Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1

Größe: px
Ab Seite anzeigen:

Download "Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1"

Transkript

1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 015): Differential und Integralrechnung (Frühjahr 00, Thema 3, Aufgabe ) Formulieren Sie das Prinzip der vollständigen Induktion und beweisen Sie damit die folgende Aussage: Für alle n N, n 1, gilt n ( 1) k+1 k n+1 n(n + 1) = ( 1). 1. (Herbst 005, Thema 3, Aufgabe 1) Beweisen Sie mittels vollständiger Induktion die Gleichheit für alle n N, n n k= ( ) 1 = 1 ( 1 + ). k(k + 1) 3 n 1.3 (Frühjahr 1999, Thema 1, Aufgabe 1) k 3 Sei a k := für k = 1,,.... Zeigen Sie, dass die Folge a 1, a,... konvergiert k + 1 und berechnen Sie ein n, so dass für n n gilt: a n lim a k 0,01. k 1.4 (Herbst 006, Thema 3, Aufgabe 1) a n = (sin(n))3 3 cos(n) n, n 1 definierte Folge (a n ) n 1, und eine reelle Zahl ε > 0. Bestimmen Sie eine reelle Zahl a und eine natürliche Zahl N = N(ε), so dass gilt. a n a < ε für alle n N

2 1.5 (Herbst 01, Thema, Aufgabe 1) Beweisen Sie, dass die Folge (a n ) n 1 mit a n = (n + 1)(n + 1) n (3n + 1) n n+1 konvergiert, und bestimmen Sie den Grenzwert der Folge. 1.6 (Herbst 006, Thema 1, Teilaufgabe 1a) Gegeben seien die Folgen (a n ) n N mit (i) a n = n n, (ii) a n = n ( ) k k=0, (iii) a 7 k n = 1 cos 1 n 1 n Zeigen Sie, dass diese Folgen konvergieren und berechnen Sie ihre Grenzwerte. 1.7 (Frühjahr 014, Thema 3, Aufgabe ) Es sei (f n ) n N die durch f 1 = f = 1 und rekursiv definierte Fibonacci Folge. a) Beweisen Sie für alle n N: b) Zeigen Sie, dass die durch f n+1 = f n + f n 1 für alle n f n 4 9 a n = ( ) n 3. n f k f k+1 für n N definierte Folge gegen 0 konvergiert. c) Zeigen Sie, dass die Reihe 1 konvergiert. f k 1.8 (Herbst 009, Thema 3, Teilaufgabe 1a) Untersuchen Sie für x R \ { 1} die durch a n := 1 xn 1+x n gegebene Folge (a n ) n N auf Konvergenz und ermitteln Sie gegebenenfalls ihren Grenzwert. 1.9 (Herbst 009, Thema 3, Teilaufgabe 1c) Untersuchen Sie die durch x 1 := 1 und x n+1 = 1 3 (x3 n + 1) rekursiv definierte Folge (x n ) n N auf Konvergenz.

3 1.10 (Frühjahr 007, Thema 3, Aufgabe 1) Die Folge (a n ) n N ist rekursiv definiert durch Zeigen Sie: a 0 = 1 und a n+1 = 1 + a n für alle n N. a) a n a n+1 für alle n N, b) (a n ) n N konvergiert, ( ) c) lim a n = 1 n (Herbst 007, Thema 1, Aufgabe 1) Gegeben sei die Folge (a n ) n N mit a 1 = 1, a n+1 = 1 + a n, n 1. a) Zeigen Sie, dass (a n ) monoton wachsend und beschränkt ist. b) Bestimmen Sie den Grenzwert von (a n ). 1.1 (Herbst 007, Thema, Aufgabe 1) a 1 = 5 und a n+1 = a n für alle n N rekursiv definierte Folge (a n ) n N. a) Man zeige 3 a n 5 für alle n N. b) Man beweise, dass die Folge (a n ) n N konvergiert. c) Man bestimme den Grenzwert der Folge (a n ) n N (Frühjahr 009, Thema, Aufgabe 1) a 1 = 7 und a n+1 = 5 11 a n für alle n N rekursiv definierte Folge (a n ) n N. a) Man zeige 1 a n 5 für alle n N. b) Man beweise, dass die Folge (a n ) n N konvergiert. c) Man bestimme den Grenzwert der Folge (a n ) n N (Herbst 008, Thema 1, Aufgabe ) Man zeige, dass die durch x 1 := 1, x n+1 := x n x3 n 10 + x5 n 100, n 1, definierte Folge konvergiert und bestimme ihren Grenzwert.

4 1.15 (Frühjahr 009, Thema 1, Aufgabe 1) Die Folge (x n ) n N sei rekursiv definiert durch x n+1 = e xn 1, x 1 = 0. a) Zeigen Sie, dass die Folge monoton wachsend und durch 1 nach oben beschränkt ist. b) Zeigen Sie, dass die Folge gegen 1 konvergiert (Frühjahr 008, Thema, Aufgabe 1) Die Folge (a n ) n N sei rekursiv definiert durch a) Zeigen Sie: a n für alle n. a 0 := 3, a n+1 := a n + 4 a n. b) Zeigen Sie: Die Folge a n fällt monoton. c) Berechnen Sie den Grenzwert a der Folge a n (Frühjahr 005, Thema 1, Aufgabe 1) definierte Folge. a 1 = 1, a n+1 = 1 + a n + a n, n 1 a) Zeigen Sie, daß a n > 1 für alle n 1 gilt. b) Untersuchen Sie die Folge (a n ) auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert (Frühjahr 009, Thema 3, Aufgabe 1) Die Folge (a n ) n 0 sei definiert durch a n+1 = 1 4 a n + 3 4, mit a 0 [1, 3]. a) Beweisen Sie, dass die Folge (a n ) n 0 für alle a 0 [1, 3] monoton fallend ist. b) Bestimmen Sie den Grenzwert der Folge (a n ) n 0 in Abhängigkeit von a 0, falls der Grenzwert existiert (Frühjahr 006, Thema, Aufgabe ) Man zeige, dass für jeden Startwert x 0 [0; 3] die durch die Rekursion x n+1 = 1 5 ( x n + 6 ) (n N 0 := N {0}) definierte Folge konvergiert und bestimme jeweils den Grenzwert.

5 1.0 (Frühjahr 014, Thema, Aufgabe 1) Für einen beliebigen Startwert a 0 R betrachte man die durch a n+1 = a n a n + 1 für alle n N 0 rekursiv definierte Folge (a n ) n N0. Man zeige: a) Für alle Startwerte a 0 R ist die Folge (a n ) n N0 monoton wachsend. b) Für alle Startwerte a 0 [0, 1] konvergiert die Folge (a n ) n N0 gegen den Grenzwert 1. c) Für alle Startwerte a 0 / [0, 1] ist die Folge (a n ) n N0 bestimmt divergent gegen (Herbst 009, Thema, Aufgabe 1) Die reelle Zahlenfolge (x k ) k N sei rekursiv definiert durch x 1 1, x k+1 = f(x k ) für alle k N, ( ) wobei f(x) := x + 1 x für x > 0. Zeigen Sie: 4 a) f(x) 1 für alle x > 0. b) x k+1 x k 0 für alle k N. c) (x k ) k N konvergiert. Bestimmen Sie auch den Grenzwert x = lim k x k. 1. (Frühjahr 013, Thema, Aufgabe 3) Sei f(x) = x x für x > 0 definiert. a) Zeigen Sie für alle die Ungleichung b) Die Folge (x n ) n N sei rekursiv durch gegeben. Zeigen Sie für alle n N. x ] 1 e, 1[ 0 < f (x) < 1, 0 < f(x) < 1. x 0 ] 1 e, 1[, x n+1 = f(x n ) x n < x n+1 < 1 c) Zeigen Sie, dass die in b) definierte Folge gegen 1 konvergiert. 1.3 (Frühjahr 014, Thema 3, Aufgabe 1) a) Zeigen Sie sin(x) < x für alle x > 0. b) Bestimmen Sie den Grenzwert der rekursiv gegebenen Folge mit beliebigem Startpunkt x 0 R. x n+1 = sin(x n )

6 1.4 (Frühjahr 005, Thema, Aufgabe 1) Für n = 1,,... sei a n := 1 n + 1 n n. a) Untersuchen Sie, ob die Folge (a n ) n 1 beschränkt ist. b) Untersuchen Sie, ob die Folge (a n ) n 1 konvergent ist. 1.5 (Frühjahr 007, Thema 1, Aufgabe ) definierte Folge. x 1 := 1, x n+1 := x n, n 1 a) Man zeige, dass die Teilfolgen (x n+1 ) bzw. (x n ) monoton wachsend bzw. monoton fallend sind. b) Man zeige die Konvergenz der Folge (x n ) und bestimme ihren Grenzwert. 1.6 (Herbst 005, Thema, Aufgabe 4) Sei a eine reelle Zahl, und sei (a n ) n 1 eine Folge reeller Zahlen. Es sei lim n a n = a. Beweisen Sie: Ist c Grenzwert einer konvergenten Teilfolge der Folge (a n ) n 1, so ist c = a oder c = a. 1.7 (Frühjahr 011, Thema 3, Aufgabe 3) a) Sei (a n ) n N eine reelle Folge, die gegen a konvergiere. Zeigen Sie, dass dann auch die Folge der b n = 1 n a k n gegen a konvergiert. b) Geben Sie ein Beispiel dafür an, dass die Folge (b n ) n N konvergiert, die Folge (a n ) n N aber nicht. 1.8 (Frühjahr 01, Thema 1, Aufgabe 1) a) Sei (a n ) n N eine gegen a konvergente Folge in R. Zeigen Sie, dass dann auch die Folge (b n ) n N mit gegen a konvergiert. b n := 1 (a n + a n+1 ) für alle n N b) Finden Sie eine Folge (a n ) n N, die nicht konvergiert, so dass die zugehörige Folge (b n ) n N konvergiert. c) Sei vorausgesetzt, dass (a n ) n N monoton wächst und dass (b n ) n N konvergiert. Zeigen Sie, dass dann auch (a n ) n N konvergiert.

4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen

4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen 4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen Rechenregeln für konvergente Folgen Satz 4.11 Die Folgen (a n ) und (b n ) seien konvergent mit dem Grenzwert a bzw. b. Dann gilt: 1 lim (a n + b

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

3.2 Konvergenzkriterien für reelle Folgen

3.2 Konvergenzkriterien für reelle Folgen 3.2 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge a n ) n N heißt monoton wachsend : n < m : a n a m streng monoton wachsend : n < m : a n < a m nach oben beschränkt : C R : n : a

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom Prof. Dr. Moritz Kaßmann Fakultät für Mathematik Wintersemester 04/05 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt VI vom 0..4 Aufgabe VI. (6 Punkte) Gegeben sind die Folgen (a n)

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Folgen und Reihen. Mathematik-Repetitorium

Folgen und Reihen. Mathematik-Repetitorium Folgen und Reihen 1.1 Vollständige Induktion 1.2 Zahlenfolgen 1.3 Eigenschaften konvergenter Zahlenfolgen 1.4 Konvergenzkriterien 1.5 Unendliche Reihen 1.6 Eigenschaften unendlicher Reihen 1.7 Rechnen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

Zulassungsprüfung in Mathematik

Zulassungsprüfung in Mathematik der Deutschen Aktuarvereinigung e V Hinweise: Als Hilfsmittel sind ein Taschenrechner, eine mathematische Formelsammlung sowie entsprechende Literatur zugelassen Die Gesamtpunktzahl beträgt 9 Punkte Die

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: Dr. B. Ackermann, M. Borgart, Dr. I Rybak, M. Kutter, J. Veenman 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Wintersemester 010/11 Prof. Dr. M. Stroppel Prof. Dr. A. Sändig Lösungshinweise zu den

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt.

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg WiSe 2011/2012 Dr. Hanna Peywand Kiani Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenfolgen 02.12.2011 Die ins Netz

Mehr

Vorname Nachname Matrikelnummer Tutor Uhrzeit

Vorname Nachname Matrikelnummer Tutor Uhrzeit . Arbeitsblatt Analysis SS.. 3. Vorname Nachname Matrikelnummer Tutor Uhrzeit Aufgabe 3 4 5 6 7 8 9 Code Punkte Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Analysis I. Arbeitsblatt 5. Übungsaufgaben

Analysis I. Arbeitsblatt 5. Übungsaufgaben Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Arbeitsblatt Übungsaufgaben Aufgabe.1. Es sei K ein angeordneter Körper und a K. Zeige, dass die Gleichung x 2 = a höchstens zwei Lösungen in K besitzt.

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Nachklausur Analysis 1

Nachklausur Analysis 1 Nachklausur Analysis 1 Die Nachklausur Analysis 1 für Mathematiker, Wirtschaftsmathematiker und Lehrämtler findet als 90-minütige Klausur statt. Für Mathematiker und Wirtschaftsmathematiker ist es eine

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Susanna Pohl Vorkurs Mathematik TU Dortmund 12.03.2015 Folgen und Reihen Folgen und Grenzwerte Rechenregeln für konvergente Folgen

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2018 Vorlesung MINT Mathekurs SS 2018 1 / 20 Vorlesung 4 (Lecture 4) Folgen Sequences Vorlesung MINT

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Kapitel 3: Folgen und Reihen

Kapitel 3: Folgen und Reihen Kapitel 3: und Reihen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 3: und Reihen 1 / 29 Gliederung 1 Grundbegriffe 2 Abbildungen und elementare

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 4 MINT Mathkurs SS 2017 1 / 20 Vorlesung 4 (Lecture 4) Folgen Sequences Vorlesung 4

Mehr

Teil I Auswahlfragen

Teil I Auswahlfragen UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Grundlagen der Analysis Sommersemester 010 Klausur vom 07.09.010 Teil I Auswahlfragen Name: Hinweise: Bei den folgenden Auswahlfragen

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 8.1 (Herbst 2002, Thema 1, Aufgabe 6) y = 3y +2x x 8.2 (Frühjahr 2005, Thema 1, Aufgabe 6) (x > 0) y(1)

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2012 Konvergenz Definition Fourierreihen Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn es ein

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

4. Reihen. Im Folgenden sei K = R oder K = C und (x k ), (y k ),... Folgen in K Definition. Wir schreiben. x k = s. und sagen, die Reihe

4. Reihen. Im Folgenden sei K = R oder K = C und (x k ), (y k ),... Folgen in K Definition. Wir schreiben. x k = s. und sagen, die Reihe 9 4. Reihen Im Folgenden sei K R oder K C und (x k ), (y k ),... Folgen in K. 4.. Definition. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Seite 1. Folgen. Folgen. Klaus Messner,

Seite 1. Folgen. Folgen. Klaus Messner, Seite 1 Klaus Messner, klaus_messner@web.de Seite 2 Begriffe Die Schreibweise stellt eine Folge dar. Die a i nennt man glieder und i ist der Index bzw. die Nummer eines speziellen glieds. In den Lehrbüchern

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Name: Matrikel-Nr.: 1

Name: Matrikel-Nr.: 1 Name: Matrikel-Nr.: 1 2 Name: Matrikel-Nr.: 3 Aufgabe 1. Zeigen Sie per vollständiger Induktion, dass für alle n N gilt: n k=1 k(k + 1) 2 = n(n + 1)(n + 2). 6 3 Punkte 4 Name: Matrikel-Nr.: 5 Aufgabe 2.

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2013/2014. Arbeitsblatt 7. Übungsaufgaben. Aufgabe 7.1. Zeige, dass das Quadrieren

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2013/2014. Arbeitsblatt 7. Übungsaufgaben. Aufgabe 7.1. Zeige, dass das Quadrieren Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Arbeitsblatt 7 Übungsaufgaben Aufgabe 7.1. Zeige, dass das Quadrieren R 0 R 0, x x 2, eine wachsende Funktion ist. Man folgere daraus, dass auch die

Mehr

4. Folgen von (reellen und komplexen) Zahlen [Kö 5]

4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 20 4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 4.1 Grundbegriffe Definition 1. a) Eine Folge (reeller bzw. komplexer) Zahlen ist eine Abbildung a: Z k C mit einem k Z. Schreibweise: a(n) = a n

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

Nachklausur zu Analysis und Wahrscheinlichkeitsrechnung AI 2

Nachklausur zu Analysis und Wahrscheinlichkeitsrechnung AI 2 1 Nachklausur zu Analysis und Wahrscheinlichkeitsrechnung AI 2 SS 2015, 22.04.2015 Prof. Dr. Hans-Jürgen Steens Name: Vorname: Matrikelnummer: Die Klausur besteht aus 21 Aufgaben. Es sind maximal 131 Punkte

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

( Mathematik verstehen 6, Kapitel 7,S.116 ff) Eine Folge ( ) kann man auch als eine f: auffassen, die jeder von 0

( Mathematik verstehen 6, Kapitel 7,S.116 ff) Eine Folge ( ) kann man auch als eine f: auffassen, die jeder von 0 Factsheet 1 Folgen und Reihen Folgen ( Mathematik verstehen 6, Kapitel 7,S.116 ff) Wichtige Begriffe und Defintionen: (Zahlen)Folge.. (a n *) mit (a 1, a 2,.), oder ( a o, a 1, a 2, ), a n n-tes Folgenglied

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Lösungsvorschlag Klausur MA9801

Lösungsvorschlag Klausur MA9801 Lehrstuhl für Numerische Mathematik Garching, den 03.08.2012 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA9801 Aufgabe 1 [4 Punkte] Seien M, N Mengen und f : M N eine Abbildung.

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen

ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht ANALYSIS I FÜR TPH WS 208/9 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Konvergenz von Reihen (i) Aufgabe 2: Konvergenz von Reihen (ii) Aufgabe 3: ( ) Konvergenz von Reihen (iii) Aufgabe 4:

Mehr

Kapitel IV. Folgen und Konvergenz

Kapitel IV. Folgen und Konvergenz Kapitel IV Folgen und Konvergenz Inhalt IV.1 Zahlenfolgen Motivation und Begriffsbestimmungen IV.2 Konvergente Folgen Konvergenz und Grenzwert einer Folge Rechenregeln konvergenter Folgen IV.3 Einige nützliche

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Prof. Dr. E. Triesch Höhere Mathematik I SoSe 06 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die

Mehr

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 7 3.9.7 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr