Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen"

Transkript

1 Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen

2 X sei eine diskrete reellwertige Zufallsvariable, d.h. eine ZV e mit Wertebereich R (oder einer Teilmenge davon), sodass eine endliche oder abzählbar unendliche Menge S existiert mit P(X S) = 1. X S R

3 1. Der Erwartungswert als gewichtetes Mittel

4 Eine einprägsame Kenngröße für die Lage der Verteilung von X ist das mit den Wahrscheinlichkeiten gewichtete Mittel der möglichen Werte von X: E[X] := a S a P(X = a). Man spricht vom Erwartungswert von X. (Wir bezeichnen ihn auch mit µ oder µ X.)

5 a Gewichte

6 Z = Das elementarste Beispiel: { 1 mit Wahrscheinlichkeit p 0 mit Wahrscheinlichkeit q = 1 p Man erinnere sich an die Situation der ersten Stunde: Rein zufällige Wahl eines Pixels aus einem Quadrat, die Teilmenge A hatte den Pixelanteil p; gezählt wird, wenn der Pixel in A fällt.

7 Z = Das elementarste Beispiel: { 1 mit Wahrscheinlichkeit p 0 mit Wahrscheinlichkeit q = 1 p E[Z] = p 1+q 0 = p

8 Das passt gut zu unserem Logo der ersten Stunde Y Z A 1 A 1 0 Z = 1 A (Y) =: I {Y A}... die Indikatorvariable des Ereignisses {Y A} {Z = 1} = {Y A} E[Z] = P(Y A).

9 ... und entspricht dem Szenario des einfachen Münzwurfs: Z Y Kopf 1 Zahl 0 Z = I {Y=Kopf} {Z = 1} = {Y = Kopf} E[Z] = P(Y = Kopf).

10 Für allgemeines diskretes, reellwertiges X hatten wir E[X] = a S a P{X = a} = a S aρ(a) Dabei sind die Zahlen ρ(a) die Verteilungsgewichte von X. Merke: Der Erwartungswert der Zufallvariablen X hängt nur von ihrer Verteilung ρ ab. Synonym sprechen wir daher auch manchmal vom Erwartungswert der Verteilung ρ.

11 X eine Zufallsgröße; E[X] eine Zahl.

12 2. Ein Beispiel: Der Erwartungswert der Anzahl der Erfolge beim dreifachen Münzwurf

13 Eine faire Münze wird dreimal geworfen. X := Anzahl der geworfenen Köpfe.

14 E[X] =? a = Anzahl Köpfe P(X = a)

15 E[X] = a P(X = a) a = Anzahl Köpfe P(X = a)

16 P(X = a) E[X] = = 12 8 = a = Anzahl Köpfe

17 P(X = a) Die Zahl E[X] = 1.5 gehört hier gar nicht zum Wertebereich von X a = Anzahl Köpfe

18 P(X = a) und kann deshalb im buchstäblichen Sinn kein Wert von X sein, den man erwartet x = Anzahl Köpfe

19 Was denn dann? a = Anzahl Köpfe P(X = a)

20 P(X = a) Wie erlebt man den Erwartungswert? a = Anzahl Köpfe 1 8

21 P(X = a) Durch wiederholtes Werfen der drei Münzen a = Anzahl Köpfe

22 3. Der Erwartungswert als Langzeitmittel Beispiel: X... Anzahl Köpfe beim dreimaligen fairen Münzwurf

23 Wiederholungen: X 1,X 2,...,X Xn n

24 M n := (X 1 +X X n )/n Xn n

25 Wiederholungen: X 1,X 2,...,X Xn n

26 M n := (X 1 +X X n )/n Xn n

27 Wiederholungen: X 1,X 2,...,X Xn n

28 M n := (X 1 +X X n )/n Xn n

29 M n E[X] Xn n

30 Warum? Xn n

31 M n = (X 1 +X X n )/n Xn n

32 M n = 3 a=0 a #{i n : X i = a}/n a P(X = a) Xn n

33 Dazu später mehr. Für den Moment nur als kurzer Ausblick:

34 DAS GESETZ DER GROSSEN ZAHLEN Sei X eine Zufallsgröße mit Erwartungswert E[X]. Seien X 1,X 2,... unabhängige Kopien von X. Dann gilt X X n n E[X] Zu klären 1. Was heißt unabhängig? 2. Was heißt?

35 Diese Klärung wird in der Vorlesung in wenigen Wochen erfolgen. Jetzt halten wir erst einmal fest:

36 Zwei Vorstellungen von E[X] 1. Gewichtetes Mittel der möglichen Werte: E[X] := a P(X = a) 2. Langzeitmittelwert bei unabhängigen Wiederholungen: X X n n E[X]

37 4. Die Additivität des Erwartungswertes - anschaulich und als Werkzeug

38 Die wichtigste Eigenschaft des Erwartungswerts ist die Additivität

39 Die wichtigste Eigenschaft des Erwartungswerts ist die Additivität E[X+Y] = E[X]+E[Y]

40 Die Additivität des Erwartungswerts wird intuitiv sofort klar aus der Vorstellung als Langzeitmittelwert bei unabhängigen Wiederholungen : 1 n ((X 1 +Y 1 )+...+(X n +Y n )) = 1 n (X X n )+ 1 n (Y Y n ) E[X]+E[Y]

41 Ein prominenter Fall ist X = Z 1 + +Z n, wobei die Z 1,...,Z n nur die Werte 0 oder 1 annehmen. Dann gilt E[Z i ] = P(Z i = 1) und somit E[X] = P(Z 1 = 1)+ +P(Z n = 1).

42 5. Der Erwartungswert der Binomialverteilung (als Erwartungswert der Anzahl der Erfolge beim n-fachen p-münzwurf)

43 X sei Bin(n, p) verteilt. E[X] =? n k=0 k P(X = k) = n k=0 k ( ) n k p k q n k =... Es GEHT so (vgl Buch Seite ) Aber es geht auch einfacher (vgl. Buch S. 49):

44 Sei Z = (Z 1,...,Z n ) ein n-facher p-münzwurf. Dann ist (Z 1 + +Z n ) Bin(n,p)-verteilt. E[Z 1 + +Z n ] = E[Z 1 ]+ +E[Z n ] E[Z i ] = 1 p+0 q = p Fazit: Der Erwartungswert einer Bin(n,p) verteilten ZV ist np.

45 6. Der Erwartungswert der hypergeometrischen Verteilung (als Erwartungswert der Anzahl der Erfolge beim n-fachen Ziehen ohne Zurücklegen)

46 BEISPIEL Ziehen ohne Zurücklegen ause Eine Urne enthält r rote und b blaue Kugeln. ooooooooooooo r = 8 b = 5 Aus der Urne werden ohne Zurücklegen n Kugeln gezogen. ooooooooo n = 9 R := Anzahl der gezogenen roten Kugeln E[R] =?

47 R = Z 1 +Z Z n Z i = 1 falls i-te gezogogene Kugel rot Z i = 0 falls i-te gezogene Kugel blau ooooooooooooo r = 8 b = 5 P(Z i = 1) = r r+b Man stelle sich vor, die Nummern der Züge werden als rein zufällige Permutation an die r+b Kugeln vergeben. Wie wahrscheinlich ist es, dass Nummer i auf eine rote Kugel fällt?

48 R = Z 1 +Z Z n Z i = 1 falls i-te gezogogene Kugel rot Z i = 0 falls i-te gezogene Kugel blau ooooooooooooo r = 8 b = 5 P(Z i = 1) = r r+b E[Z i ] = r r+b E[R] = E[Z 1 ]+E[Z 2 ]+...+E[Z n ] E[R] = n r r+b

49 BEISPIEL Ziehen ohne Zurücklegen vspace0.6cm Eine Urne enthält r rote und b blaue Kugeln. ooooooooooooo r = 8 b = 5 Aus der Urne werden ohne Zurücklegen n Kugeln gezogen. ooooooooo n = 9 R := Anzahl der gezogenen roten Kugeln Verteilung von R?

50 Verteilung von R? P(R = k) =? vspace1cm P(R = k) = r b k n k / r+b n Eine ZV mit diesen Verteilungsgewichten (k = 0,..., n) heißt hypergeometrisch verteilt zu den Parametern (n, r + b, r). (vg. Buch Seite 28)

51 P(R = k) = r k b n k / r+b n E[R] = n k=0 k r k E(R) =? b n k / r+b n Es GEHT so (vgl. Buch Seite 32) Aber wie wir eben gesehen haben, =... (über die Darstellung von R als Summe von Zählern) geht s auch einfacher (vgl. Buch S. 50/51).

52 7. Der Erwartungswert einer Anzahl von Runs

53 Runs beim fairen Münzwurf Z := (Z 1,Z 2,...,Z n ) n-facher fairer Münzwurf P{Z i = 1} = 2 1 P{Z i = 0} = 2 1 Run: ein Block von Nullen (Einsen), der nicht echt in einem größeren Block enthalten ist R := Anzahl Runs in Z R = R = R = 8

54 E[R] =? Dazu schreiben wir R als Summe von Zählern. Bei jedem Wurf zählen wir eins dazu, wenn bei diesem Wurf ein Run beginnt:

55 Y i := 1 falls bei i ein Run beginnt, Y i := 0 sonst R = Y 1 +Y Y n Y 1 1 {Y i = 1} = {(Z i 1,Z i ) = (0,1) oder (1,0)} (i > 1) P(Y i = 1) = = 1 2 (i > 1) E[Y i ] = 1 2 (i > 1) E[R] = E[Y 1 ]+E[Y 2 ]+E[Y 3 ]+...+E[Y n ] E[R] = (n 1)

56 8. Zur Wohldefiniertheit des Erwartungswertes

57 Wie kann es sein, dass für eine diskrete reellwertige Zufallsvariable X mit P(X S), S abzählbar, die Summe a SaP(X = a) nicht wohldefiniert ist?

58 Ein Beispiel: P(X = ( 2) n ) := 2 n, n = 1,2,... Dann ist n {1,3,...} 2 n P(X = 2 n ) = und n {2,4,...} 2 n P(X = 2 n ) = +. Aber die Summe von und + gibt keinen Sinn!

59 Wenn wir sagen Die diskrete reellwertige Zufallsvariable X hat einen wohldefinierten Erwartungswert meinen wir, dass nicht zugleich a S,a>0 ap(x = a) und a S,a<0 a P(X = a) Unendlich sein dürfen.

60 Wenden wir uns nun der Herleitung der Linearitätseigenschaft aus der Definition des Erwartungswertes zu.

61 9. Transformationsformel für den Erwartungswert Diese Formel ist oft hilfreich bei der Berechnung von Erwartungswerten. Sie erinnert an die Einsetzungsregel( Substitutionsregel) zum Berechnen von Summen und Integralen, und wird uns im Abschnitt 10 helfen, die Linearität des EW aus seiner Definition herzuleiten.

62 Sei X diskrete Zufallsvariable mit P(X S) = 1 und h eine Abbildung von S nach R h(x) X S h R

63 Sei X diskrete Zufallsvariable mit P(X S) = 1 und h eine Abbildung von S nach R so, dass der Erwartungswert der Zufallsvariablen h(x) wohldefiniert ist. Dann ist E[h(X)] = a Sh(a) P(X = a). Die Idee ist einfach: anstatt die Werte b = h(a), a S, mit deren Gewichten zu mitteln, zerlegt man nach dem Urbild und mittelt mit den Gewichten der Werte a.

64 E[h(X)] = a Sh(a) P(X = a) Denn: b P(h(X) = b) b h(s) = b P(X = a) b h(s) a h 1 (b) = b h(s) a h 1 (b) h(a) P(X = a) = a Sh(a) P(X = a).

65 10. Die Linearität des Erwartungswertes - Beweis

66 Wir betrachten zwei diskrete reellwertige Zufallsvariable X 1, X 2, die gemeinsam in einem Zufallsexperiment auftreten und sich damit zu einem zufälligen Paar (X 1,X 2 ) zusammenfassen lassen. Für c 1, c 2 R ist dann auch c 1 X 1 +c 2 X 2 eine diskrete reellwertige Zufallvariable.

67 X = (X 1,X 2 ) R h(x) = c 1 X 1 +c 2 X 2 R (a 1,a 2 ) h R h(a 1,a 2 ) = c 1 a 1 +c 2 a 2

68 Satz [Linearität des Erwartungswertes] (Buch S. 52) Für reellwertige Zufallsvariable X 1, X 2 mit wohldefiniertem Erwartungswert gilt E[c 1 X 1 +c 2 X 2 ] = c 1 E[X 1 ]+c 2 E[X 2 ], c 1,c 2 R. Den Beweis führen wir hier nur für diskrete Zufallsvariable, und zwar über die Transformationsformel mit h(a 1,a 2 ) := c 1 a 1 +c 2 a 2.

69 Beweis. Seien S 1,S 2 R abzählbar mit P(X 1 S 1 ) = P(X 2 S 2 ) = 1. Aus der Transformationsformel folgt mit h(a 1,a 2 ) := c 1 a 1 +c 2 a 2 :

70 E[c 1 X 1 +c 2 X 2 ] = a 1 S 1 a 2 S 2 (c 1 a 1 +c 2 a 2 ) P(X 1 = a 1,X 2 = a 2 ) = c 1 a 1 S 1 a 1 + c 2 a 2 S 2 a 2 P(X 1 = a 1,X 2 = a 2 ) a 2 S 2 P(X 1 = a 1,X 2 = a 2 ) a 1 S 1

71 E[c 1 X 1 +c 2 X 2 ] = a 1 S 1 a 2 S 2 (c 1 a 1 +c 2 a 2 ) P(X 1 = a 1,X 2 = a 2 ) = c 1 a 1 S 1 a 1 P(X 1 = a 1,X 2 = a 2 ) a 2 S 2 = a 1 P(X 1 = a 1 ) a 1 S 1 = E[X 1 ]

72 E[c 1 X 1 +c 2 X 2 ] = a 1 S 1 a 2 S 2 (c 1 a 1 +c 2 a 2 ) P(X 1 = a 1,X 2 = a 2 ) = c 1 a 1 S 1 a 1 + c 2 a 2 S 2 a 2 P(X 1 = a 1,X 2 = a 2 ) a 2 S 2 P(X 1 = a 1,X 2 = a 2 ) a 1 S 1

73 = a 1 S 1 E[c 1 X 1 +c 2 X 2 ] a 2 S 2 (c 1 a 1 +c 2 a 2 ) P(X 1 = a 1,X 2 = a 2 ) = c 1 E[X 1 ]AAAAAAAAAAAAAA + c 2 a 2 S 2 a 2 a 1 S 1 P(X 1 = a 1,X 2 = a 2 )

74 = a 1 S 1 E[c 1 X 1 +c 2 X 2 ] a 2 S 2 (c 1 a 1 +c 2 a 2 ) P(X 1 = a 1,X 2 = a 2 ) = c 1 E[X 1 ]AAAAAAAAAAAAAA + c 2 E[X 2 ]AAAAAAAAAAAAAA

75 Zusammenfassung des Wichtigsten

76 A. Was ist der Erwartungswert? E[X] = a P(X = a) und E[X] = lim X X n n für unabhängige Wiederholungen X 1,X 2,...

77 B. Was ist die wichtigste Eigenschaft des Erwartungswertes? Die Linearität: E[αX+βY] = αe[x]+βe[y]

78 C. Wie berechnet man E[X] am besten? Oft dadurch, dass man X als Summe schreibt: X = Z Z n E[X] = E[Z 1 ]+...+E[Z n ]

Vorlesung 3. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3 Der Erwartungswert von diskreten reellwertigen Zufallsvariablen 0. Diskrete reellwertige Zufallsvariable X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) oder

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen 0. Diskrete reellwertige Zufallsvariable X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) oder

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Vorlesung 3b. Der Erwartungswert

Vorlesung 3b. Der Erwartungswert Vorlesung 3b Der Erwartungswert von diskreten reellwertigen Zufallsvariablen Teil 2 0. Wiederholung X sei eine diskrete reellwertige Zufallsvariable X S R E[X] := a S a P(X = a). heißt Erwartungswert von

Mehr

Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen

Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen Vorlesung 2b Diskrete Zufallsvariable und ihre Verteilungen 1 1. Die Grundbegriffe 2 Bisher hatten wir uns (vor allem) mit Zufallsvariablen beschäftigt, deren Wertebereich S endlich war. Die (schon in

Mehr

Vorlesung 5a. Die Varianz

Vorlesung 5a. Die Varianz Vorlesung 5a Die Varianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert

Mehr

Vorlesung 5a. Varianz und Kovarianz

Vorlesung 5a. Varianz und Kovarianz Vorlesung 5a Varianz und Kovarianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert als Var X := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Vorlesung 4b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson

Vorlesung 4b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson Vorlesung 4b Versuche, Erfolge, Wartezeiten: Die Welt des p-münzwurfs - von Bernoulli zu Poisson 1 0. Fortgesetzter p-münzwurf 2 Definition: Sei p (0,1), q := 1 p. Eine Bernoulli-Folge zum Parameter p

Mehr

Vorlesung 2a. Diskret uniform verteilte Zufallsvariable

Vorlesung 2a. Diskret uniform verteilte Zufallsvariable Vorlesung 2a Diskret uniform verteilte Zufallsvariable 1 Eine Zufallsvariable X heißt diskret uniform verteilt, wenn ihr Zielbereich S endlich ist und P(X = a) = 1 #S für alle a S. Damit beschreibt X eine

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Vorlesung 11b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 11b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 11b Bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Bisher legten wir das Hauptaugenmerk auf den Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Vorlesung 3b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson

Vorlesung 3b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson Vorlesung 3b Versuche, Erfolge, Wartezeiten: Die Welt des p-münzwurfs - von Bernoulli zu Poisson 1 Unser heutiger Rahmen: p- Münzurf alias Bernoulli-Folge 2 Jacob Bernoulli (1654-1705) 3 Sei p (0,1), q

Mehr

Vorlesung 5a. Zufallsvariable mit Dichten

Vorlesung 5a. Zufallsvariable mit Dichten Vorlesung 5a 1 Vorlesung 5a Zufallsvariable mit Dichten Vorlesung 5a Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung, Exponentialverteilung. Kontinuierlich uniform verteilte Zufallsvariable: 2 Kontinuierlich

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Vorlesung 2a. Diskret uniform verteilte Zufallsvariable. (Buch S. 6-11)

Vorlesung 2a. Diskret uniform verteilte Zufallsvariable. (Buch S. 6-11) Vorlesung 2a Diskret uniform verteilte Zufallsvariable (Buch S. 6-11) 1 0. Erinnerung und Auftakt 2 Sei S eine endliche Menge. Eine Zufallsvariable X heißt diskret uniform verteilt auf S, wenn P(X = a)

Mehr

Vorlesung 9b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 1. Zerlegung der gemeinsamen Verteilung (Buch S. 111) 2 Bisher legten wir das Hauptaugenmerk auf den Aufbau der gemeinsamen Verteilung

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 2

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 2 Vorlesung 8b Zweistufige Zufallsexperimente Teil 2 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen: P(X 1 = a 1,X 2 = a 2 ) = P(X 1 = a 1 )P a1 (X

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

K3 (Diskrete) Zufallsvariablen 3.1 Basis

K3 (Diskrete) Zufallsvariablen 3.1 Basis K3 (Diskrete) Zufallsvariablen 3.1 Basis Ω = {ω}, X(ω) ist eine Größe die durch ω bestimmt ist. Bei der zufälligen Auswahl von ω bekommen wir den Wert, X(ω). Definition: Ist (Ω, F, P) ein Wahrscheinlichkeitsraum

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Vorlesung 5b. Zufallsvariable mit Dichten

Vorlesung 5b. Zufallsvariable mit Dichten Vorlesung 5b 1 Vorlesung 5b Zufallsvariable mit Dichten Vorlesung 5b Zufallsvariable mit Dichten Wiederholung aus Vorlesung 2b+: Kontinuierlich uniform verteilte Zufallsvariable: Sei S eine Teilmenge des

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1 Vorlesung 8b Zweistufige Zufallsexperimente Teil 1 1 Stellen wir uns ein zufälliges Paar X = (X 1, X 2 ) vor, das auf zweistufige Weise zustande kommt: es gibt eine Regel, die besagt, wie X 2 verteilt

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Vorlesung 8b. Bedingte Erwartung und bedingte Varianz

Vorlesung 8b. Bedingte Erwartung und bedingte Varianz Vorlesung 8b Bedingte Erwartung und bedingte Varianz 1 1. Zerlegung eines Erwartungswertes nach der ersten Stufe (Buch S. 91) 2 Wie in der vorigen Vorlesung betrachten wir die gemeinsame Verteilung von

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Vorlesung 7a. Unabhängigkeit

Vorlesung 7a. Unabhängigkeit Vorlesung 7a Unabhängigkeit 1 Wir erinnern an die Definition der Unabhängigkeit von zwei Zufallsvariablen (Buch S. 61): Zufallsvariable X 1,X 2 heißen (stochastisch) unabhängig, falls für alle Ereignisse

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/16 13.09.01 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Biostatistik, WS 2010/2011 Grundlagen aus der Wahrscheinlichkeitstheorie

Biostatistik, WS 2010/2011 Grundlagen aus der Wahrscheinlichkeitstheorie 1/73 Biostatistik, WS 2010/2011 Grundlagen aus der Wahrscheinlichkeitstheorie Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 3.12.2010 2/73 1 Deterministische und zufällige

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

1 Grundlagen Wahrscheinlichkeitsrechung

1 Grundlagen Wahrscheinlichkeitsrechung 1 Grundlagen Wahrscheinlichkeitsrechung 1.1 Grundbegriffe Alle möglichen Ereignisse eines Zufallsexperiments fassen wir in einer Ereignismenge Ω zusammen. Ereignisse sind Teilmengen von Ω. Umfasst das

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Messbare Abbildungen Bildwahrscheinlichkeit Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig,

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, wenn für alle (s 1,..., s n ) {0, 1} n gilt, dass wobei A 0 i = Āi und A 1 i = A i. Pr[A s 1 1... Asn n ] = Pr[A

Mehr

Vorlesung 6b. Zufallsvariable mit Dichten. Teil 1 Uniforme Verteilung & Co.

Vorlesung 6b. Zufallsvariable mit Dichten. Teil 1 Uniforme Verteilung & Co. Vorlesung 6b Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung & Co. 1 1. Uniforme Verteilung auf dem Einheitsintervall 2 Eine Zufallsvariable X mit Zielbereich S = [0, 1] heißt uniform verteilt auf

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Zufallsvariable X. 30 e. 40 e = 33,33...% 6

Zufallsvariable X. 30 e. 40 e = 33,33...% 6 Zufallsvariable Wir führen ein Zufallsexperiment mit Ergebnisraum Ω durch. Eine Zufallsvariable X ordnet jedem möglichen Ergebnis einen Zahlenwert zu. Eine Zufallsvariable ist also eine Funktion X : Ω

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] =

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] = Erwartungswert Definition Erwartungswert Der Erwartungswert einer diskreten ZV ist definiert als E[X] = i i Pr(X = i). E[X] ist endlich, falls i i Pr(X = i) konvergiert, sonst unendlich. Bsp: Sei X die

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300

Mehr

Vorlesung 7b. Der Zentrale Grenzwertsatz

Vorlesung 7b. Der Zentrale Grenzwertsatz Vorlesung 7b Der Zentrale Grenzwertsatz 1 Zentraler Grenzwertsatz (Tschebyscheff) Die standardisierte Summe von unabhängigen, identisch verteilten R-wertigen Zufallsvariablen konvergiert in Verteilung

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

Vorlesung 9b. Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte

Vorlesung 9b. Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte Vorlesung 9b Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte 1 Definition. Seien E 1, E 2 Ereignisse. Dann ist die bedingte Wahrscheinlichkeit von E 2, gegeben E 1, definiert als P(E 2 E 1 )

Mehr

Die Probabilistische Methode

Die Probabilistische Methode Die Probabilistische Methode Wladimir Fridman 233827 Hauptseminar im Sommersemester 2004 Extremal Combinatorics Zusammenfassung Die Probabilistische Methode ist ein mächtiges Werkzeug zum Führen von Existenzbeweisen.

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 30. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 4 Version: 24.

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Zufallsvariablen Beschreibung von Ereignissen

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz 1/65 Statistik für Informatiker, SS 2017 1.3 Erwartungswert, Varianz und Kovarianz Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 7.6.2017 / 14.6.2017 2/65 Der Erwartungswert ist eine

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Die Funktion f X;Y (x; y) := Pr[X = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen X und Y. Aus der gemeinsamen Dichte f X;Y kann man ableiten

Die Funktion f X;Y (x; y) := Pr[X = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen X und Y. Aus der gemeinsamen Dichte f X;Y kann man ableiten Die Funktion f ;Y (x; y) := Pr[ = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen und Y. Aus der gemeinsamen Dichte f ;Y kann man ableiten f (x) = y2w Y f ;Y (x; y) bzw. f Y (y) = Die Funktionen

Mehr

Paarweise Unabhängigkeit vs. Unabhängigkeit

Paarweise Unabhängigkeit vs. Unabhängigkeit Paarweise Unabhängigkeit vs. Unabhängigkeit Beispiel: Wir betrachten das Szenario von zuvor. Wissen bereits, dass A 1, A 2 und A 1, B unabhängig sind. Analog folgt, dass A 2 und B unabhängige Ereignisse

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 5.6.2013 8. Unabhängigkeit von Zufallsgrößen, Erwartungswert und Varianz 8.1

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

68 Abschätzungen für Abweichungen vom Erwartungswert

68 Abschätzungen für Abweichungen vom Erwartungswert 68 Abschätzungen für Abweichungen vom Erwartungswert 68.1 Motivation Mit der Varianz bzw. Standardabweichungen kennen wir bereits ein Maß für die Fluktuation einer Zufallsvariablen um ihren Erwartungswert.

Mehr

Stochastik. Peter Pfaffelhuber

Stochastik. Peter Pfaffelhuber Stochastik Peter Pfaffelhuber 1 Grundlegende Bemerkungen Vorlesung orientiert sich an G. Kersting und A. Wakolbinger. Elementare Stochastik. Birkhäuser, 2008 Übungen Volker Pohl Praktikum Ernst August

Mehr