Elementare Federberechnung

Größe: px
Ab Seite anzeigen:

Download "Elementare Federberechnung"

Transkript

1 Dip.-Ing.(FH) Kuno Fuerknech D Wd/Osgäu Seie 1 von 8 Eemenre Federberechnung -Grundformen der Federeemene- 1. Krgräger Benennungen: F s ϕ wirksme Krf Absnd der Krf zur Einspnnung Verformung in Richung Y Biegewinke Federbnddicke Federbndbreie n der Einspnnsee Besimmungsgeichungen: b Federbndbreie gemein Die Verformung in Richung Y ergib sich gemein (i) beiebige Schnisee us M (i) M (i) 0 EI z(i) F m Federquerschni [1] M Biegemomen und der Biegewinke I z Fächenrägheismomen um die Querschnischse z us φ = M (i) mi (i) x(i) M (i) 0 EI z(i) M M (i) = F F s y- Achse ϕ [2] E Esiziäsmodu des Federwerksoffs M (i) F = und M (i) M = 1 bei konsnem Querschni b* is I z konsn und dmi F x EI (i) z 0 ufgeös und φ = F x E I (i) z 0 F3 3EI z [1.1] und φ = F2 2 EI z [2.1]

2 Dip.-Ing.(FH) Kuno Fuerknech D Wd/Osgäu Seie 2 von Krgräger mi konsnem Querschni Recheckfeder Ds Fächenrägheismomen I z für Recheckquerschnie ergib sich us der Beziehung: =b b(i)=b F in Richung Y s Liniens z- Achse des Profiquerschnies n der See x(i) I z = b3 12 und somi für [3] 4F3 Eb 3 [1.2] und φ = 6F2 Eb 3 [2.2] 1.2 Krgräger mi nichkonsnem Querschni Dreieckfeder b (i) mi b (i) = f() ) b (i) = in [3] F Richung Y s Punks is dnn: I z(i) = 3 12 und mi [1] 12F x E 3 0 (i) 6F3 E 3 [1.3] und mi [2] φ = 12F E 3 0 φ = 12F2 E 3 [2.3]

3 Dip.-Ing.(FH) Kuno Fuerknech D Wd/Osgäu Seie 3 von Trpezfeder b (i) mi b (i) = f() ) b F Richung Y s Liniens x (i) Zur Vereinfchung der weieren Rechnung b (i) = b + ( b) ( b ) = β gesez drus b = β b (i) = (β + (1 β) ) eingesez in [3] ergib mi [1] die Verformung E F ( (1 β) 2 +β) 12F E 3 3 (1 β) 3 {1 2 [(1 β) + β] 2 2β [ (1 β) + β] + β 2 n [ (1 β) x (i) + β]} X(i)= X(i)= 0 12F3 E 3 [ 1 (1 β) 3 (1 2 (1 β2 ) 2β(1 β) β 2 n β)] F3 E 3 [3 2 (1 4β+3β2 2β 2 n(β) (1 β) 3 )] 4F3 E 3 Ψ [1.4] Anmerkung: Ψ Leider is die Berechnung des Fkors Ψ in der Lierur of feherhf ngegeben. z.b s Fkor K1 im Hndbuch Federn, Meissner-Wnke, VEB Verg Technik, Berin 1988 und in Mefedern, Meissner-Schorch, Springer-Verg Berin Heideberg 1996, Bei Siegfried Gross: Berechnung und Gesung von Mefedern, Springer-Verg 1960, finde mn eine Näherungsforme mi einer mx. Abweichung von 4% bei β 0,32 mi: K = 3 (2+β) Die Grenzwere bei β= 0 mi K=1,5 und bei β= 1 mi K=1 werden dbei genu eingehen. Wird die Funkion der Bndbreie b (i) = (β + (1 β) ) in [3] eingesez ergib sich mi [2] der Biegewinke E 3 0 φ = 12F ( (1 β) +β) φ = 12F E 3 { (1 β) 2 β n( (1 β) x (i)+ β) } (1 β) 2 X(i)= X(i)= 0 φ = 6F2 n(β) E3 [2 (1 β+β )] φ = 6F2 ᴂ [2.4] (1 β) 2 E 3 ᴂ mi: β = 0 ᴂ = 2 β = 1 ᴂ = 1

4 Dip.-Ing.(FH) Kuno Fuerknech D Wd/Osgäu Seie 4 von Hber Kegesumpf. Wei dieses Formei in viefäiger Weise bei Hndwerkzeugen eingesez, sei es im Mschinenbu oder in der Medizinechnik, soen hier die Ausegungskrierien näher ufgezeig werden. r r (i) b (i) b F Liniens senkrech zur Schwerpunkchse Ds Fächenrägheismomen I z bezogen uf den Schwerpunk eines Hbkreises s Profiquerschni, n der See, berechne sich us: r b Schwerpunkchse Mi r (i) = f( ) I z(i) = ( π 8 ) r 4 8 9π (i) und b (i) = 2r (i) [4] r (i) = 1 2 ( b) (b + x (i) ) [4.1] Zur Vereinfchung der fogenden Inegrion wieder ds Verhänis ( b ) = β gesez dmi r (i) = (1 β) (β + x 2 (i) ) eingesez in [4] ergib zusmmen mi [1] die Verformung 16F x 2 (i) (0,1098)E 4 0 (β+ (1 β) ) 4 16F3 1 (0,1098)E 4 (1 β) 3 { 1 (β+ (1 β) x (i) ) 16F3 1 (0,1098)E 4 (1 β) 3 [ β 1 (1) (β) (1) + 2β 2(β+ (1 β) x (i) ) 2 β2 (β) β 2 3(β+ (1 β) 3 } x (i) ) 3β ] 3β 3β X(i)= X(i)= 0 16F3 1 β 3 +1 (0,1098)E 4 (1 β) 3 [ 3β+3β2 ] 3β (1 β) 3 16F3 (0,1098)E 4 [ 1 3β 48,6F3 ] 3 [1.5] mi: Eb Wird die Funkion des Profirdius r (i) = (1 β) (β + x 2 (i) ) in [4] eingesez, ergib sich mi [2] der Biegewinke = 2r b = 2r b 0 < r b r φ = φ = φ = φ = 16F (0,1098)E 4 0 (β+ (1 β) x (i) ) 4 16F2 1 { 1 (0,1098)E 4 (1 β) 2 2(β+ (1 β) x (i) ) F2 1 [ (0,1098)E 4 (1 β) 2 2(1) 2(β) 2 β 3(β+ (1 β) x (i) ) 3 } β β 6β2 3(1) 3(β) 3] 6β 2 0 < β 1 8F 2 3(0,1098)E 4 [3(1 β2 ) 2(1 β 3 ) β 2 (1 β) 2 ] φ = 24,3F2 E 4 ω [2.5] mi: β = 1 ω = 3 ω X(i)= X(i)= 0

5 Dip.-Ing.(FH) Kuno Fuerknech D Wd/Osgäu Seie 5 von Besimmung der Biegespnnung m hben Kegesumpfprofi Z Mi r (i) b (i) = 2r (i) M B = F I z(i) = ( π 8 ) r 4 8 9π (i) e m = (1 4 ) r 3π (i) r (i) = f( ) 1 ( b) [b + x 2 (i) ] σ b(i) = 83,91F ( 4 3π ) r (i) e mx(i) Profischni n der See S Die größe Biegerndspnnung n der See is definier durch den Quoien, Biegemomen M B geei durch ds Fächenrägheismomen I z(i), m dem mximen Rndfserbsnd e m von der Z Achse, die durch den Fächenschwerpunk S äuf. σ b(i) = M B(i) I z(i) [5.1] [b+ ( b) x (i) ] 3 e mx(i) [5] n der Einspnnsee bei = wirk die Biegespnnung σ b(i) = 83,91F ( 3) [5.2] Es so nun us Geichung [5.1] die See der mxim ufreenden Biegespnnung ermie werden. Diese See zur Unerscheidung s m bezeichne m und f(m) = (b+ ( b) m) 3 Ein Mximum für f(m) ieg vor, wenn f (m) = 0 gesez werden knn und sich für f (m) < 0 ergib. f (m) = f, (o) f (m) = b 2m[( b) ], f (u) f (o) f (u) f 2 [b+ ( b) m] 3 3m ( b) [b+ ( b) m] 2 (u) [b+ ( b) m] 6 [b+ ( b) m] 4 = 0 wenn: {b 2m [ ( b) ]} = 0 drus m = b 2( b) so die mxime Spnnung bei m = sein, [5.3] is b 2 zu wähen, es gi dnn Geichung [5.2] 3 f (m) < 0, d in f (m) die Abeiung der Funkion im Zäher < 0 is und der Nenner >0 beib. Somi ieg mi [5.2] ein Mximum vor, für σ b(i) bei = m [5.3] eingesez in [5.1] die mxime Biegespnnung bei m < σ b(m) = 83,91F b 2( b)[b+ ( b) b 2( b) ]3 σ b(m) = 12,43F ( b)b 2 [5.4] für b 2 3

6 Dip.-Ing.(FH) Kuno Fuerknech D Wd/Osgäu Seie 6 von 8 m/ 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 b/ See der mximen Biegespnnung bei m im Verhänis zur Gesmänge, in Abhängigkei der Profibreie und b bzw.r und r b m hben Kegesumpfprofi für b bzw. r b r 2 3.

7 Dip.-Ing.(FH) Kuno Fuerknech D Wd/Osgäu Seie 7 von 8 2. Gekrümmer Träger 2.1 Verformung in Richung Y i X Fx, sx r i r*[1-cos( i)] F Ds Biegemomen n der See i ergib sich bei einer Krf F in Richung Y mi M (i) = F r sin( i ) [6] Des Weieren is ds xie Fächenrägheismomen I z, güig für den gerden Träger, zu ersezen mi den Querschnisprmeer Z z, güig für den gekrümmen Träger. r*sin( i) s Y Überrgen in [1], die Verformung in Richung Y M (i) M (i) 0 EZ z(i) F d Mi M (i) F = r sin( i) und d = r d sowie Z z = cons. und somi Fr2 sin 2 ( EZ i ) r d z 0 Fr3 [ 1 sin(2)] [6.1] 2 4 Für den ¼ Kreis mi = ( π Fr3 ) [ π ] 2 4 und für den Hbkreis mi = π Fr3 [ π 2 ] 2.2 Biegewinke n der Krfngriffsee Der Biegewinke n der Lsngriffssee ergib sich us dem Biegemomen n der See i nch Geichung [6] überrgen in Geichung [2] und I z ersez mi Z z, wie oben, für den gekrümmen Träger φ = Fr 0 sin i (1) r d φ = Fr2 cos i 0 φ = Fr2 [1 cos ] [6.2]

8 Dip.-Ing.(FH) Kuno Fuerknech D Wd/Osgäu Seie 8 von Ausenkung in Richung X Der gekrümme Träger, bese mi einer Krf F in Richung Y, erfähr eine seiiche Ausenkung in Richung X. Zur Besimmung dzu für ds Biegemomen n der See i eine Krf Fx= 0 ngesez. Mi M (i) = F r sin( i ) + F x r [1 cos( i )] und [M (i) ( M (i) F x )] = F r sin( i ) r [1 cos( i )] s x = Fr2 [sin( EZ i ) sin( i ) cos( i )] r d z 0 s x = Fr3 EZ z cos( i ) 1 2 sin2 ( i ) 0 s x = Fr3 [1 cos() ( 1 2 ) sin2 ()] [6.3] Für den ¼ Kreis mi = ( π 2 ) s x = Fr3 [ 1 2 ] und für den Hbkreis mi = π s x = Fr3 [2] 0,637 s 1,273 s 2.2 Der Querschnisprmeer Z z für den srk gekrümmen Träger Definiion: (,d) r Z z = [ ] 1 (r+z) z2 da λ A r 2 2 (,d) mi und A der Querschnisfäche des Trägerprofis λ = ( r ) n [(1+ 2r ) (1 2r )] 1 (1 für den Recheckquerschni b bzw. λ = n 2 [ 1 rcsin ( d )] (1 für den Kreisquerschni d 2 2r Anmerkung: Für den schwch gekrümmen, gerden Träger mi r Z z I z r im { [ ] r (r+z) z2 da} { z 2 da} I z ensprechend dem Fächenrägheismomen (1 Dubbes Tschenbuch für den Mschinenbu, Bnd 1, Zwöfe Aufge, Neudruck 1966, Seie 377, 378 Erse 1972 / kuisier 18./26. März 2016 / 28. Jnur 2018 / Kuno Fuerknech

Aufgabe 124. q I = Q I. Bereich I: q II = Q II (1) (2) Bereich III: q III = Q III (3) (4) Randbedinungen (5) (6) (7)

Aufgabe 124. q I = Q I. Bereich I: q II = Q II (1) (2) Bereich III: q III = Q III (3) (4) Randbedinungen (5) (6) (7) ik und eemenre esigkeisehre Prof. Popov Wie 6/7,.Tuorium Lösungshinweise eie uperposiion, Biegespnnungen Version 6. Jnur 07 Tuorium Aufge us Due: + A w(x) w I (x) + w II (x) w I (x) q 0 4 [ 4 5 x ( x )

Mehr

Webinar: Elastostatik Thema: Zweiachsige Biegung. Aufgabe) Biegelinie bestimmen

Webinar: Elastostatik Thema: Zweiachsige Biegung. Aufgabe) Biegelinie bestimmen Webinr: Elsosik Them: Zweichsige Biegung Aufgbe Biegelinie besimmen F F l y z x z Gegeben sei der obige Krgräger, welcher durch eine Krf F in z-richung belse wird. Der Querschni des Krgrägers is rechs

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

Traktrix DEMO. Text Nr Stand 11. Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Traktrix DEMO. Text Nr Stand 11. Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Trkri Te Nr. 540 Snd. Mi 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mhe-cd.de 540 Trkri Vorwor Die Trkri is eine Kurve für gehobenemhemische Ansprüche. Ineressn is schon ihre mechnische

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3 Bl Nr. 11 Simon Reisser Lösung zur Husufgbe in Topologie und Differenilrechnung mehrerer Vriblen SS 17 Aufgbe () Sei f(x 1, x, x 3 ) = (y 1, y, y 3 ) = (e x1x x3, e x1x+x3, e xx3 ) und dg(y 1, y, y 3 )

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Anlysis I 4. Übungssunde Seven Biln sevenb@suden.ehz.ch biln.uk/eching June 6, 07 Erinnerung Sz. (Prielle Inegrion) f (x) g(x)dx = [ ] b f(x)g(x) f(x) g (x)dx. Sz 6..5 (Subsiuion) Sei f : [, b] R seig,

Mehr

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand 8.5 Uneigenliche Inegrle Inegrle über unbeschränke Bereiche,, Inegrle über unbeschränke Funkionen mi Singulriäen m Rnd, f : (, b] R seig, f : [, b) R seig Lokle Inegrierbrkei: Definiion: Eine Funkion f

Mehr

Serpentine DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Serpentine DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Serpenine Te Nr. 560 Snd 6.3.6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 560 Serpenine Vorwor Die Serpenine is eine lgebrische Kurve 3. Grdes, die mn uf einer geomerischen Eigenschf definieren

Mehr

Wie man ein Problem des Universums löst

Wie man ein Problem des Universums löst INSTITUT FÜR MECHANIK Technische Universiä Drmsd Dipomvorprüfung Technische Mechnik II Prof. D. Gross Prof. P. Hgedorn Prof. W. Huger m 14. März 2002 Prof. R. Mrker (MB, BI) (Nme) (Vornme) (Mr.-Nr.) (Sudiengng)

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Mhe-Abiur b : Fundus für den Pflichbereich Lösungen) Die Auoren übernehmen keine Grnie für die Richigkei der Lösungen. Auch wurde sicher nich immer der kürzese und elegnese Lösungsweg eingeschlgen. Einfche

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2002 Es/Gä/Ko/Sw Mathematik Grundlagen Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 2002 Es/Gä/Ko/Sw Mathematik Grundlagen Lösungen Sw / 2003 Lösung der Aufge : x x ( x ) ( x ) ) f(x) {} ( x ) ( x ) ( x ) ( x ) ( x x ) f (x) ( x ) x x ( x ) f (x) x x x ( x ) (vorgegeen) Nullsellen : x - x. urch Proieren finde mn die Nullselle x. Polynomdivision

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2 Green-Funkion Wir berchen (z. B.) eine inhomogene linere DGL 2. Ordnung y +y = r() Die llgemeine Lösung mi y() = und y( π 2 ) = (Rndwerufgbe) sez sich us der llgemeinen Lösung der zugehörigen homogenen

Mehr

10 Gewöhnliche Differentialgleichungen

10 Gewöhnliche Differentialgleichungen Mhemik für Physiker III, WS 212/213 Diensg 5.2 $Id: ode.ex,v 1.1 213/2/6 13:25:6 hk Exp $ $Id: picrd.ex,v 1.3 213/2/6 1:22:12 hk Exp $ 1 Gewöhnliche Differenilgleichungen 1.8 Inhomogene linere Differenilgleichungen

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Drehmomentwellenberechnung mit TEL1-PCM

Drehmomentwellenberechnung mit TEL1-PCM Drehmomenwellenberechnung mi TL1-PC Ds 1-Knl Telemeriesysem TL1-PC wird vorwiegend für roierende pplikionen eingesez, wie z.b. zur Überrgung von Drehmomenen, chwingungen oder Temperuren von drehenden Wellen,

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Homogene Gleichungssysteme, Gausscher Algorithmus

Homogene Gleichungssysteme, Gausscher Algorithmus HTW Mhemik MST Prof.Dr.B.Grbowski e-mil: grbowski@hw-srlnd.de Tel.: 7- Lösungen zu Übung Homogene Gleichungssyseme, Gusscher lgorihmus u ufgbe Besimmen Sie mi Hilfe des Gusschen lgorihmus die jeweilige

Mehr

Die Exponentialfunktion

Die Exponentialfunktion Die Eponenilunkion Deiniion Es sei eine posiive reelle Zhl,,. Eine Funkion R + R R : heiß Eponenilunkion. Die posiive reelle Zhl heiß Bsis und die reele Zhl R Eponen der Funkion. Mnchml heiß uch Wchsumskor.

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

5.4 Zusammengesetzte Beanspruchung. Aufgaben

5.4 Zusammengesetzte Beanspruchung. Aufgaben Technische Mechnik 2 5.4-1 rof. Dr. Wndinger Aufgbe 1 5.4 Zusmmengesee Benspruchung Aufgben 4 2 10 4 Der bgebildee dünnwndige Ksenräger is m linken Ende fes eingespnn und wird m rechen Ende durch wei Kräfe

Mehr

Ortskurven besonderer Punkte

Ortskurven besonderer Punkte Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.

Mehr

Analysis 3.

Analysis 3. Analysis 3 www.schulmahe.npage.de Aufgaben. Ermieln Sie die erse Ableiung. Vereinfachen Sie. a) fx) = e x x 3) b) fx) = ln x x + 4. Ermieln Sie die folgenden unbesimmen Inegrale. e x 5 a) e x dx b) dx

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

3.2. Flächenberechnungen

3.2. Flächenberechnungen Anlysis Inegrlrechnung.. Flächenerechnungen... Die Flächenfunkion ) Flächenfunkionen ufzeichnen Skizziere zur gegeenen Funkion diejenige Funkion, welche die Fläche unerhl der Funkionskurve miss. Die Flächenfunkion

Mehr

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Jörg Eschmeier M. Sc. Sebstin Lngendörfer e Integrlrechnung Zustzunterlgen zur Vorlesung Anlysis II Sommersemester 2014 Dieses Bltt enthält

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

2 Geradlinige Bewegung eines Massenpunkts

2 Geradlinige Bewegung eines Massenpunkts 13 2 Gerdlinige Bewegung eine Menpunk Bei ielen Bewegungufgben knn die Drehbewegung eine Körper ernchläig werden, wenn nur deen rnloriche Bewegung inereier. In dieem Fll drf der Körper l Menpunk berche

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011 Bericht zur Mthemtischen Zulssungsprüfung im Mi Heinz-Willi Goelden, Wolfgng Luf, Mrtin Pohl Am 4. Mi fnd die Mthemtische Zulssungsprüfung sttt. Die Prüfung bestnd us einer 9-minütigen Klusur, in der 5

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

1 Satz von Maxwell und Betti

1 Satz von Maxwell und Betti Univ. Prof. Dr. rer nt. Wofgng H. Müer Technische Universität Berin Fkutät V Lehrstuh für Kontinuumsmechnik und Mteritheorie - LKM, Sekr. MS 2 Einsteinufer 5, 1587 Berin Sätze von Mxwe und Betti / Cstigino

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

2.2.7 Messung der Wellenlänge des Lichts mit dem optischen Gitter; Auflösungsvermögen eines Gitterspektrographen

2.2.7 Messung der Wellenlänge des Lichts mit dem optischen Gitter; Auflösungsvermögen eines Gitterspektrographen 2.2.7 Messung der Wellenlänge des Lichts mit dem optischen ; Auflösungsvermögen eines spektrogrphen Hupt- und Nebenmxim m Der Doppelsplt ht zwei große Nchteile: Durch die beiden Splte geht nur wenig Licht,

Mehr

NORM für das Kanalnetz Juli 2012. Hydraulische Berechnung von Abwasserkanälen für Kreisprofile und Eiprofile

NORM für das Kanalnetz Juli 2012. Hydraulische Berechnung von Abwasserkanälen für Kreisprofile und Eiprofile NORM für das Kananez ui 01 Hydrauische Berechnung on bwasserkanäen für Kreisprofie und iprofie Regeba 0 Sachgebie: Hydrauische Berechnungen Schagwörer: bwasserkana, Hydrauik, Kreisprofi, iprofi 1 nwendungsbereich

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Universität Passau Lehrstuhl für Finanzierung

Universität Passau Lehrstuhl für Finanzierung Universiä Pssu Lehrsuhl für Finnzierung Nuzenfunkionen und Risikoversion Snd 26..2 Um ds Bernoulli-Prinzi (execed-uiliy-rincile) zu konkreisieren, is die Sezifikion einer (von Neumnn - Morgensern -) Nuzenfunkion

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Mathematik III - Blatt 3

Mathematik III - Blatt 3 Mthemtik III - Bltt 3 Christopher Bronner, Frnk Essenberger FU Berlin 7.November 6 Aufgbe Die Länge der Kurve, deren Bhn die Lösung der Gleichung ist, lutet x 3 + y 3 3 L( γ ds π γ γ(t dt. Abbildung :

Mehr

Notizen zur Vorlesung über Kurven

Notizen zur Vorlesung über Kurven Noizen zur Vorlesung über Kurven Michel Krow, TU-Berlin krow@mh.tu-berlin.de November 6, 9 Definiion: Eine prmerisiere Kurve is eine seige Abbildung x : R I R n, wobei I ein (offenes, hlboffenes oder bgeschlossenes)

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungn zur Kursvorlsung Physik II (Elkrodynmik) Sommrsmsr 8 Übungsbl Nr. Aufgb 9: Ldungsvrilung ) Di Gsmldung inr krisförmign Obrfläch is ggbn durch: Q= A rda= rr dr d (i) (ii) Q= r r dr d = Q= r dr d

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2015 Mathematik 13 Technik - A I - Lösung mit CAS Teilaufgabe 1 mit f a ( x)

mathphys-online Abiturprüfung Berufliche Oberschule 2015 Mathematik 13 Technik - A I - Lösung mit CAS Teilaufgabe 1 mit f a ( x) mhphys-online Abiurprüfung Berufliche Oberschule 05 Mhemik 3 Technik - A I - Lösung mi CAS Teilufgbe Gegeben is die Funkion f mi f ( ) Definiionsmenge D f IR. e e mi IR\ {0} und der mimlen Teilufgbe. (7

Mehr

Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen)

Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen) Technische Universität München SS Zentrum Mthemtik 7.6. Prof. Dr. K. Buchner Dr. W. Aschbcher Anlysis II Aufgbe T 9 Ober- und Untersummen Übung 7: Lösungen : Nch Vorussetzung ist f R-integrierbr, d.h.

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern WS 1/13, 16.0.013 1. Aufgbe: (TM I) ) A g 3 6 ( q() = q 0 9 G B 60 F = q 0 m

Mehr

Dieser Mangel kann überwunden werden, wenn die Typenlogik um den Lambda-Operator

Dieser Mangel kann überwunden werden, wenn die Typenlogik um den Lambda-Operator 3 Theorie der λ -Repräsenion 3 Theorie der λ-repräsenion [Dowy 98-111, Gmu 102-116, Pree 338-371, Chierchi 391-429] 3.1 Der λ-operor In der reinen Typenlogik wird jedem Ausdruck ein Typ zugewiesen. Ein

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Definition von Gebietsintegralen, Mehrfachintegration

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Definition von Gebietsintegralen, Mehrfachintegration Vorlesung: Anlysis II für Ingenieure Wintersemester 7/8 Michel Krow Them: Definition von Gebietsintegrlen, Mehrfchintegrtion Treppenfunktionen uf Intervllen Eine Funktion f : [, b] heisst Treppenfunktion,

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t:

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t: Lösungen Abiur Leisungskurs Mhemik www.mhe-schule.de Seie von 9 P Anlysis = R, ² k.. p = + b+, b, R Ableiungen: k' ( ) = = p' = + b Berechnung der Koeffizienen: ; p =.. S : () p' () k' () + b + = b= =

Mehr

Physik A VL4 ( )

Physik A VL4 ( ) Physik A VL4 (16.1.1) Beschreibung on Bewegungen - Kinemik in einer Rumrichung II Die beschleunige Bewegung Der Freie Fll Der senkreche Wurf Berchung ungleichförmiger Beschleunigung miels Inegrlrechnung

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Dipl.-Mah. Sebasian Schwarz SS 015 17.05.015 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zum 6. Übungsbla

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen Übung zur Vorlesung Einführung in die Algebr Prof. Dr. J. H. Bruinier Stephn Ehlen Soerseester 2009 Lösungshinweise zu Übungsbltt 5 Aufgbe G5. Ordnungen berechnen () () Gegeben k gilt k k 0 in /n genu

Mehr

Lineare Abbildung des Einheitskreises

Lineare Abbildung des Einheitskreises Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel

Mehr

Übungen zu Analysis für PhysikerInnen I

Übungen zu Analysis für PhysikerInnen I Universität Wien, WS 04/5 Übungen zu Anlysis für PhysikerInnen I Weitere Aufgben zum Lernen und Üben Offene Aufgben ( ) Berechnen Sie direkt mit Hilfe der Definition der Ableitung (Grenzwert des Differenzenquotienten)!

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2 Diskrete Energien 1. 8 entdeckten Mrc Fries und Andrew Steele uf einem Meteoriten sogennnte Crbon Whiskers, lnggestreckte Nnostrukturen us Kohlenstoff, von denen ngenommen wird, dss sie im Rum um junge

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

Übungsaufgaben 2. Komplexe Zahlen. sin 2 ; 2 sin cos D 2 cos 2 1; 2 sin cos D 1 2 sin 2 ; 2 sin cos. 3 k. kd0.cos ; 0/ k.

Übungsaufgaben 2. Komplexe Zahlen. sin 2 ; 2 sin cos D 2 cos 2 1; 2 sin cos D 1 2 sin 2 ; 2 sin cos. 3 k. kd0.cos ; 0/ k. Übungsufgben Komlexe Zhlen Aufgbe. Mn zeige (mit Hilfe der binomischen und der Moivre-Formel), dß..cos ; sin / D cos ; sin cos D sin ; sin cos,..cos ; sin / D 4 cos cos ; sin 4 sin, für lle Œ0; Œ gilt!

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklusur im Fch Technische Mechnik Nr. Universität iegen; Deprtment Mschinenbu nstitut für Mechnik und Regelungstechnik - Mechtronik Prof. Dr.-ng. C.-P. Friten Probeklusur im Fch TECHNCHE MECHANK A

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

1. Querkraftschub in offenen Profilen

1. Querkraftschub in offenen Profilen 1. Querkrftschub in offenen Profilen 1.1 Schubfluss 1.2 Schubmittelpunkt Prof. Dr. Wndinger 5. Dünnwndige Profile TM 2 5.1-1 Geometrie: Die Profilkoordinte s wird entlng der Profilmittellinie gemessen.

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Lösung der Aufgabe 1 :

Lösung der Aufgabe 1 : Lösung dr Aufgb : ) x x + y + y 3x + 4y + Fixpunktbdingung: x x, y y x x + y + y 3x + 4y + 0 4x+ y+ 0 3x+ 3y+ 0 6x - 3 3 4 b) x 6 0-6y - y 6 Fixpunkt ( 6 6 ) Fixgrdn: in dn bidn Gichungn für di Fixpunktbdingungn

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr