Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3)

Größe: px
Ab Seite anzeigen:

Download "Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3)"

Transkript

1 Aufgabe 3 a) Wir verwenden zur Lösung den Algorithmus Build-Heap 1, dieser verwendet die Funktion Heapify. Unser Array A ist gegeben durch [7, 10,, 5, 5,, 3, 3, 17] Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3) In Heapify wird nach Aufruf mit dem Array A die Variable heap-size auf 9 gesetzt. Unsere for-schleife läuft also von 9 = 4 bis 1. i=4 Aufruf von Heapify(A,4) i = 4 A[i] = 5 l = left(i) = i = A[l] = 3 r = right(i) = i + 1 = 9 A[r] = 17 In Zeilen 3 und 4 von Heapify wird der Index des größeren Werts von A[l] und A[i] bestimmt und in der Variable largest gespeichert, wenn l heap-size[a] gilt. Das ist hier der Fall, also bekommt largest den Wert von l = zugewiesen. Es gilt A[largest] = 3. In Zeile 5 von Heapify wird der Wert von A[largest] mit dem Wert A[r] verglichen, wenn r heap-size[a] gilt. Diese Bedingung ist erfüllt, A[largest] ist aber größer als A[r], also bleibt der Wert von der Variable largest unverändert. Die Bedingung in Zeile 6 ist erfüllt, deshalb werden die Werte von A[i] und A[largest] vertauscht. Der resultierende Baum ist: 1 siehe Foliensatz 16, Folie 36 siehe Foliensatz 16, Folie 14ff.

2 Nachdem die Werte vertauscht wurden, wird Heapify(A,) aufgerufen. Aufruf von Heapify(A,) i = A[i] = 5 l = left(i) = i = 16 r = right(i) = i + 1 = 17 In Zeilen 3 und 4 wird largest auf den Wert i = gesetzt, da l > heap-size[a] gilt. In Zeile 5 wird keine Änderung an der Variable largest vorgenommen, da r > heap-size[a] ist. Jetzt gilt i = largest und somit wird der Aufruf von Heapify(A,) ohne Änderungen oder weiteren Aufrufen von Heapify beendet. i=3 Aufruf von Heapify(A,3) i = 3 A[i] = l = left(i) = i = 6 A[l] = r = right(i) = i + 1 = 7 A[r] = 3 Das Element A[i] ist größer als seine beiden Kinder A[l] und A[r], also ist largest = i und es werden keine Änderungen und auch kein weiterer Aufruf von Heapify vorgenommen. i= Aufruf von Heapify(A,) i = A[i] = 10 l = left(i) = i = 4 A[l] = 5 r = right(i) = i + 1 = 5 A[r] = 5 Es gilt l heap-size[a] A[l] A[i] Also wird in Zeilen 3 und 4 largest = i = gesetzt. Weiterhin gilt r heap-size[a] A[r] > A[largest] Also wird in Zeile 5 largest = r = 5 gesetzt. Da largest i ist wird A[i] mit A[largest] vertauscht und Heapify(A,5) aufgerufen.

3 Aufruf von Heapify(A,5) i = 5 A[i] = 10 l = left(i) = i = 10 r = right(i) = i + 1 = 11 In Zeilen 3 und 4 wird largest auf den Wert i = 5 gesetzt, da l > heap-size[a] gilt. In Zeile 5 wird keine Änderung an der Variable largest vorgenommen, da r > heap-size[a] ist. Jetzt gilt i = largest und somit wird der Aufruf von Heapify(A,5) ohne Änderungen oder weiteren Aufrufen von Heapify beendet. i=1 Aufruf von Heapify(A,1) i = 1 A[i] = 7 l = left(i) = i = A[l] = 5 r = right(i) = i + 1 = 3 A[r] = Es gilt l heap-size[a] A[l] > A[i] Also wird largest = l = gesetzt. Weiterhin gilt r heap-size[a] A[r] A[largest] Der Wert der Variable largest wird also nicht verändert. Da largest i ist wird A[i] mit A[largest] vertauscht und Heapify(A,) aufgerufen

4 Aufruf von Heapify(A,) i = A[i] = 7 l = left(i) = i = 4 A[l] = 3 r = right(i) = i + 1 = 5 A[r] = 10 Es gilt l heap-size[a] A[l] > A[i] Also wird largest = l = 4 gesetzt. Weiterhin gilt r heap-size[a] A[r] A[largest] Der Wert der Variable largest wird also nicht verändert. Da largest i ist wird A[i] mit A[largest] vertauscht und Heapify(A,4) aufgerufen. Aufruf von Heapify(A,4) i = 4 A[i] = 7 l = left(i) = i = A[l] = 5 r = right(i) = i + 1 = 9 A[r] = 17 Es gilt l heap-size[a] A[l] A[i] Also wird largest = i = 4 gesetzt. Weiterhin gilt r heap-size[a] A[r] > A[largest] Der Wert der Variable largest wird also auf r = 9 gesetzt. Da largest i ist wird A[i] mit A[largest] vertauscht und Heapify(A,9) aufgerufen

5 Aufruf von Heapify(A,9) i = 9 A[i] = 5 l = left(i) = i = 1 r = right(i) = i + 1 = 19 In Zeilen 3 und 4 wird largest auf den Wert i = 9 gesetzt, da l > heap-size[a] gilt. In Zeile 5 wird keine Änderung an der Variable largest vorgenommen, da r > heap-size[a] ist. Jetzt gilt i = largest und somit wird der Aufruf von Heapify(A,9) ohne Änderungen oder weiteren Aufrufen von Heapify beendet. Nach diesem Durchlauf ist Build-Heap fertig. Der entstehende Heap ist in Abbildung zu sehen, es gilt: A = [5, 3,, 17, 10,, 3, 4, 5]. b) Sei A ein max-heap. Das bedeutet, dass in A die max-heap-eigenschaft gilt: Für jeden Knoten i außer der Wurzel gilt A[P arent(i)] A[i]. Sei i der Index einer Wurzel eines Teilbaumes. Sei i ein Kind von i und sei weiterhin A[i ] > A[i ]. Das wäre aber eine Verletzung der max-heap-eigenschaft, es gilt jetzt nämlich nicht mehr für alle Knoten, dass A[P arent(i)] A[i] gilt. Das ist ein Widerspruch zur Annahme, dass A ein max-heap ist.

6 Aufgabe 4 a) Diese Aussage ist richtig. Beweis: Ein Array A ist aufsteigend sortiert genau dann, wenn gilt: A[i] A[i + 1] 1 i < n (1) Ein Array A erfüllt die min-heap-eigenschaft genau dann, wenn gilt: A[P arent(i)] A[i] Benutzt man left(x) und right(x) und setzt die entsprechenden Definitionen ein, so erhält man folgende Schreibweise der min-heap-eigenschaft: A[i] A[left(i)] A[i] A[i] () A[i] A[right(i)] A[i] A[i + 1] (3) Wir wollen nun zeigen, dass ein Array, dass aufsteigend sortiert ist auch die min-heap- Eigenschaft erfüllt: Array aufsteigend sortiert Array erfüllt min-heap-eigenschaft Aus A[i] A[i + 1] folgt sofort, dass A[i] A[i] und A[i] A[i + 1] auch gelten. b) Diese Aussage ist falsch. Gegenbeispiel: Dies ist offensichtlich ein min-heap, für jeden Knoten i außer der Wurzel gilt A[P arent(i)] A[i]. Betrachtet man das Array A = [1, 3,, 5, 4], so sieht man, dass es nicht aufsteigend sortiert ist. Damit wurde die Aussage widerlegt.

7 Aufgabe 5 1 function k k l e i n s t e Elemente (A, k ) // Erzeuge Array mit k Elementen, d i e s e s Array 3 // wird a l s max heap g e p f l e g t 4 B = new array [ 1,.., k ] 5 for i 1 to k do 6 B[i] 7 end for 9 for i 1 to n do 10 i f A[i] < B[1] then 11 B[1] A[i] 1 // s t e l l e max Heap E i g e n s c h a f t wieder her 13 Heapify(B, 1) 14 end i f 15 end for // s o r t i e r e B a u f s t e i g e n d 1 MergeSort(B, 1, k) 19 0 return B 1 end Laufzeit Analyse: Die Zeilen 4 und 5-7 können in Laufzeit O(k) ausgeführt werden. Der Aufruf Heapify(B,1) benötigt Zeit O(log k), die Funktion wird im worst-case n mal aufgerufen. Für Zeilen 9-15 ergibt sich also eine Laufzeit von O(n log k). Der Aufruf von MergeSort benötigt Zeit O(k log k) da hier k Elemente sortiert werden sollen. Da n k gilt, hat der Algorithmus k-kleinste-elemente Laufzeit O(n log k).

8 Aufgabe 6 a) Die rot markierten Elemente wurden bereits durch den Algorithmus bearbeitet, die unterstrichenen Werte für i beziehen sich auf die Werte innerhalb der Funktion Max-Heap- Insert. i= Max-Heap-Insert(A, A[]) i= Parent() = = 1 i = > 1 A[1] < A[] Also müssen die Elemente A[1] und A[] vertauscht werden, i wird auf Parent() gesetzt, also i = i=1 i ist jetzt 1, die while-schleife wird nicht weiter ausgeführt. i=3 Max-Heap-Insert(A, A[3]) i= Parent(3) = 10 3 = 1 i = 3 > 1 A[1] A[3]

9 Die Schleife wird also nicht betreten. i=4 Max-Heap-Insert(A, A[4]) i=4 Parent(4) = 4 = i = 4 > 1 A[] A[4] Die Schleife wird also nicht betreten. i=5 Max-Heap-Insert(A, A[5]) i=5 Parent(5) = 5 = i = 5 > 1 A[] < A[5] Also müssen die Elemente A[] und A[5] vertauscht werden, i wird auf Parent(5) gesetzt, also i =

10 i= Parent() = = 1 i = > 1 A[1] < A[] Also müssen die Elemente A[1] und A[] vertauscht werden, i wird auf Parent() gesetzt, also i = i=1 i ist jetzt 1, die while-schleife wird nicht weiter ausgeführt. i=6 Max-Heap-Insert(A, A[6]) i=6 Parent(6) = 6 = 3 i = 6 > 1 A[3] A[6] Die Schleife wird also nicht betreten

11 i=7 Max-Heap-Insert(A, A[7]) i=7 Parent(7) = Die Schleife wird also nicht betreten. 7 = 3 i = 7 > 1 A[3] A[7] i= Max-Heap-Insert(A, A[]) i= Parent() = = 4 i = > 1 A[4] < A[] Also müssen die Elemente A[4] und A[] vertauscht werden, i wird auf Parent() gesetzt, also i = 4. i= Parent(4) = 4 = i = 4 > 1 A[] < A[4] Also müssen die Elemente A[] und A[4] vertauscht werden, i wird auf Parent(4) gesetzt, also i =

12 i= Parent() = = 1 i = > 1 A[1] A[] Die Schleife wird also nicht betreten. i=9 Max-Heap-Insert(A, A[9]) i= Parent(9) = 9 = 4 i = 9 > 1 A[4] < A[9] Also müssen die Elemente A[4] und A[9] vertauscht werden, i wird auf Parent(9) gesetzt, also i = 4. i= Parent(4) = 4 = i = 4 > 1 A[] A[4] Die Schleife wird also nicht betreten

13 b) Die beiden Algorithmen erzeugen unterschiedliche Heaps, das Gegenbeispiel wurde in Aufgaben 3.a und 6.a geliefert. c) Korrektheit von Max-Heap-Insert Invariante Vor dem Durchlauf der while-schleife mit Index i erfüllt der Teilbaum mit Wurzel A[i] die max-heap-eigenschaft bis auf eine Mögliche Verletzung: A[i] kann größer sein als A[P arent(i)]. Initialisierung Vor dem ersten Schleifendurchlauf wurde nur der Wert von A[i] geändert und von daher kann nur dieses Element die max-heap-eigenschaft verletzen. Erhaltung In der while-schleife wird eine eventuelle auftretende Verletzung der maxheap-eigenschaft in der Zeile 5 behoben. Jetzt gilt die max-heap-eigenschaft im Teilbaum mit Wurzel A[i]. Durch die Vertauschung kann nur die max-heap-eigenschaft zwischen i und P arent(i) verletzt werden. Terminierung Erreicht der Algorithmus die Wurzel des Heaps (i = 1), so terminiert er und das gesamte Array erfüllt die max-heap-eigenschaft. Korrektheit von Build-Max-Heap Invariante Vor dem Durchlauf der Schleife mit Index i ist das Array A[1,.., i 1] ein max-heap Initialisierung Der erste Durchlauf erfolgt mit i =. Das Array A[1,.., 1] ist ein maxheap Erhaltung Vor Durchlauf mit Index i gilt die Invariante. Es wird dann Max-Heap- Insert(A, A[i]) aufgerufen. Durch diesen Aufruf wird der Heap korrekt um den Wert A[i] ergänzt. Die Korrektheit folgt aus der Korrektheit von Max-Heap-Insert. Terminierung Vor Durchlauf mit Index i = length(a) + 1 ist A[1,.., length(a)] ein max-heap. Laufzeit Die Funktion Build-Max-Heap (A) ruft in der for-schleife n 1 mal den Algorithmus Max-Heap-Insert auf. In diesem Algorithmus wird in der while-schleife im worst-case der Baum von einem Blatt zur Wurzel durchlaufen. Da es sich hier im weitesten Sinne

14 um einen vollständigen Binärbaum handelt ist die Höhe des Baums log n. Wir haben also insgesamt eine Laufzeit von n }{{ 1 } O(log n) }{{} = O(n log n) Aufrufe von Max-Heap-Insert Laufzeit von Max-Heap-Insert

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Algorithmen und Datenstrukturen Heapsort

Algorithmen und Datenstrukturen Heapsort Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das

Mehr

Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 7. Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Algorithmen I. Tutorium 1-5. Sitzung. Dennis Felsing

Algorithmen I. Tutorium 1-5. Sitzung. Dennis Felsing Algorithmen I Tutorium 1-5. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-16 Heaps 1 Heaps Binäre Heaps Erhalten der Heap-Eigenschaft Erzeugen eines

Mehr

Sortieren II / HeapSort Heaps

Sortieren II / HeapSort Heaps Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: dsal-i1@algo.rwth-aachen.de Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php

Mehr

Kapitel 8 Fortgeschrittene Sortieralgorithmen

Kapitel 8 Fortgeschrittene Sortieralgorithmen Kapitel 8 Fortgeschrittene Sortieralgorithmen Zur Erinnerung: in Kapitel 6 Elementare Sortierverfahren Sortierverfahren, die auf Vergleichen von Werten basieren. Aufwand zum Sortieren von Feldern von n

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015 Datenstrukturen und Algorithmen Vorlesung 8: (K6) 1 Joost-Pieter Katoen Lehrstuhl für Informatik Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 7. Mai 015 3 Joost-Pieter

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 01/13 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Guten Morgen! Tipps für unseren ersten Test am 0. November: Lesen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I - 4 Heute: Wir bauen eine Datenstruktur Datenstruktur: Konzept,

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A)

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A) Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 156, Seite 56 im Skript) Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die letzte Ebene vollständig besetzt ist,

Mehr

Kap. 3 Sortieren. 7. VO DAP2 SS Mai Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr HeapSort ff 3.1.

Kap. 3 Sortieren. 7. VO DAP2 SS Mai Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr HeapSort ff 3.1. Kap. 3 Sortieren 3.1.5 HeapSort ff 3.1.6 Priority Queues Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 7.

Mehr

Definition Ein Heap (priority queue) ist eine abstrakte Datenstruktur mit folgenden Kennzeichen:

Definition Ein Heap (priority queue) ist eine abstrakte Datenstruktur mit folgenden Kennzeichen: HeapSort Allgemeines Sortieralgorithmen gehören zu den am häufigsten angewendeten Algorithmen in der Datenverarbeitung. Man hatte daher bereits früh ein großes Interesse an der Entwicklung möglichst effizienter

Mehr

Algorithmen und Datenstrukturen II

Algorithmen und Datenstrukturen II Algorithmen und Datenstrukturen II und Red-Black-Trees Dr. Georg Sauthoff 1 AG Praktische Informatik July 1, SoSe 2011 1 gsauthof@techfak.uni-bielefeld.de Suchbäume (Indexdatenstrukturen) Zugriff in O(logn)

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 15b (13.06.2018) Graphenalgorithmen IV Algorithmen und Komplexität Prims MST-Algorithmus A = while A ist kein Spannbaum do e = u, v ist

Mehr

Aufgabe 8. 1 Arbeitsweise illustrieren. 2 Korrektheitsbeweis führen. 3 Laufzeitanalyse durchführen.

Aufgabe 8. 1 Arbeitsweise illustrieren. 2 Korrektheitsbeweis führen. 3 Laufzeitanalyse durchführen. Aufgabe 8 Betrachten Sie den folgenden Algorithmus namens Bubble-Sort. Bubble-Sort(A[1..n]): 1 for i 1 to length(a) 1 2 do for j length(a) downto i + 1 3 do if A[j 1] > A[j] 4 then A[j 1] A[j] 1 Arbeitsweise

Mehr

Auswählen nach Rang (Selektion)

Auswählen nach Rang (Selektion) Auswählen nach Rang (Selektion) Geg.: Folge X von n Schlüsseln, eine Zahl k mit k n Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x k für X sortiert als x x 2 L x n trivial lösbar in Zeit O(kn)

Mehr

3. Musterlösung. Problem 1: Heapsort

3. Musterlösung. Problem 1: Heapsort Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 3. Musterlösung Problem : Heapsort ** 2 3 4 5 Algorithmus : Heapsort (A) Eingabe : Array A der Länge n Ausgabe : Aufsteigend

Mehr

14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 14. Sortieren II 14.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 397 398 Heapsort [Max-]Heap 7 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum

Mehr

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. 2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 6

Grundlagen der Algorithmen und Datenstrukturen Kapitel 6 Grundlagen der Algorithmen und Datenstrukturen Kapitel 6 Christian Scheideler + Helmut Seidl SS 2009 25.05.09 Kapitel 6 1 Priority Queue M: Menge von Elementen Jedes Element e identifiziert über key(e).

Mehr

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 3. Aufgabe 1. (a) nicht-heap (b) Heap 25. (c) Beinahe-Heap 9.

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 3. Aufgabe 1. (a) nicht-heap (b) Heap 25. (c) Beinahe-Heap 9. Lösungsvorschlag zu Aufgabenblatt Aufgabe 1 (a) nicht-heap 1 1 5 5 1 1 (b) Heap 5 1 1 14 5 10 4 (c) Beinahe-Heap 1 1 4 1 10 Heapify 1. Iteration. Iteration. Iteration 1 1 1 1 1 1 10 4 1 10 4 1 10 4 1 1

Mehr

Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt

Grundzüge von Algorithmen und Datenstrukturen, WS 15/16: Lösungshinweise zum 13. Übungsblatt U N S A R I V E R S A V I E I T A S N I S S Grundzüge von Algorithmen und Datenstrukturen, WS /6: Lösungshinweise zum 3. Übungsblatt Christian Hoffmann, Fabian Bendun Aufgabe 3. (a) Sei j i + = n die Größe

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] Heapsort 211 Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Teil 2: Sortieren und Suchen Martin Hofmann LFE Theoretische Informatik, Institut für Informatik, Ludwig-Maximilians Universität, München 16. April 2016 Martin Hofmann Algorithmen

Mehr

Aufgabe 2 Konstruktion von Binärbäumen Tafelübung

Aufgabe 2 Konstruktion von Binärbäumen Tafelübung Übungen zu Algorithmik I Wintersemester 004/05 Prof. Dr. Herbert Stoyan, Dr.-Ing. Bernd Ludwig Aufgabenblatt 11 (Lösungen) vom 10.01.005 Aufgabe 1 Binärbäume 8 Punkte 1. Alle Antworten können unmittelbar

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2018 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Organisatorisches: Keine Vorlesung nächste Woche wegen

Mehr

Heapsort. 1. Erstelle aus dem gegebenen Array einen Max-Heap (DownHeap) 2. Tausche erstes und letztes Element des Arrays

Heapsort. 1. Erstelle aus dem gegebenen Array einen Max-Heap (DownHeap) 2. Tausche erstes und letztes Element des Arrays Heapsort Beispiel für einen eleganten Algorithmus, der auf einer effizienten Datenstruktur (dem Heap) beruht [Williams, 1964] Daten liegen in einem Array der Länge n vor 1. Erstelle aus dem gegebenen Array

Mehr

Lösungsvorschlag Hausübung 8

Lösungsvorschlag Hausübung 8 Lösungsvorschlag Hausübung 8 Peter Kling 16. Juli 2007 Aufgabe 27 Betrachten Sie den Algorithmus Heapsort (vgl. Alg. 1) aus der Vorlesung. Illustrieren Sie die Arbeitsweise von Heapsort am Beispiel des

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Algorithmen und Programmieren II

Algorithmen und Programmieren II Algorithmen und Programmieren II Sortieralgorithmen (Teil III) 2 46 69 4 5 6 4 4 0 8 9 0 6 4 2 Prof. Dr. Margarita Esponda Sortieralgorithmen Vergleichs- Algorithmen quadratisch Bubblesort O(n 2 ) Insertsort

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Kap. 3: Sortieren (3)

Kap. 3: Sortieren (3) Kap. 3: Sortieren (3) Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund 6. VO DAP2 SS 2009 30. April 2009 Überblick Quick-Sort Analyse von Quick-Sort Quick-Sort

Mehr

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen 5. Compiler Gliederung 1. Struktur eines Compilers 2. Syntaxanalyse durch rekursiven Abstieg 3. Ausnahmebehandlung 4. Arrays und Strings 6. Sortieren und Suchen 1. Grundlegende Datenstrukturen 2. Bäume

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 11 (1.6.2016) Binäre Suchbäume III Algorithmen und Komplexität Tiefe eines binären Suchbaums Worst-Case Laufzeit der Operationen in binären

Mehr

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown Kap. Sortieren..5 HeapSort ff..6 Priority Queues Professor Dr. Vorlesung am Do 7.5. entfällt wegen FVV um Uhr Lehrstuhl für Algorithm Engineering, LS Fakultät für nformatik, TU Dortmund 7. VO DAP SS 009

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.

Kurs 1663 Datenstrukturen Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur

Mehr

5. Vorrangwarteschlangen (priority queues)

5. Vorrangwarteschlangen (priority queues) 5. Vorrangwarteschlangen (priority queues) Definition 200 Eine Vorrangwarteschlange (priority queue) ist eine Datenstruktur, die die folgenden Operationen effizient unterstützt: 1 Insert 2 ExtractMin Extrahieren

Mehr

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr.

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr. Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Fortgeschrittene Datenstrukturen Such-Algorithmen

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge

Mehr

6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind.

6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind. Algorithmen und Datenstrukturen 132 6 Quicksort In diesem Abschnitt wird Quicksort, ein weiterer Sortieralgorithmus, vorgestellt. Trotz einer eher langsamen Worst-Case Laufzeit von Θ(n 2 ) ist Quicksort

Mehr

5.5 Prioritätswarteschlangen

5.5 Prioritätswarteschlangen 5.5 Prioritätswarteschlangen LIFO- und FIFO-Warteschlangen entfernen Werte aus der Warteschlange in Abhängigkeit davon, wann sie in diese eingefügt wurden Prioritätswartschlangen interpretieren die Werte

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Heaps Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 469 Prioritätswarteschlange Problem Häufig ist das Prinzip einer einfachen Warteschlangen-Datenstruktur

Mehr

Copyright, Page 1 of 7 Heapsort

Copyright, Page 1 of 7 Heapsort www.mathematik-netz.de Copyright, Page 1 of 7 Heapsort Alle grundlegenden, allgemeinen Sortierverfahren benötigen O(n 2 ) Zeit für das Sortieren von n Schlüsseln. Die kritischen Operationen, d.h. die Auswahl

Mehr

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 581 21. Greedy Algorithmen Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 Aktivitäten Auswahl 582 Koordination von Aktivitäten, die gemeinsame Resource exklusiv

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda Amortisierte Analyse Suche in sortierten Arrays Heaps Vorstellen des fünften Übungsblatts

Mehr

Heapsort. Ziel: Sortieren Feld A[1..n]von nschlüsseln in O(n log n)worst case Zeit(so wie Mergesort), aber ohne Zusatzspeicher(so wie Quicksort).

Heapsort. Ziel: Sortieren Feld A[1..n]von nschlüsseln in O(n log n)worst case Zeit(so wie Mergesort), aber ohne Zusatzspeicher(so wie Quicksort). Heapsort Ziel: Sortieren Feld A[..n]von nschlüsseln in O(n log n)worst case Zeit(so wie Mergesort), aber ohne Zusatzspeicher(so wie Quicksort). Abstrakte Speichere die Schlüssel in A[]in den ersten n Knoten

Mehr

18. Natürliche Suchbäume

18. Natürliche Suchbäume Wörterbuchimplementationen 1. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Hashing: Implementierung von Wörterbüchern mit erwartet sehr schnellen Zugriffszeiten. Nachteile

Mehr

Praktikum Algorithmische Anwendungen WS 2006/07 Sortieren in linearer Laufzeit

Praktikum Algorithmische Anwendungen WS 2006/07 Sortieren in linearer Laufzeit Praktikum Algorithmische Anwendungen WS 2006/07 Sortieren in linearer Laufzeit Team A blau Martin Herfurth 11043831 Markus Wagner 11043447 5. Februar 2007 1 1 Untere Schranke für Vergleichsbasierte Algorithmen

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 07.06.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

9. Natürliche Suchbäume

9. Natürliche Suchbäume Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Prioritätswarteschlangen Maike Buchin 18. und 23.5.2017 Prioritätswarteschlange Häufiges Szenario: dynamische Menge von Objekten mit Prioritäten, z.b. Aufgaben, Prozesse, in der

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Lerneinheit 3: Greedy Algorithmen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2016 10.5.2016 Einleitung Einleitung Diese Lerneinheit

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/2007 12. April 2007 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber

Mehr

Übung zu Algorithmen und Datenstrukturen (für ET/IT)

Übung zu Algorithmen und Datenstrukturen (für ET/IT) Übung zu Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Jakob Vogel Computer-Aided Medical Procedures Technische Universität München Komplexität von Programmen Laufzeit kann näherungsweise

Mehr

A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.2 Quicksort. A7.

A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.2 Quicksort. A7. Algorithmen und Datenstrukturen 14. März 2018 A7. III Algorithmen und Datenstrukturen A7. III Marcel Lüthi and Gabriele Röger Universität Basel 14. März 2018 A7.1 Untere Schranke A7.2 Quicksort A7.3 Heapsort

Mehr

Musterlösungen zu Datenstrukturen und Algorithmen SS 2005 Blatt 2, Aufgabe 3 Wir schreiben zunächst alle Funktionen zur Basis 2.

Musterlösungen zu Datenstrukturen und Algorithmen SS 2005 Blatt 2, Aufgabe 3 Wir schreiben zunächst alle Funktionen zur Basis 2. Prof. Dr. Johannes Blömer Paderborn, den. August 005 Musterlösungen zu Datenstrukturen und Algorithmen SS 005 Blatt, Aufgabe 3 Wir schreiben zunächst alle Funktionen zur Basis. Dann erhalten wir 3 n log(n)

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen A7. Sortieren III Marcel Lüthi and Gabriele Röger Universität Basel 14. März 2018 Untere Schranke Sortierverfahren Sortieren Vergleichsbasierte Verfahren Nicht vergleichsbasierte

Mehr

Kürzeste (billigste) Wege

Kürzeste (billigste) Wege Kürzeste (billigste) Wege 1. Kürzeste (billigste) Wege Gerichteter Graph G = (V, E) Kostenfunktion c : E R 1 2 1 3 3 2 4 4 2 6 6 5 3 2 Entfernung zwischen zwei Knoten Kosten eines Wegs P = v 0, v 1,...,

Mehr

5. Vorrangwarteschlangen - Priority Queues

5. Vorrangwarteschlangen - Priority Queues 5. Vorrangwarteschlangen - Priority Queues Priority Queues unterstützen die Operationen Insert(), Delete(), ExtractMin(), FindMin(), DecreaseKey(), Merge(). Priority Queues per se sind nicht für IsElement()-Anfragen,

Mehr

1. Teilklausur. Name:... Vorname:... Matrikel-Nummer:...

1. Teilklausur. Name:... Vorname:... Matrikel-Nummer:... ALP II Objektorientierte Programmierung SS 2012 Prof. Dr. Margarita Esponda 1. Teilklausur Name:... Vorname:... Matrikel-Nummer:... Ich bin mit der Veröffentlichung der Klausurergebnisse mit Matrikel-Nummer

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Schleifeninvarianten. Dezimal zu Binär

Schleifeninvarianten. Dezimal zu Binär Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann

Mehr

21. Dynamic Programming III

21. Dynamic Programming III Approximation 21. Dynamic Programming III FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] Sei ein ε (, 1) gegeben. Sei I eine bestmögliche Auswahl. Suchen eine gültige Auswahl I mit

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 17 (8.7.2014) Minimale Spannbäume II Union Find, Prioritätswarteschlangen Algorithmen und Komplexität Minimaler Spannbaum Gegeben: Zus. hängender,

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 2. Vorlesung Sortieren mit anderen Mitteln Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2-1 Teile und herrsche Idee: teile den Kartenstapel

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Wintersemester 2014/2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

INSERTION-SORT: Ja, Es wird immer das erste, kleinste Element an die neue Liste angehängt.

INSERTION-SORT: Ja, Es wird immer das erste, kleinste Element an die neue Liste angehängt. Aufgabe 1 INSERTION-SORT: Ja, Es wird immer das erste, kleinste Element an die neue Liste angehängt. QUICK-SORT: Hängt davon ab ob PARTITION stabil ist. MERGE-SORT: Ja, Splitten, sowie Mergen ist stabil.

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (22 - AVL-Bäume: Entfernen) Prof. Dr. Susanne Albers Definition von AVL-Bäumen Definition: Ein binärer Suchbaum heißt AVL-Baum oder höhenbalanziert,

Mehr

24. Minimale Spannbäume

24. Minimale Spannbäume Problem Gegeben: Ungerichteter, zusammenhängender, gewichteter Graph G = (V, E, c). 4. Minimale Spannbäume Gesucht: Minimaler Spannbaum T = (V, E ), E E, so dass e E c(e) minimal. Motivation, Greedy, Algorithmus

Mehr

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 ETH Zürich Institut für Theoretische Informatik Prof. Dr. Angelika Steger Florian Meier, Ralph Keusch HS 2017 Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 Lösungsvorschlag zu Aufgabe 1

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Heapsort. Erstellung eines Heaps

Heapsort. Erstellung eines Heaps Heapsort Beispiel für einen eleganten Algorithmus, der auf einer effizienten Datenstruktur (dem Heap) beruht [Williams, 1964] Daten liegen in einem Array der Länge n vor 1. Erstelle aus dem gegebenen Array

Mehr

Heapsort. 1. Erstelle aus dem gegebenen Array einen Heap (DownHeap) 2. Tausche erstes und letztes Element des Arrays

Heapsort. 1. Erstelle aus dem gegebenen Array einen Heap (DownHeap) 2. Tausche erstes und letztes Element des Arrays Heapsort Beispiel für einen eleganten Algorithmus, der auf einer effizienten Datenstruktur (dem Heap) beruht [Williams, 1964] Daten liegen in einem Array der Länge n vor 1. Erstelle aus dem gegebenen Array

Mehr

Untere Schranke für allgemeine Sortierverfahren

Untere Schranke für allgemeine Sortierverfahren Untere Schranke für allgemeine Sortierverfahren Prinzipielle Frage: wie schnell kann ein Algorithmus (im worst case) überhaupt sein? Satz: Zum einer Folge von n Keys mit einem allgemeinen Sortierverfahren

Mehr

EINI LW. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12

EINI LW. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12 EINI LW Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 11/12 Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@udo.edu http://ls1-www.cs.uni-dortmund.de

Mehr

Effiziente Algorithmen und Datenstrukturen I Kapitel 2: Priority Queues

Effiziente Algorithmen und Datenstrukturen I Kapitel 2: Priority Queues Effiziente Algorithmen und Datenstrukturen I Kapitel 2: Priority Queues Christian Scheideler WS 2008 28.10.2008 Kapitel 2 1 Priority Queue 5 8 15 12 7 3 28.10.2008 Kapitel 2 2 Priority Queue insert(10)

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr