. Anwendungen zum quantenmechanischen

Mehr

Musterlösung 02/09/2014

Musterlösung 02/09/2014 Musterlösung 0/09/014 1 Streuexperimente (a) Betrachten Sie die Streuung von punktförmigen Teilchen an einer harten Kugel vom Radius R. Bestimmen Sie die Ablenkfunktion θ(b) unter der Annahme, dass die

Mehr

12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch)

12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch) VL 14 VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch) VL13. Spin-Bahn-Kopplung (II) 13.1. Landé-Faktor (Einstein-deHaas Effekt) 13.2. Berechnung

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

14. Atomphysik Physik für E-Techniker. 14. Atomphysik

14. Atomphysik Physik für E-Techniker. 14. Atomphysik 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

VL Landé-Faktor (Einstein-deHaas Effekt) Berechnung des Landé-Faktors Anomaler Zeeman-Effekt

VL Landé-Faktor (Einstein-deHaas Effekt) Berechnung des Landé-Faktors Anomaler Zeeman-Effekt VL 14 VL13. Spin-Bahn-Kopplung (II) 13.1. Landé-Faktor (Einstein-deHaas Effekt) 13.2. Berechnung des Landé-Faktors 13.3. Anomaler Zeeman-Effekt VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2.

Mehr

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Elektronenkonfiguration und Periodensystem a) i) Lithium (Li), Grundzustand ii) Fluor (F), angeregter Zustand iii) Neon (Ne), angeregter Zustand iv) Vanadium (V), angeregter

Mehr

2.3. Atome in äusseren Feldern

2.3. Atome in äusseren Feldern .3. Atome in äusseren Feldern.3.1. Der Zeeman-Effekt Nobelpreis für Physik 19 (...researches into the influence of magnetism upon radiation phenomena ) H. A. Lorentz P. Zeeman Die Wechselwirkung eines

Mehr

Die Abbildung zeigt eine handelsübliche Röntgenröhre

Die Abbildung zeigt eine handelsübliche Röntgenröhre Die Röntgenstrahlung Historische Fakten: 1895 entdeckte Röntgen beim Experimentieren mit einer Gasentladungsröhre, dass fluoreszierende Kristalle außerhalb der Röhre zum Leuchten angeregt wurden, obwohl

Mehr

14. Atomphysik. Inhalt. 14. Atomphysik

14. Atomphysik. Inhalt. 14. Atomphysik Inhalt 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz

Mehr

14. Atomphysik Aufbau der Materie

14. Atomphysik Aufbau der Materie 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein.

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein. 13. Der Spin Experimentelle Fakten: 2. Normaler Zeeman-Effekt ist die Ausnahme: Meist sieht man den anormalen Zeeman-Effekt (Aufspaltung beobachtet, für die es keine normale Erklärung gab wegen Spin).

Mehr

Übungen zur Physik der Materie 1 Musterlösung Blatt 2 - Quantenmechanik

Übungen zur Physik der Materie 1 Musterlösung Blatt 2 - Quantenmechanik Übungen zur Physik der Materie 1 Musterlösung Blatt 2 - Quantenmechanik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 19.04.2018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 24.04.2017

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik4. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1 Abiturprüfung 2003 Vorschlag 2 Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1. Skizziere und beschreibe den Aufbau einer Röntgenröhre. Beschreibe kurz, wie Röntgenstrahlung entsteht.

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik4. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt. Weder

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

Ferienkurs Experimentalphysik 4 WS09/10. Übung 3: Musterlösung

Ferienkurs Experimentalphysik 4 WS09/10. Übung 3: Musterlösung Ferienkurs Experimentalphysik 4 WS09/10 1 Elektronenpotential Übung 3: Musterlösung Wie sieht das Potential für das zweite Elektron im He-Atom aus, wenn das erste Elektron durch eine 1s-Wellenfunktion

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Simon Lewis Lanz 2015 simonlanzart.de Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Zeeman-Effekt, Paschen-Back-Effekt, Fein- und Hyperfeinstrukturaufspaltung Fließt elektrischer Strom

Mehr

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome) VL 12 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)

VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome) VL 13 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2

Mehr

6. Viel-Elektronen Atome

6. Viel-Elektronen Atome 6. Viel-Elektronen 6.1 Periodensystem der Elemente 6.2 Schwerere 6.3 L S und j j Kopplung 6.1 6.1 Periodensystem der Elemente 6.2 Auffüllen der Elektronen-Orbitale Pauliprinzip: je 1 Elektron je Zustand

Mehr

Instrumentelle Analytik Atom- und Molekülspektren Seite. 2. Optische Analyseverfahren (optische Spektroskopie) 2.1 Begriffe, Definitionen

Instrumentelle Analytik Atom- und Molekülspektren Seite. 2. Optische Analyseverfahren (optische Spektroskopie) 2.1 Begriffe, Definitionen . Optische Analyseverfahren (optische Spektroskopie).1 Begriffe, Definitionen N031_Wechselwirkung_b_BAneu.doc - 1/14 Alle optischen Analyseverfahren basieren auf der Wechselwirkung von Licht mit Materie.

Mehr

Lösungen zur Experimentalphysik III

Lösungen zur Experimentalphysik III Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

Examensaufgaben QUANTENPHYSIK

Examensaufgaben QUANTENPHYSIK Examensaufgaben QUANTENPHYSIK Aufgabe 1 (Juni 2006) Bei einem Versuch wurden folgende Messwerte ermittelt : Wellenlänge des Lichtes (nm) Gegenspannung (V) 436 0,83 578 0,13 a) Berechne aus diesen Werten

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

A14: Zeeman-Effekt. 1. Übersicht zum Thema und Zusammenfassung der Ziele

A14: Zeeman-Effekt. 1. Übersicht zum Thema und Zusammenfassung der Ziele - A 14.1 - A14: Zeeman-Effekt 1. Übersicht zum Thema und Zusammenfassung der Ziele Im Jahre 1896 beobachtete der Holländer Peter Zeeman eine Aufspaltung der Natrium D- Linien in einem Magnetfeld. Dieser

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

Physik IV - Schriftliche Sessionsprüfung SS 2008

Physik IV - Schriftliche Sessionsprüfung SS 2008 Physik IV - Schriftliche Sessionsprüfung SS 2008 9:00 11:00, Donnerstag, 14. August 2008 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt 6 Aufgaben auf VIER Blättern. Es können insgesamt 60 Punkte

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009

Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009 Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009 9:00 11:00, Donnerstag, 29. Januar 2009, HG D 5.2 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt 6 Aufgaben auf FÜNF Blättern. Es können

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 211 Übung 2 - Musterlösung 1. Wasserstoffatom Die Wellenfunktionen für ein Elektron im Zustand 1s und 2s im Coulombpotential eines Kerns mit Kernladungszahl Z sind gegeben

Mehr

Physik 4, Übung 12, Prof. Förster

Physik 4, Übung 12, Prof. Förster Physik 4, Übung 12, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Aufspaltung von Spektrallinien im Magnetfeld

Aufspaltung von Spektrallinien im Magnetfeld Fortgeschrittenen Praktikum Technische Universita t Darmstadt Betreuer: Clemens v. Loewenich Durchfu hrung:.5.29 Abgabe: 8.6.29 Versuch B.5 Aufspaltung von Spektrallinien im Magnetfeld Oliver Bitterling

Mehr

Kapitel 14 Die Spin-Bahn-Kopplung

Kapitel 14 Die Spin-Bahn-Kopplung Kapitel 14 Die Spin-Bahn-Kopplung Wie in Kapitel 13 angedeutet, befassen wir uns in diesem Kapitel mit der Wechselwirkung zwischen dem Elektronspin und dem Bahndrehimpuls des Elektrons. Diese Wechselwirkung

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2) Blatt 1 (von 2) 1. Leuchtelektronen-Modell des Na-Atoms 5 BE Berechne aus dem experimentellen Wert der Ionisierungsenergie von Natrium, 5, 12 ev, die effektive Kernladungszahl für das Leuchtelektron der

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Das Periodensystem der Elemente

Das Periodensystem der Elemente Q34 LK Physik 17. November 2015 Aufbau Die ermittelten Zusammenhänge der Elektronenzustände in der Atomhülle sollen dazu dienen, den der Elemente zu verstehen. Dem liegen folgende Prinzipien zugrunde:

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Aufgabe: LB S.66/9 Durch eine Natriumdampflampe wird Licht der Wellenlänge 589 nm (gelbe Natriumlinien) mit einer Leistung von 75 mw ausgesendet. a) Berechnen Sie die Energie der betreffenden Photonen!

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 3 am 04.09.2013 Mehrelektronensysteme Hannah Schamoni, Susanne Goerke Inhaltsverzeichnis 1 Das Helium-Atom 2 1.1 Grundlagen und Ortswellenfunktion........................

Mehr

(a) Welches ist die wichtigste Erkenntnis, die sich aus den Ergebnissen des Experiments ableiten lässt.

(a) Welches ist die wichtigste Erkenntnis, die sich aus den Ergebnissen des Experiments ableiten lässt. Übungen zur moderne Experimentalphysik I (Physik IV, Atome und Kerne) KIT, Sommersemester 2017 Prof. Dr. Guido Drexlin, Dr. Kathrin Valerius Vorlesungen Di 9:45 + Do 8:00, Gerthsen-Hörsaal Sprechstunde

Mehr

ǫ 0 = µ 0 = 4π 10 7 kg m c = m s h = m 2 kg e = C Aufgabenbereich Professor Dr. O. Dopfer Tobias F.

ǫ 0 = µ 0 = 4π 10 7 kg m c = m s h = m 2 kg e = C Aufgabenbereich Professor Dr. O. Dopfer Tobias F. Professor Dr. O. Dopfer Tobias F. Bartsch, MA Technische Universität Berlin Name Vorname ET (Dipl.) ET (Bach.) TI Studiengang WI (Dipl.) WI (Bach.) Platznummer Tutor Aufgabenbereich A Erhaltungssätze und

Mehr

H LS = W ( r) L s, (2)

H LS = W ( r) L s, (2) Vorlesung 5 Feinstruktur der Atomspektren Wir betrachten ein Wasserstoffatom. Die Energieeigenwerte des diskreten Spektrums lauten E n = mα c n, (1 wobei α 1/137 die Feinstrukturkonstante, m die Elektronmasse

Mehr

Physik im Querschnitt (nicht vertieft) Übungsblatt Atom- und Molekülphysik

Physik im Querschnitt (nicht vertieft) Übungsblatt Atom- und Molekülphysik Physik im Querschnitt (nicht vertieft) Übungsblatt Atom- und Molekülphysik WS2018/19 Pupeza/Nubbemeyer 7.12.2018 Aufgabe 25 Spektroskopie von Quantenniveaus a) Benennen Sie zwei Experimente, mit denen

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 000 Aufgabe III Atomphysik 1. Laserbremsung eines Atomstrahls In einem Atomofen befindet sich Cäsium-Gas der Temperatur T. Die mittlere m Geschwindigkeit der

Mehr

Atome im elektrischen Feld

Atome im elektrischen Feld Kapitel 3 Atome im elektrischen Feld 3.1 Beobachtung und experimenteller Befund Unter dem Einfluss elektrischer Felder kommt es zur Frequenzverschiebung und Aufspaltung in optischen Spektren. Dieser Effekt

Mehr

Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen

Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen Fakultät für Physik Institut für Experimentelle Kernphysik Musterlösung zur 2. Klausur zur Vorlesung Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen Prof. Dr. U.

Mehr

Übungsblatt 10. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 1. 7.

Übungsblatt 10. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 1. 7. Übungsblatt 10 PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 6. 2005 oder 1. 7. 2005 1 Aufgaben 1. Zeigen Sie, dass eine geschlossene nl-schale

Mehr

Physik 4, Übung 6, Prof. Förster

Physik 4, Übung 6, Prof. Förster Physik 4, Übung 6, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

15. Vom Atom zum Festkörper

15. Vom Atom zum Festkörper 15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl

Mehr

A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor:

A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor: Prof. Dr. O. Dopfer Prof. Dr. A. Hese Priv. Doz. Dr. S. Kröger Cand.-Phys. A. Kochan Technische Universität Berlin A. Erhaltungsgrößen (17 Punkte) 1. Unter welcher Bedingung bleiben a) der Impuls b) der

Mehr

Probeklausur Musterlösung

Probeklausur Musterlösung Probeklausur Musterlösung Aufgabe 1 Gegeben sei eine 1-dimensionale Potentialstufe 0 für x < 0 V(x) = V 0 für x > 0 (a) Ein Teilchen der Masse m bewege sich mit definierter Energie E = 2V 0 in positive

Mehr

Physik IV (Atomphysik) Vorlesung SS Prof. Ch. Berger

Physik IV (Atomphysik) Vorlesung SS Prof. Ch. Berger Physik IV (Atomphysik) Vorlesung SS 2003 Prof. Ch. Berger Zusammenfassung Das Skript gibt eine gedrängte Zusammenfassung meiner Vorlesung an der RWTH Aachen im SS 2003. Verglichen mit vielen, auch neueren

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 3 Atome im Magnetfeld, Mehrelektronensysteme Florian Lippert & Andreas Trautner 9.08.01 Inhaltsverzeichnis 1 Atome im externen Magnetfeld 1 1.1 Elektronenspin-Resonanz...........................

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 04. Juni 2009 5 Fortsetzung: Atome mit mehreren Elektronen In der bisherigen

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Betreuer Andreas Branding - 1 - Theorie Zur Erläuterung

Mehr

Lösung zur Klausur

Lösung zur Klausur ösung zur Klausur 1..01 Aufgabe 1.) a) Hundsche Regeln: maximaler Spin, dann maximales Bahnmoment. Die beiden Elektronen im 4s kann man vernachlässigen, da sie weder Spin- noch Bahmoment beitragen. Damit

Mehr

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4

FERIENKURS EXPERIMENTALPHYSIK 4 FERIENKURS EXPERIMENTALPHYSIK 4 Musterlösung 3 - Mehrelektronensysteme Hannah Schamoni 1 Hundsche Regeln Ein Atom habe die Elektronenkonfiguration Ne3s 3p 6 3d 6 4s. Leite nach den Hundschen Regeln die

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Linienform- und Breite

Linienform- und Breite Linienform- und Breite a) Wodurch ist die Breite eienr Absorptions- (Emissions-) Linie gegeben? welche Anteile gibt es, welcher Anteil dominiert im Normalfall? Dopplerbreite, Stossverbreiterung, natuerliche

Mehr

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses. Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.

Mehr

8.3 Die Quantenmechanik des Wasserstoffatoms

8.3 Die Quantenmechanik des Wasserstoffatoms Dieter Suter - 409 - Physik B3 8.3 Die Quantenmechanik des Wasserstoffatoms 8.3.1 Grundlagen, Hamiltonoperator Das Wasserstoffatom besteht aus einem Proton (Ladung +e) und einem Elektron (Ladung e). Der

Mehr

Der Spin des Elektrons

Der Spin des Elektrons Kapitel 13 Der Spin des Elektrons Wie in Abbschnitt 12.4 angedeutet, ist in der Realität die Aufspaltung der Spektrallinien im homogenen externen Magnetfeld nicht alleine durch den normalen Zeeman-Effekt

Mehr

1 Atome mit mehreren Elektronen

1 Atome mit mehreren Elektronen 1 Atome mit mehreren Elektronen 1.1 Zentralfeldnäherungen Wir wollen uns in diesem Abschnitt die Elektronenkonfiguration (besser Zustandskonfiguration) von Atomen mit mehreren Elektronen klarmachen. Die

Mehr

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden.

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden. phys4.022 Page 1 12.4 Das Periodensystem der Elemente Dimitri Mendeleev (1869): Ordnet man die chemischen Elemente nach ihrer Ladungszahl Z, so tauchen Elemente mit ähnlichen chemischen und physikalischen

Mehr

Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser

Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser Juli 19, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Magnetfelder im H-Atom Interne B-Felder:

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls 2.2. Der Spin 2.2.1. Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls Dies entspricht einem Kreisstrom. n r r I e Es existiert ein entsprechendes magnetisches

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Bereich Schwierigkeit Thema Atomphysik X Atommodelle. Dalton, Thomson und Rutherford. Mögliche Lösung

Bereich Schwierigkeit Thema Atomphysik X Atommodelle. Dalton, Thomson und Rutherford. Mögliche Lösung Atomphysik X Atommodelle Dalton, Thomson und Rutherford a) Formulieren Sie die Daltonsche Atomhypothese. b) Nennen Sie die wesentlichen Merkmale des Atommodells von Thomson. c) Beschreiben Sie die Rutherfordschen

Mehr

In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt.

In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt. Klausur Physik III, 7.3.2016 Aufg. 1/5 Aufgabe 1) In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt. 1. Nennen Sie die wesentlichen Prozesse, die bei der Erzeugung von

Mehr