Wissensentdeckung in Datenbanken

Größe: px
Ab Seite anzeigen:

Download "Wissensentdeckung in Datenbanken"

Transkript

1 Wissensentdeckung in Datenbanken Support Vector Machine Nico Piatkowski und Uwe Ligges von 14

2 Überblick Was bisher geschah... Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung Überanpassung SQL, Häufige Mengen Klassifikation Heute 2 von 14

3 Überblick Was bisher geschah... Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung Überanpassung SQL, Häufige Mengen Klassifikation Heute 2 von 14

4 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

5 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

6 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

7 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

8 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

9 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

10 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

11 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

12 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

13 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

14 Klassifikation mit Hyperebenen x 2 x 1 3 von 14

15 Hyperebenen Hier: Daten x aus R n, Klasse y aus { 1, 1} Geradengleichung: y = f β0,β(x) = β 0 + β, x Wir wissen: β, x = β 2 x 2 cos (β, x) cos (β, x) bestimmt das Vorzeichen von β, x sign( β, x ) = sign(cos (β, x)) +1 β 0 > β 2 x 2 cos (β, x) sign(β 0 + β, x ) = 1 β 0 < β 2 x 2 cos (β, x) 0 sonst x 2 durch Daten bestimmt, β 0 und β werden gelernt 4 von 14

16 Hyperebenen Hier: Daten x aus R n, Klasse y aus { 1, 1} Geradengleichung: y = f β0,β(x) = β 0 + β, x Wir wissen: β, x = β 2 x 2 cos (β, x) cos (β, x) bestimmt das Vorzeichen von β, x sign( β, x ) = sign(cos (β, x)) +1 β 0 > β 2 x 2 cos (β, x) sign(β 0 + β, x ) = 1 β 0 < β 2 x 2 cos (β, x) 0 sonst x 2 durch Daten bestimmt, β 0 und β werden gelernt 4 von 14

17 Hyperebenen Hier: Daten x aus R n, Klasse y aus { 1, 1} Geradengleichung: y = f β0,β(x) = β 0 + β, x Wir wissen: β, x = β 2 x 2 cos (β, x) cos (β, x) bestimmt das Vorzeichen von β, x sign( β, x ) = sign(cos (β, x)) +1 β 0 > β 2 x 2 cos (β, x) sign(β 0 + β, x ) = 1 β 0 < β 2 x 2 cos (β, x) 0 sonst x 2 durch Daten bestimmt, β 0 und β werden gelernt 4 von 14

18 Hyperebenen Hier: Daten x aus R n, Klasse y aus { 1, 1} Geradengleichung: y = f β0,β(x) = β 0 + β, x Wir wissen: β, x = β 2 x 2 cos (β, x) cos (β, x) bestimmt das Vorzeichen von β, x sign( β, x ) = sign(cos (β, x)) +1 β 0 > β 2 x 2 cos (β, x) sign(β 0 + β, x ) = 1 β 0 < β 2 x 2 cos (β, x) 0 sonst x 2 durch Daten bestimmt, β 0 und β werden gelernt 4 von 14

19 Hyperebenenbestimmung als Optimierungsproblem (I) Datensatz D = {(y 1, x 1 ), (y 2, x 2 ),..., (y N, x N )} Idealisiert: 1 min β 0,β 2 β 2 2 s.t. y i = sign(β 0 + β, x i ) 1 i N Pragmatisch: 1 min β 0,β 2 β 2 2 s.t. y i (β 0 + β, x i ) 1 1 i N 5 von 14

20 Hyperebenenbestimmung als Optimierungsproblem (I) Datensatz D = {(y 1, x 1 ), (y 2, x 2 ),..., (y N, x N )} Idealisiert: 1 min β 0,β 2 β 2 2 s.t. y i = sign(β 0 + β, x i ) 1 i N Pragmatisch: 1 min β 0,β 2 β 2 2 s.t. y i (β 0 + β, x i ) 1 1 i N 5 von 14

21 Hyperebenenbestimmung als Optimierungsproblem (I) Datensatz D = {(y 1, x 1 ), (y 2, x 2 ),..., (y N, x N )} Idealisiert: 1 min β 0,β 2 β 2 2 s.t. y i = sign(β 0 + β, x i ) 1 i N Pragmatisch: 1 min β 0,β 2 β 2 2 s.t. y i (β 0 + β, x i ) 1 1 i N 5 von 14

22 Klassifikation mit Hyperebenen x 2 x 1 5 von 14

23 Klassifikation mit Hyperebenen x 2 x 1 5 von 14

24 Klassifikation mit Hyperebenen (nicht trennbar) x x 1 6 von 14

25 Klassifikation als Optimierungsproblem (II) 1 min β 0,β,ζ 2 β C N ζ i i=1 s.t. y i (β 0 + β, x i ) 1 ζ i, 1 i N ζ i 0, 1 i N Also suchen wir die kleinsten ζ i mit ζ i 1 y i (β 0 + β, x i ) und ζ i 0 für jedes 1 i N und damit ζ i = max{0, 1 y i (β 0 + β, x i )} 7 von 14

26 Klassifikation als Optimierungsproblem (II) 1 min β 0,β,ζ 2 β C N ζ i i=1 s.t. y i (β 0 + β, x i ) 1 ζ i, 1 i N ζ i 0, 1 i N Also suchen wir die kleinsten ζ i mit ζ i 1 y i (β 0 + β, x i ) und ζ i 0 für jedes 1 i N und damit ζ i = max{0, 1 y i (β 0 + β, x i )} 7 von 14

27 Klassifikation als Optimierungsproblem (III) Einsetzen in Zielfunktion: ζ i = max{0, 1 y i (β 0 + β, x i )} 1 min β 0,β 2 β C N max{0, 1 y i (β 0 + β, x i ) i=1 Minimierung der l 2 -regularisierten Hinge-Verlustfunktion Hinge(β 0, β; D)+λR 2 (β) = 1 max{0, 1 yf β0,β(x)}+λ β 2 2 D (x,y) D 8 von 14

28 Klassifikation als Optimierungsproblem (III) Einsetzen in Zielfunktion: ζ i = max{0, 1 y i (β 0 + β, x i )} 1 min β 0,β 2 β C N max{0, 1 y i (β 0 + β, x i ) i=1 Minimierung der l 2 -regularisierten Hinge-Verlustfunktion Hinge(β 0, β; D)+λR 2 (β) = 1 max{0, 1 yf β0,β(x)}+λ β 2 2 D (x,y) D 8 von 14

29 Hinge Verlustfunktion y = +1 y = -1 Hinge(f;x,y) f(x) 8 von 14

30 Klassifikation mit Hyperebenen (nicht trennbar) x x 1 8 von 14

31 Klassifikation mit Hyperebenen (nicht trennbar) x x 1 8 von 14

32 Nicht-linear trennbare Daten x x 1 9 von 14

33 Nicht-linear trennbare Daten x x 1 9 von 14

34 Nicht-linear trennbare Daten x 2 x 1 9 von 14

35 Nicht-lineare Trennbarkeit durch Merkmalstransformation Trennung nicht-linearer Daten durch Transformation φ R n R d φ kann jede beliebige Funktion sein Bild von φ kann höher- oder niedrig-dimensionaler als X sein φ soll möglichst einfach zu berechnen sein (!!) Daten sollen im Bildraum von φ möglichst linear trennbar sein Wo kommt φ her?? Oft: Abstand im neuen Raum einfacher zu berechnen als φ 10 von 14

36 Nicht-lineare Trennbarkeit durch Merkmalstransformation Trennung nicht-linearer Daten durch Transformation φ R n R d φ kann jede beliebige Funktion sein Bild von φ kann höher- oder niedrig-dimensionaler als X sein φ soll möglichst einfach zu berechnen sein (!!) Daten sollen im Bildraum von φ möglichst linear trennbar sein Wo kommt φ her?? Oft: Abstand im neuen Raum einfacher zu berechnen als φ 10 von 14

37 Optimierung mit Nebenbedingungen Lagrange-Dualität: min f(β) β s.t. g(β) c min β s.t. α 0 max f(β) α(g(β) c) α 11 von 14

38 Optimierung mit Nebenbedingungen Lagrange-Dualität: min f(β) β s.t. g(β) c min β s.t. α 0 max f(β) α(g(β) c) α 11 von 14

39 Duales Problem und Stützvektoren Lagrange-Dual der : s.t. max α N i=1 N α i 1 N 2 α iα j y i y j φ(x), φ(x ) i=1 α i y i = 0 0 α i C, 1 i N N i=1 j=1 Neues Problem hat nur N Parameter (ist das gut?) Original Gewichte: β = N i=1 α iy i x i Datenpunkte mit α i > 0 heißen Stützvektor (Support-Vector) 12 von 14

40 Duales Problem und Stützvektoren Lagrange-Dual der : s.t. max α N i=1 N α i 1 N 2 α iα j y i y j φ(x), φ(x ) i=1 α i y i = 0 0 α i C, 1 i N N i=1 j=1 Neues Problem hat nur N Parameter (ist das gut?) Original Gewichte: β = N i=1 α iy i x i Datenpunkte mit α i > 0 heißen Stützvektor (Support-Vector) 12 von 14

41 Duales Problem und Stützvektoren Lagrange-Dual der : s.t. max α N i=1 N α i 1 N 2 α iα j y i y j φ(x), φ(x ) i=1 α i y i = 0 0 α i C, 1 i N N i=1 j=1 Neues Problem hat nur N Parameter (ist das gut?) Original Gewichte: β = N i=1 α iy i x i Datenpunkte mit α i > 0 heißen Stützvektor (Support-Vector) 12 von 14

42 Klassifikation mit Hyperebenen x 2 x 1 12 von 14

43 Kernel Trick Anstatt φ(x) für jeden x auszurechnen, Finde Funktion K, mit K(x, x ) = φ(x), φ(x ) K heißt Kernel oder Kernfunktion φ(x) (und φ(x )) muss nie explizit berechnet werden! φ muss nicht bekannt sein!! K γ,δ,... (x, x ) kann Parameter haben 13 von 14

44 Kernel Trick Anstatt φ(x) für jeden x auszurechnen, Finde Funktion K, mit K(x, x ) = φ(x), φ(x ) K heißt Kernel oder Kernfunktion φ(x) (und φ(x )) muss nie explizit berechnet werden! φ muss nicht bekannt sein!! K γ,δ,... (x, x ) kann Parameter haben 13 von 14

45 Kernfunktionen K Linear (x, x ) = x, x K Poly,k,c (x, x ) = ( x, x + c) k K Gauss,γ (x, x ) = exp ( 1 γ x x 2 2) Graph Kernel (common subgraphs, Bäume, Pfade) String Kernel (gemeinsame Zeichenketten, gemeinsame Parsebäume) 14 von 14

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Belief Propagation, Strukturlernen Nico Piatkowski und Uwe Ligges 29.06.2017 1 von 13 Überblick Was bisher geschah... Modellklassen Verlustfunktionen Numerische Optimierung

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 10.6.2010 1 von 40 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 2 von

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Stützvektormethode 1 Hinführungen zur SVM Katharina Morik, Claus Weihs 26.5.2009 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 1 von 40 2 von

Mehr

Funktionslernen. 5. Klassifikation. 5.6 Support Vector Maschines (SVM) Reale Beispiele. Beispiel: Funktionenlernen

Funktionslernen. 5. Klassifikation. 5.6 Support Vector Maschines (SVM) Reale Beispiele. Beispiel: Funktionenlernen 5. Klassifikation 5.6 Support Vector Maschines (SVM) übernommen von Stefan Rüping, Katharina Morik, Universität Dortmund Vorlesung Maschinelles Lernen und Data Mining, WS 2002/03 und Katharina Morik, Claus

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 23.5.2013 1 von 48 Gliederung 1 Geometrie linearer Modelle: Hyperebenen Einführung von Schölkopf/Smola 2 Lagrange-Optimierung

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Probabilistische Nico Piatkowski und Uwe Ligges 22.06.2017 1 von 32 Überblick Was bisher geschah... Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Lineare Klassifikatoren. Volker Tresp

Lineare Klassifikatoren. Volker Tresp Lineare Klassifikatoren Volker Tresp 1 Einführung Lineare Klassifikatoren trennen Klassen durch eine lineare Hyperebene (genauer: affine Menge) In hochdimensionalen Problemen trennt schon eine lineare

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

5. Klassifikation. 5.6 Support Vector Maschines (SVM)

5. Klassifikation. 5.6 Support Vector Maschines (SVM) 5. Klassifikation 5.6 Support Vector Maschines (SVM) übernommen von Stefan Rüping, Katharina Morik, Universität Dortmund Vorlesung Maschinelles Lernen und Data Mining, WS 2002/03 und Katharina Morik, Claus

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Universität Ulm 12. Juni 2007 Inhalt 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor- und Nachteile der SVM 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor-

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken, Häufige Mengen Nico Piatkowski und Uwe Ligges 09.05.2017 1 von 15 Überblick Was bisher geschah... Heute Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Maschinelles Lernen Vorlesung

Maschinelles Lernen Vorlesung Maschinelles Lernen Vorlesung SVM Kernfunktionen, Regularisierung Katharina Morik 15.11.2011 1 von 39 Gliederung 1 Weich trennende SVM 2 Kernfunktionen 3 Bias und Varianz bei SVM 2 von 39 SVM mit Ausnahmen

Mehr

Machine Learning. ML Kapitel 7: Support Vector Machines. Prof. Dr. Johannes Maucher. Version November HdM CSM

Machine Learning. ML Kapitel 7: Support Vector Machines. Prof. Dr. Johannes Maucher. Version November HdM CSM Machine Learning Kapitel 7: Support Vector Machines HdM CSM Version 1.5 16. November 2017 Document History Version Date Changes Nr. 1.0 18.06.2009 1.1 14.06.2010 Eigene Beispiele hinzugefügt 1.2 16.05.2011

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Seminar Statistische Lerntheorie und ihre Anwendungen Support Vector Machines (SVM) Jasmin Fischer 12. Juni 2007 Inhaltsverzeichnis Seite 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Lineare Trennung 3 2.1 Aufstellung

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken SQL, Häufige Mengen Nico Piatkowski und Uwe Ligges 11.05.2017 1 von 16 Überblick Was bisher geschah... Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung

Mehr

Neuronale Netze. Prof. Dr. Rudolf Kruse

Neuronale Netze. Prof. Dr. Rudolf Kruse Neuronale Netze Prof. Dr. Rudolf Kruse Computational Intelligence Institut für Intelligente Kooperierende Systeme Fakultät für Informatik rudolf.kruse@ovgu.de Rudolf Kruse Neuronale Netze 1 Überwachtes

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Modellklassen, Verlustfunktionen Nico Piatkowski und Uwe Ligges 02.05.2017 1 von 15 Literatur Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Organisation und Überblick Nico Piatkowski und Uwe Ligges 8.0.07 von Fakten Team Vorlesung: Uwe Ligges, Nico Piatkowski Übung: Sarah Schnackenberg, Sebastian Buschjäger

Mehr

Hauptseminar Machine Learning: Support Vector Machines, Kernels. Katja Kunze

Hauptseminar Machine Learning: Support Vector Machines, Kernels. Katja Kunze Hauptseminar Machine Learning: Support Vector Machines, Kernels Katja Kunze 13.01.2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Grundlagen............................ 2 2 Lineare Seperation 5 2.1 Maximum

Mehr

Überwachtes Lernen / Support Vector Machines. Rudolf Kruse Neuronale Netze 246

Überwachtes Lernen / Support Vector Machines. Rudolf Kruse Neuronale Netze 246 Überwachtes Lernen / Support Vector Machines Rudolf Kruse Neuronale Netze 246 Überwachtes Lernen, Diagnosesystem für Krankheiten Trainingsdaten: Expressionsprofile von Patienten mit bekannter Diagnose

Mehr

Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung Jan Eichhorn jan.eichhorn@tuebingen.mpg.de Max-Planck-Institut für biologische Kybernetik 72076 Tübingen Danksagung Olivier

Mehr

Support-Vektor Maschinen: Feature-Funktionen. 27. Juni / 62

Support-Vektor Maschinen: Feature-Funktionen. 27. Juni / 62 Support-Vektor Maschinen: Feature-Funktionen 27. Juni 2017 1 / 62 Feature Funktionen Beispiele werden durch Zusatzinformationen, Features, aufbereitet. Eine Funktion φ : X R N heißt eine Feature-Funktion.

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Gliederung Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik 6.2.2008 Überblick Lernaufgaben 2 Primales Problem 3 Duales Problem 4 Optimierung der SVMstruct 5 Anwendungen von

Mehr

9.5 Entscheidungsbäume

9.5 Entscheidungsbäume 9.5. ENTSCHEIDUNGSBÄUME 149 9.5 Entscheidungsbäume Wir betrachten wieder einen Datensatz von Ereignissen mit jeweils m Merkmalen, zusammengefasst in x, die zwei verschiedenen Klassen angehören, zum Beispiel

Mehr

Support Vector Machines, Kernels

Support Vector Machines, Kernels Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen

Mehr

Learning to Rank Sven Münnich

Learning to Rank Sven Münnich Learning to Rank Sven Münnich 06.12.12 Fachbereich 20 Seminar Recommendersysteme Sven Münnich 1 Übersicht 1. Einführung 2. Methoden 3. Anwendungen 4. Zusammenfassung & Fazit 06.12.12 Fachbereich 20 Seminar

Mehr

(1) Der Anwender hat stets die Möglichkeit, die Beispiele durch Zusatzinformationen (Features) aufzubereiten.

(1) Der Anwender hat stets die Möglichkeit, die Beispiele durch Zusatzinformationen (Features) aufzubereiten. Feature Funktionen Eine unbekannte Klassifizierung f : X {0, 1} sei zu erlernen. (1) Der Anwender hat stets die Möglichkeit, die Beispiele durch Zusatzinformationen (Features) aufzubereiten. Eine Funktion

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Strukturelle Modelle SVMstruct Katharina Morik, Claus Weihs LS 8 Informatik 16.6.2009 1 von 37 Gliederung LS 8 Informatik 1 Überblick Lernaufgaben 2 Primales Problem 3

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik LS 8 Künstliche Intelligenz Fakultät für Informatik 16.12.2008 1 von 35 Gliederung LS 8 Künstliche Intelligenz Fakultät für

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Efficient Learning of Label Ranking by Soft Projections onto Polyhedra

Efficient Learning of Label Ranking by Soft Projections onto Polyhedra Efficient Learning of Label Ranking by Soft Projections onto Polyhedra Technische Universität Darmstadt 18. Januar 2008 Szenario Notation duales Problem Weitere Schritte Voraussetzungen Tests Szenario

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Grundlagen von Support Vector Machines (SVM)

Grundlagen von Support Vector Machines (SVM) Grundlagen von Support Vector Machines (SVM) Jens Pönisch 2019-03-16 1 / 31 Motivation Masterarbeit Sandy Bitterlich 2016 Optimierungsverfahren im Machine Learning ADMM SVM MPI Eigene Implementierung des

Mehr

Data Mining Kapitel 11: Machine Learning. Johannes Zschache Wintersemester 2018/19

Data Mining Kapitel 11: Machine Learning. Johannes Zschache Wintersemester 2018/19 Data Mining Kapitel 11: Machine Learning Johannes Zschache Wintersemester 2018/19 Abteilung Datenbanken, Universität Leipzig http://dbs.unileipzig.de Data Mining 111 112 Data Mining Übersicht Hochdimension.

Mehr

Gauß-Prozess-Regression

Gauß-Prozess-Regression Bayessche Regression und Gaußprozesse Dr. rer. nat. Johannes Riesterer Motivation Kriging Der südafrikanische Bergbauingenieur Danie Krige versuchte 1951, eine optimale Interpolationsmethode für den Bergbau

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

One-class Support Vector Machines

One-class Support Vector Machines One-class Support Vector Machines Seminar Wissensbasierte Systeme Dietrich Derksen 3. Januar 204 Motivation One-class Support Vector Machines: Detektion von Ausreißern (Systemfehlererkennung) Klassifikation

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Gliederung Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik, Claus Weihs 24520 Überblick Lernaufgaben 2 Primales Problem 3 Duales Problem 4 Optimierung der SVMstruct 5 Anwendungen

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Niels Landwehr, Silvia Makowski, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Di 10:00-11:30

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Gliederung Vorlesung Maschinelles Lernen SVM SMO, Kernfunktionen, Anwendungen Katharina Morik 5.11.008 1 Lösung des Optimierungsproblems mit SMO Kernfunktionen 3 Bias und Varianz bei SVM 4 Anwendungen

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D Jülich, Tel. (02461)

FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D Jülich, Tel. (02461) FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D-52425 Jülich, Tel. (02461) 61-6402 Interner Bericht Eine Einführung zu String-Kernen für die Sequenzanalyse mit Support-Vektor-Maschinen

Mehr

Konvexe Mengen. Kanglin,Chen. Universität Bremen, Proseminar WS 04/05

Konvexe Mengen. Kanglin,Chen. Universität Bremen, Proseminar WS 04/05 Konvexe Mengen Kanglin,Chen Universität Bremen, Proseminar WS 04/05 Satz. (Satz von Kirchberger) Sei P, Q E n kompakt und nicht leer. Dann gilt: P, Q sind durch eine Hyperebene streng trennbar. Für jede

Mehr

Gegenseitige Lage von Ebenen

Gegenseitige Lage von Ebenen Gegenseitige Lage von Ebenen Das hast du schon gelernt: Aufgabe 1: a) gegeben: E: 4x 1 + 9x 2 + 11,5x 80 = 0 und F: 8x 1 18x 2 2x + 291 = 0 A (,5,5 ) mit A E ; B ( 5 5 7) mit B F s ( 4 9 8 ) = ( 18)

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Entwicklung von Optimierungsverfahren für das Lösen verschiedener Lernaufgaben mit der Stützvektormethode

Entwicklung von Optimierungsverfahren für das Lösen verschiedener Lernaufgaben mit der Stützvektormethode Diplomarbeit Entwicklung von Optimierungsverfahren für das Lösen verschiedener Lernaufgaben mit der Stützvektormethode Hendrik Blom Diplomarbeit Fakultät Informatik Technische Universität Dortmund Dortmund,

Mehr

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik)

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Karlsruher Institut für Technologie KIT) Institut für Analysis Dr. S. Wugalter Herbst 7.9.7 MODULPRÜFUNG Numerische Methoden Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Aufgabe 4 Punkte)

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Lineare Klassifikatoren IV

Lineare Klassifikatoren IV Universität Potsdam Institut für Informatik Lehrstuhl Lineare Klassifikatoren IV Christoph Sawade, Blaine Nelson, Tobias Scheffer Inhalt Klassifikationsproblem Bayes sche Klassenentscheidung MAP-Modell

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Inhalt der Vorlesung. 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen)

Inhalt der Vorlesung. 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen) Inhalt der Vorlesung 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen) 1 S-M. Grad - Optimierung II / Universität Leipzig, SS2018 Beispiel 1.1

Mehr

Aufgabensammlung zum UK Mathematische Optimierung

Aufgabensammlung zum UK Mathematische Optimierung Aufgabensammlung zum UK Mathematische Optimierung Mehrdimensionale Analysis Stetigkeit. Man bestimme den natürlichen Definitionsbereich D f der folgenden Funktionen f: a) f(x, y) = ln(x y ) b) f(x, y)

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Automatic segmentation for dental operation planning. Diplomarbeit. Nguyen The Duy

Automatic segmentation for dental operation planning. Diplomarbeit. Nguyen The Duy Automatic segmentation for dental operation planning Diplomarbeit Nguyen The Duy 24.02.2012 Motivation Quelle: bestbudapestdentist.com Aufgabenstellung Segmentierung des Oberkiefers (Maxilla) Detektion

Mehr

Optimierung. Vorlesung 9

Optimierung. Vorlesung 9 Optimierung Vorlesung 9 Heute Facility location problem 1. Komplemetärer Schlupf 2. Das Facility Location Problem 3. Problemstellung LP, Duales, Schlupf Eine Approximationsalgorithmus Analyse und Beweis

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Optimaler Transport. Marzena Franek. Skiseminar Februar Institut für Numerische und Angewandte Mathematik

Optimaler Transport. Marzena Franek. Skiseminar Februar Institut für Numerische und Angewandte Mathematik Institut für Numerische und Angewandte Mathematik Skiseminar Februar 2009 1 Das Problem von Monge 1 Das Problem von Monge 2 1 Das Problem von Monge 2 3 1 Das Problem von Monge 2 3 4 1 Das Problem von Monge

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Optimierungstheorie Scheinklausur Sommersemester Juli 2007

Optimierungstheorie Scheinklausur Sommersemester Juli 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Prof. Dr. Christian Wieners, Dipl.-Math. techn. Martin Sauter Institut für Angewandte und Numerische Mathematik Optimierungstheorie Scheinklausur

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

Kurze Einführung in das maschinelle Lernen mit einem Fokus auf Support Vector Maschinen

Kurze Einführung in das maschinelle Lernen mit einem Fokus auf Support Vector Maschinen Seminararbeit Kurze Einführung in das maschinelle Lernen mit einem Fokus auf Support Vector Maschinen für das Mathematische Seminar im WS2014 Harald Burgsteiner 28. Januar 2015 In dieser Seminararbeit

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

6. Übungsblatt Aufgaben mit Lösungen

6. Übungsblatt Aufgaben mit Lösungen 6. Übungsblatt Aufgaben mit Lösungen Exercise 6: Find a matrix A R that describes the following linear transformation: a reflection with respect to the subspace E = {x R : x x + x = } followed by a rotation

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Tobias Scheffer Michael Brückner Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Mo 10:00-11:30

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Ingenieurmathematik I Lernstandserhebung 2 24./

Ingenieurmathematik I Lernstandserhebung 2 24./ Ingenieurmathematik I Lernstandserhebung 4./5..7 Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:............................................................................ Vorname:.........................................................................

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr