Einführung. Fehlerarten

Größe: px
Ab Seite anzeigen:

Download "Einführung. Fehlerarten"

Transkript

1 Einführung Jede Messung ist mit einer Messunsicherheit behaftet. Die Unsicherheit bezieht sich dabei nicht auf eine falsche Durchführung der Messung, sondern auf die Tatsache, dass jede von einem Menschen oder einem Apparat durchgeführte Messung nur eine endliche Genauigkeit besitzt und bei einer Wiederholung der Messung die Messwerte streuen. Daher ist es sinnvoll, bei Messungen neben den Messwerten auch eine Fehlerabschätzungen mit anzugeben. Fehlerarten Statistischer Fehler Selbst bei völliger Ausschaltung aller systematischen Fehler siehe unten) erhält man bei mehrmaliger Messung der gleichen physikalischen Größen nie genau übereinstimmende Messergebnisse. Die Messwerte streuen um den wahren Wert. Diese Abweichung bezeichnet man als zufälligen Fehler bzw. als statistischen Fehler, sie gehorchen den Gesetzen der Statistik. Ursachen für zufällige Fehler: Die Messgröße selbst besitzt einen stochastischen Charakter, z.b. der radioaktive Zerfall von Atomkernen. Quanteneffekte Rauschen, Fluktuationen). Zufällige und unvorhersehbare äußere Einflüsse, z.b. wechselnde Luftströmungen, kurzzeitige Temperaturschwankungen. Endliches Auflösungsvermögen der Messanordnung. Die Reibung in einem Messinstrument. Ableseabweichungen Parallaxe). Schätzungen und Interpolationen auf Messskalen. Messungen mit Stoppuhr Reaktionszeit des Beobachters). Zufällige Fehler sind prinzipiell nicht vermeidbar, lassen sich jedoch durch wiederholte Messungen und geeignete Auswertungsmethoden verringern. Systematischer Fehler Als systematischer Fehler werden Messfehler bezeichnet, die sich bei wiederholter Messung nicht im Mittel aufheben. D.h. systematische Fehler beeinflussen das Messergebnis unter identischen Messbedingungen stets in gleichem Maße. Bei Wiederholung einer Messung unter gleichen Bedingungen sind sie nach Betrag und Vorzeichen konstant, können also durch Wiederholung der Messung weder erkannt noch vermieden werden. Mögliche Ursachen für systematische Fehler sind: Verwendung ungeeigneter Messinstrumente. 1 Version: 16. März 2015

2 Falsche elektrische Schaltung. Unvollkommenheit des Messgegenstandes Inhomogenitäten, Mangel an Reinheit). Überschreiten der Gültigkeitsgrenzen physikalischer Gesetze z.b. Elastizitätsgrenze). Äußere Einflüsse Luftauftrieb, Temperatur, äußere Störfelder). Rechnerische Erfassung der Messabweichungen Fehlerabschätzung bei einmaligem Messen Wird eine Messgröße x nur einmal direkt gemessen, kann man aufgrund statistischer Überlegungen keine Aussage über die Größe des Fehlers machen. In diesem Fall ist man auf die Angabe eines geschätzten Größtfehlers angewiesen, der sich im wesentlichen aus der Ablesegenauigkeit auf der benutzten Skala, aus der Genauigkeitsklasse der Messgeräte und aus anderen Erwägungen ergibt. Mittelwert einer Messreihe Führt man mit einer bestimmten Messanordnung und unter konstant gehaltenen Messbedingungen sehr viele Messungen im Idealfall unendlich viele) der gleichen Größe x durch, dann liegen die Messwerte in einem bestimmten Bereich und der am häufigsten vorkommende Messwert liegt etwa in der Mitte dieses Bereiches sofern nur zufällige Fehler auftreten). Dabei sind große Abweichungen von der Mitte des Bereiches selten, kleine Abweichungen sind häufiger. Trägt man die Häufigkeit h x), mit der ein Messwert auftritt, über den Messwerten auf, so ergibt sich im Grenzfall für n ) eine Verteilung, die man Gaußsche Normalverteilung nennt siehe Abbildung 1). Abbildung 1: Gaußverteilung Diese Normalverteilung nimmt für x = µ ihren maximalen Wert an, d.h. µ stellt den wahrscheinlichsten Wert der Messreihe dar und wird Erwartungswert genannt. 2 Version: 16. März 2015

3 Die Wendepunkte der Verteilungsfunktion h x) liegen bei den Werten x = µ±σ. Charakteristisch für diese Kurve ist die Breite 2σ zwischen den beiden Wendepunkten der Kurve. Man nennt σ die Standardabweichung. Die Größe 2σ wird als Varianz bezeichnet. Die Standardabweichung σ ist ein Maß für die Breite der Verteilung, also für die durchschnittliche zufällige Abweichung der einzelnen Messwerte vom wahrscheinlichsten Wert der unendlichen) Messreihe. Für die Gaußsche Normalverteilung ergibt sich, dass 68,3% der Messwerte x im Intervall zwischen µ σ und µ + σ liegen, d.h. die Wahrscheinlichkeit, einen Messwert in diesem Intervall anzutreffen beträgt 68,3%. Die Wahrscheinlichkeit den Messwert außerhalb dieser Grenzen zu finden beträgt 31,7%. Wenn man eine Aussage mit einer größeren statistischen Sicherheit machen möchte, so muss man als Messunsicherheit die doppelte 2σ) oder gar die dreifache Standardabweichung 3σ) verwenden. Dann beträgt die statistische Sicherheit 95,5% bzw. 99,7%. Werden n Messungen einer Größe x durchgeführt x 1, x 2,... x n ), dann können die Werte µ und σ nur näherungsweise bestimmt werden. Der Erwartungswert µ wird dabei durch den arithmetischen Mittelwert x angenähert. x = 1 x i 1) n mit: x i einzelner Messwert und n: Anzahl der Messwerte Die Standardabweichung σ wird durch die sogenannte Standardabweichung s des Mittelwertes angenähert: s = 1 n n 1) x i x) 2 2) 3 Version: 16. März 2015

4 Fehlerfortpflanzung In vielen Fällen ist die gesuchte Größe nicht direkt messbar, sondern muss mit Hilfe von zugänglichen Größen indirekt bestimmt werden. Sei G die im Experiment zu bestimmende Größe und x, y, z,.... die unmittelbar mit Messgeräten gemessenen Größen. Die Messungen der Größen x, y, z,... sind durch die Fehlergrenzen der Messeräte alle mit einem Fehler x, y, z,... ) behaftet. Es stellt sich die Frage, wie die Werte der unmittelbar gemessenen Größen x, y, z,... und die Fehler x, y, z,... der Messgeräte den Fehler der Größe G beeinflussen. Für die Fehlerbetrachtung interessiert nun, der größtmögliche Fehler G der gesuchten Größe G, der sogenannte Größtfehler. Dieser erhält man, wenn sich alle möglichen Fehler aufsummieren. Der Größtfehler darf nicht als der größte Fehler bei der aktuellen Messung missverstanden werden. Der Größtfehler ist der größte Fehler der theoretisch auftreten kann. Ob sich bei einer Messung die einzelnen Fehler teilweise aufheben oder sich alle aufsummieren, lässt sich meist nicht voraussagen. Möchte man bei der Fehlerangabe besonders vorsichtig sein, so wird man den letzteren Fall annehmen und den Größtfehler angeben. Der Größtfehler G berechnet sich aus den unmittelbar gemessenen Größen x, y, z,... und den Fehlern x, y, z,... der bei der Messung beteiligten Messgeräte wie folgt: δg G = δx x + δg δy y + δg z ) δz Gleichung 3 entsteht aus Gx+ x, y + y, z + z,... ) durch eine Taylorentwicklung, die nach dem ersten Glied abgebrochen wurde. Die Terme δg δx, δg δy, δg δz,... sind die Beträge der partiellen Ableitungen der gesuchten Größe G nach den gemessenen Größen x, y, z, Version: 16. März 2015

5 Lineare Ausgleichsgerade Die lineare Ausgleichsgerade ist in der Praxis eine wichtige Form der Regressionsanalyse. Sie hat das Ziel, durch eine Schar von in aller Regel experimentell bestimmten Messwertepaaren x i, y i ) eine Ausgleichsgerade zu legen. Dabei wird x als unabhängige und y als diese abhängige physikalische Größe betrachtet. Im folgenden gehen wir davon aus, das zwischen den Größen x und y ein linearer Zusammenhang zu Grunde liegt. Trägt man derartige Messwertpaare x i, y i ) graphisch auf, so erhält man eine Punkteverteilung. Durch die Messpunkte soll eine Gerade gelegt werden. Das geschieht oft durch Augenmaß. Um aber eine Gerade zu erhalten, die den Zusammenhang zwischen den beiden Variablen in optimaler Weise beschreibt, muss man statistische Methoden anwenden. Im folgenden soll nun die Approximationsmethode der kleinsten Quadrate anhand eines Beispiels besprochen werden. Als Beispiel sollen die folgenden Messpunkte x i und y i dienen. Abbildung 2: Beispieldaten für eine lineare Ausgleichsgerade Man kann nun vermuten, dass die Messpunkte, wenn keine Messfehler vorliegen würden, auf einer Geraden liegen. Man sucht demnach eine Approximationsfunktion A x) A x) = a 0 + a 1 x 4) Die Werte A xi ) sollen möglichst nahe an den tatsächlich gemessenen Punkten y i liegen. Die entstehenden Fehler F i F i = y i A xi ) 5) für i = 1,..., n sollen sich gegenseitig ausgleichen, daher wird die Funktion A x) als Ausgleichsgerade bezeichnet, andere Namen sind Trendgerade oder Regressionsgerade wie geht y auf x zurück ). Abbildung 3: lineare Ausgleichsgerade 5 Version: 16. März 2015

6 Es wird nun versucht, die Koeffizienten a 0 und a 1 so zu bestimmen, dass der Fehler F = 2 yi) A xi )) n ) 2 = yi) a 0 a 1 x i 6) als Funktion der Koeffizienten a 0 und a 1 minimal wird sog. Methode der kleinsten Quadrate). Aus den notwendigen Bedingungen δf δa 0 = 2y i a 0 a 1 x i ) 1) = 0 7) δf δa 1 = 2y i a 0 a 1 x i ) x i ) = 0 8) folgt durch Umstellen n ) n a 0 + x i a 1 = y i 9) n ) n ) x i a 0 + x 2 i a 1 = x i y i ) 10) Aus den beiden Gleichungen 9 und 10 lassen sich nun die Koeffizienten a 0 und a 1 eindeutig bestimmen: a 0 = x 2 i y i n x i x i y i ) 2 11) n x 2 i x i a 1 = n x i y i n x i y i ) 2 12) n x 2 i x i Für das obige Beispiel werden nun die Größen n ) xi y i, x i, n y i und n x 2 i bestimmt und dann die Koeffizienten a 0 und a 1 berechnet. x i y i 0,8 1 1,5 2,5 2,2 2,7 10,7 x 2 i x i y i -0,8 0 1,5 5 6,6 10,8 23,1 6 Version: 16. März 2015

7 Wenn die Ausgleichsgerade eine Ursprungsgerade ist dann wir eine Approximationsfunktion mit folgernder Gleichung gesucht: A x) = m x 13) Der Koeffizienten m wird dann analog nach obigen Überlegungen berechnet. Es ergibt sich für m: m = x i y i x 2 i 14) 7 Version: 16. März 2015

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung 1 Einführung in die Fehlerrechnung liederung 1. Motivation. Fehlerarten 1. robe Fehler. Systematische Fehler 3. Zufällige Fehler 3. Rechnerische Erfassung der Messabweichungen 1. Fehlerabschätzung einmaliges

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung Einführung Fehlerrechnung Bei jeder Messung, ob Einzelmessung oder Messreihe, muss eine Aussage über die Güte ( Wie groß ist der Fehler? ) des Messergebnisses gemacht werden. Mögliche Fehlerarten 1. Systematische

Mehr

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Begleitmaterial zur Vorlesung. Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen

Begleitmaterial zur Vorlesung. Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen Institut für Technische Thermodynamik und Kältetechnik Leiter: Prof. Dr.-Ing. K. Schaber Begleitmaterial zur Vorlesung Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen Verfasst von Dr.

Mehr

Fehlerrechnung. Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten.

Fehlerrechnung. Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten. Seite 1 / 6 H.C. iehuus Fehlerrechnung Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten. Systematische Fehler erzeugen systematische Effekte. Falsch kalibrierte

Mehr

Grundlagen der Statistik und Fehlerrechnung

Grundlagen der Statistik und Fehlerrechnung Physikalisches Grundpraktikum Teil 1 WS 2010/2011 Grundlagen der Statistik und Fehlerrechnung Stefan Diehl 28.02.2011 12.30 13.30 HS I 01.03.2011 12.30 13.30 CHEG18 Inhalt Grundbegriffe der Statistik Wahrscheinlichkeitsverteilungen

Mehr

Fehlerabschätzung und Fehlerrechnung

Fehlerabschätzung und Fehlerrechnung Fehlerabschätzung und Fehlerrechnung 4 März 2010 I Fehlerabschätzung I1 Allgemeines Jeder physikalische Messwert ist mit einem Fehler behaftet Man unterscheidet nach systematischen und zufälligen Fehlern

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Einführungsseminar S1 Elemente der Fehlerrechnung Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Literatur Wolfgang Kamke Der Umgang mit experimentellen Daten,

Mehr

Praktikum zur Vorlesung Einführung in die Geophysik

Praktikum zur Vorlesung Einführung in die Geophysik Praktikum zur Vorlesung Einführung in die Geophysik Hinweise zum Praktikum: Messunsicherheit und Fehlerrechnung Stefan Wenk, Prof. Thomas Bohlen TU Bergakademie Freiberg Institut für Geophysik www.geophysik.tufreiberg.de/pages/studenten/praktika/nebenfaechlerpraktikum.htm

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Bauingenieure und Geodäten Übung 5: statistische Auswertung gleichgenauer Messungen Milo Hirsch Hendrik Hellmers Florian Schill Institut für Geodäsie Fachbereich 3 Inhaltsverzeichnis

Mehr

Anleitung zur Fehlerrechnung und Fehlerabschätzung

Anleitung zur Fehlerrechnung und Fehlerabschätzung Anleitung zur Fehlerrechnung und Fehlerabschätzung Dr. Angela Fösel & Dipl. Phys. Tom Michler Revision: 1.08.018 Es ist grundsätzlich nicht möglich, fehlerfrei zu messen. Die Abweichungen der Messwerte

Mehr

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2 Teil 2 Auswertung von Messungen, zufällige oder statistische Abweichungen Auswertung direkter Messungen Häufigkeitsverteilung, Häufigkeitsfunktion Mittelwert, Standardabweichung der Einzelwerte Standardabweichung

Mehr

Einführung in die Theorie der Messfehler

Einführung in die Theorie der Messfehler Einführung in die Theorie der Messfehler Ziel der Vorlesung: Die Studentinnen/Studenten sollen die Grundlagen der Theorie der Messfehler sowie den Unterschied zwischen Ausgleichsrechnung und statistischer

Mehr

Physik Fehlerrechnung

Physik Fehlerrechnung Physik Fehlerrechnung 1. Abschätzung des wahren Messwertes 1.1. Systematische/zufällige Fehler 1.. Mittelwert, Varianz 3 1.3. Gaußverteilung 5 1.4. Vertrauensbereich 6 1.5. Vergleich von Messwerten 8 1.6.

Mehr

Auswertung von Messungen Teil I

Auswertung von Messungen Teil I Auswertung von Messungen Teil I 1. Ergebnisdarstellung. Rechnen mit Messwerten - Signifikante Stellen 3. Linearisierung 4. Ausgleichsgerade - lineare Regression 5. Messabweichungen 6. Häufigkeitsverteilung

Mehr

Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung

Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung 1 Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung Zum Messergebnis gehören immer eine Fehlerangabe und nur signikante Stellen 1 Beim Messen arbeiten wir mit Näherungswerten! Selbst

Mehr

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung) Messtechnische Grundlagen und Fehlerbetrachtung (inkl. Fehlerrechnung) Länge Masse Zeit Elektrische Stromstärke Thermodynamische Temperatur Lichtstärke Stoffmenge Basisgrößen des SI-Systems Meter (m) Kilogramm

Mehr

Fehlerbetrachtung. 1. Fehlerarten

Fehlerbetrachtung. 1. Fehlerarten Eine physikalische Messung liefert nie den wahren Wert x w einer Messgröße X. Der als Ergebnis der Messung gewonnene Messwert besitzt stets Messabweichungen. Die Ermittlung der Messunsicherheiten für die

Mehr

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung Einführung in die Fehlerrechnung Jede quantitative physikalische Messung ist mit Fehlern behaftet. Die Angabe der Fehler gehört zu einer ordentlichen Auswertung ebenso dazu, wie die Angabe des eigentlichen

Mehr

Einführung in die Grundlagen der Fehlerrechnung Bestimmung von Messunsicherheiten

Einführung in die Grundlagen der Fehlerrechnung Bestimmung von Messunsicherheiten Physikalisches Praktikum PAP1 Einführung in die Grundlagen der Fehlerrechnung Bestimmung von Messunsicherheiten Jens Wagner, Physikalisches Institut Gliederung Angabe von Messergebnissen Ursache und Arten

Mehr

2. Grundbegriffe. Literatur. Skript D. Huhnke S emg GEM. emg GEM

2. Grundbegriffe. Literatur. Skript D. Huhnke S emg GEM. emg GEM . Grundbegriffe Literatur Skript D. Huhnke S. 10-1 Messung Messwert: Wert, der zur Messgröße gehört und der Ausgabe eines Messgerätes eindeutig zugeordnet ist. Messvoraussetzungen Die Messung soll sein

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten Ch. Wendel Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M Die Kunst des Messens ame: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Enrico Mank Praktikumsbericht: Galton-Brett Inhaltsverzeichnis Inhaltsverzeichnis I. Theoretische Grundlagen 2 1. Zentraler Grenzwertsatz 2 2. Binomialverteilung

Mehr

Messen, Messabweichungen, Messungenauigkeiten, Messfehler

Messen, Messabweichungen, Messungenauigkeiten, Messfehler Messen, Messabweichungen, Messungenauigkeiten, Messfehler . Fehlerrechnung . Wie exakt (glaubwürdig) ist meine Messung? 1. Ablesen von Messwerten Jede Messung hat eine Ungenauigkeit Winkelmessungen Längenmessungen

Mehr

Vorlesung: Angewandte Sensorik

Vorlesung: Angewandte Sensorik zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 1. Allgemeine Informationen..................... 3 2. Sensorgrundlagen..........................

Mehr

Behandlung von Messabweichungen

Behandlung von Messabweichungen 1 Behandlung von Messabweichungen Hier wird eine kurze Darstellung zum Verständnis der Problematik von Messgenauigkeit und Messunsicherheit aus der Sicht des Physikalischen Praktikums gegeben, siehe auch

Mehr

Institut für Physik Physikalisches Grundpraktikum

Institut für Physik Physikalisches Grundpraktikum Institut für Physik Physikalisches Grundpraktikum Einführung in die Messung, Auswertung und Darstellung experimenteller Ergebnisse in der Physik (Teil 2) Einige Anmerkungen zur statistischen Behandlung

Mehr

Methoden der Werkstoffprüfung Kapitel I Grundlagen. WS 2009/2010 Kapitel 1.0

Methoden der Werkstoffprüfung Kapitel I Grundlagen. WS 2009/2010 Kapitel 1.0 Methoden der Werkstoffprüfung Kapitel I Grundlagen WS 2009/2010 Kapitel 1.0 Grundlagen Probenmittelwerte ohne MU Akzeptanzbereich Probe 1 und 2 liegen im Akzeptanzbereich Sie sind damit akzeptiert! Probe

Mehr

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011 Fehlerfortpflanzung M. Schlup 7. Mai 0 Wird eine nicht direkt messbare physikalische Grösse durch das Messen anderer Grössen ermittelt, so stellt sich die Frage, wie die Unsicherheitsschranke dieser nicht-messbaren

Mehr

Abbildung 1: Eine Sammlung verschiedener Münzen, die im weiteren Verlauf als Beispiel dienen wird.

Abbildung 1: Eine Sammlung verschiedener Münzen, die im weiteren Verlauf als Beispiel dienen wird. Allgemeine Chemie Computer Praktikum Herbstsemester Statistik Tutorial I Statistik und Datenauswertung - Grundbegriffe Original von Prof. Hanspeter Huber, Juni 2000, überarbeitet von Pascal Eberle, Juli

Mehr

Messunsicherheit 1 beim Messen physikalischer Größen sinnvolle Ziffern

Messunsicherheit 1 beim Messen physikalischer Größen sinnvolle Ziffern Messunsicherheit 1 beim Messen physikalischer Größen sinnvolle Ziffern Physikalische Größen, Aussagen oder Gesetzmäßigkeiten werden im Experiment erfahren bzw. erarbeitet. Dazu müssen physikalische Größen

Mehr

Versuch 11 Einführungsversuch

Versuch 11 Einführungsversuch Versuch 11 Einführungsversuch I Vorbemerkung Ziel der Einführungsveranstaltung ist es Sie mit grundlegenden Techniken des Experimentierens und der Auswertung der Messdaten vertraut zu machen. Diese Grundkenntnisse

Mehr

Einige Worte zu Messungen und Messfehlern. Sehr schöne Behandlung bei Walcher!

Einige Worte zu Messungen und Messfehlern. Sehr schöne Behandlung bei Walcher! Einige Worte zu Messungen und Messfehlern Sehr schöne Behandlung bei Walcher! Was ist eine Messung? Messung = Vergleich einer physikalischen Größe mit Einheit dieser Größe Bsp.: Längenmessung durch Vgl.

Mehr

Praktikumsskript. Teil 0: Einleitung, Fehlerrechnung. Universität Kassel Fachbereich Maschinenbau Fachgebiet Solar- und Anlagentechnik

Praktikumsskript. Teil 0: Einleitung, Fehlerrechnung. Universität Kassel Fachbereich Maschinenbau Fachgebiet Solar- und Anlagentechnik Praktikumsskript Teil 0: Einleitung, Fehlerrechnung Universität Kassel Fachbereich Maschinenbau Fachgebiet Solar- und Anlagentechnik Einleitung Inhaltsverzeichnis Einleitung 3 1 Fehlerrechnung - Auswertung

Mehr

Einführung in die Fehlerrechnung. Einleitung. Die Unvermeidbarkeit von Unsicherheiten. Warum muss man die Grösse der Unsicherheit kennen?

Einführung in die Fehlerrechnung. Einleitung. Die Unvermeidbarkeit von Unsicherheiten. Warum muss man die Grösse der Unsicherheit kennen? Einführung in die Fehlerrechnung Einleitung Die Fehlerrechnung hat den Zweck, Unsicherheiten in Messungen zu untersuchen und zu evaluieren. Die Erfahrung zeigt, dass jede, auch die am sorgfältigsten ausgeführte

Mehr

Messunsicherheiten. Messung physikalischer Größen

Messunsicherheiten. Messung physikalischer Größen Messunsicherheiten Messung physikalischer Größen Angabe physikalischer Größen Physikalische Größen werden quantitativ als Vielfache bestimmter Einheiten erfasst. Eine gemessene Länge wird beispielsweise

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Messabweichung und Messunsicherheit

Messabweichung und Messunsicherheit Messabweichung und Messunsicherheit 2 2.1 Arten von Messabweichungen Das Ziel einer Messung ist die Bestimmung des wahren Wertes einer physikalischen Größe. Jeder Messwert wird durch die Unvollkommenheit

Mehr

von Prof. Dr. P. H. Osanna, Prof. Dr. N. M. Durakbasa, Dr. techn. L. Kräuter Inhalt

von Prof. Dr. P. H. Osanna, Prof. Dr. N. M. Durakbasa, Dr. techn. L. Kräuter Inhalt Geometrische Produktspezifikation und -Verifikation "GPS" und Messunsicherheit nach "GUM" als Basis moderner Metrologie im fortschrittlichen Produktionsbetrieb von Prof. Dr. P. H. Osanna, Prof. Dr. N.

Mehr

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Vorlesung Robotik SS 016 Kalmanfiter () Kalman-Filter: optimaler rekursiver Datenverarbeitungsalgorithmus optimal hängt vom gewählten

Mehr

Kleiner Leitfaden zur Ermittlung der Messunsicherheit

Kleiner Leitfaden zur Ermittlung der Messunsicherheit Kleiner Leitfaden zur Ermittlung der Messunsicherheit Vorbemerkung Egal, wie genau Sie eine Messung machen und welchen Aufwand Sie betreiben, eine Messung ist immer in einem gewissen Maße ungenau, d.h.

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY231) Herbstsemester 2015 Olaf Steinkamp 36-J-22 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Fehler- und Ausgleichsrechnung

Fehler- und Ausgleichsrechnung Fehler- und Ausgleichsrechnung Daniel Gerth Daniel Gerth (JKU) Fehler- und Ausgleichsrechnung 1 / 12 Überblick Fehler- und Ausgleichsrechnung Dieses Kapitel erklärt: Wie man Ausgleichsrechnung betreibt

Mehr

PRAKTIKUM Grundlagen der Messtechnik. VERSUCH GMT 01 Auswertung von Messreihen

PRAKTIKUM Grundlagen der Messtechnik. VERSUCH GMT 01 Auswertung von Messreihen 1 Fachbereich: Fachgebiet: Maschinenbau Mess-, Steuerungs- und Regelungstechnik Prof. Dr.-Ing. habil. Michael Kaufmann PRAKTIKUM Grundlagen der Messtechnik VERSUCH GMT 01 Auswertung von Messreihen Version

Mehr

2.3.2 Messverstärker für Spannungen

2.3.2 Messverstärker für Spannungen Dipl.-ng. G.Lebelt.3..3. Messverstärker für Spannungen Sachworte: Messverstärker, u/u-verstärker, Spannungsfolger, mpedanzwandler, Superposition, Nullpunktfehler, Offsetspannung, Offsetstrom, Eingangsstrom,

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Die Fehlerbetrachtung eine Notwendigkeit in den experimentellen Wissenschaften VORANSICHT

Die Fehlerbetrachtung eine Notwendigkeit in den experimentellen Wissenschaften VORANSICHT 1 von 20 Die Fehlerbetrachtung eine Notwendigkeit in den experimentellen Wissenschaften Axel Donges, Isny im Allgäu Jede Messung einer physikalischen Größe ist mit einer Unsicherheit behaftet. Der wahre

Mehr

Hinweise zum praktischen Experimentieren. RüdigerScholz/April 2014/1

Hinweise zum praktischen Experimentieren. RüdigerScholz/April 2014/1 Hinweise zum praktischen Experimentieren RüdigerScholz/April 014/1 Grundlagen der Messtechnik Messen und Auswerten Gefahrenquellen Messunsicherheiten und Statistik RüdigerScholz/April 014/ Messen und Auswerten

Mehr

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen:

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen: Fehlerrechnung Einführung Jede Messung ist fehlerbehaftet! Ursachen: Ablesefehler (Parallaxe, Reaktionszeit) begrenzte Genauigkeit der Messgeräte falsche Kalibrierung/Eichung der Messgeräte Digitalisierungs-Fehler

Mehr

F-Praktickm. Einführung in die Statistik. Universität Hamburg, Institut für Experimentalphysik. Erika Garutti

F-Praktickm. Einführung in die Statistik. Universität Hamburg, Institut für Experimentalphysik. Erika Garutti F-Praktickm Einführung in die Statistik Erika Garutti (Erika.Garutti@desy.de) Universität Hamburg, Institut für Experimentalphysik disclaimer please do not distribute these slides electronically without

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

Messunsicherheit und Fehlerrechnung

Messunsicherheit und Fehlerrechnung Messunsicherheit und Fehlerrechnung p. 1/25 Messunsicherheit und Fehlerrechnung Kurzeinführung Peter Riegler p.riegler@fh-wolfenbuettel.de Fachhochschule Braunschweig/Wolfenbüttel Messunsicherheit und

Mehr

Kurzanleitung. Auswertung, Fehlerrechnung und Ergebnisdarstellung. Praktikum Physikalisch-Chemische Experimente

Kurzanleitung. Auswertung, Fehlerrechnung und Ergebnisdarstellung. Praktikum Physikalisch-Chemische Experimente Kurzanleitung zur Auswertung, Fehlerrechnung und Ergebnisdarstellung im Praktikum Physikalisch-Chemische Experimente Dr. Markus Braun Institut für Physikalische und Theoretische Chemie Goethe-Universität

Mehr

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1)

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1) Kapitel 4 Stichproben und Schätzungen 4.1 Stichproben, Verteilungen und Schätzwerte Eine physikalische Messung ist eine endliche Stichprobe aus einer Grundgesamtheit, die endlich oder unendlich sein kann.

Mehr

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar 5. Meßfehler Man unterscheidet... zufällige Meßfehler systematische Meßfehler Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

Mehr

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression 1 Einführung Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression Datenauswertung In einem naturwissenschaftlichen Experiment werden Sie meist

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Übungen mit dem Applet Zentraler Grenzwertsatz

Übungen mit dem Applet Zentraler Grenzwertsatz Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

1 Verteilungsfunktionen, Zufallsvariable etc.

1 Verteilungsfunktionen, Zufallsvariable etc. 4. Test M3 ET 27 6.6.27 4. Dezember 27 Regelung für den.ten Übungstest:. Wer bei den Professoren Dirschmid, Blümlinger, Vogl oder Langer die UE aus Mathematik 2 gemacht hat, sollte dort die WTH und Statistik

Mehr

Praktikumsprotokoll: Galton-Brett

Praktikumsprotokoll: Galton-Brett Praktikumsprotokoll: Galton-Brett Robin Marzucca, Andreas Liehl 26. November 2010 Protokoll zum Versuch Galton-Brett, durchgeführt am 25.11.2010 an der Universität Konstanz im Rahmen des physikalischen

Mehr

Versuchsplanung und multivariate Statistik Sommersemester 2018

Versuchsplanung und multivariate Statistik Sommersemester 2018 Versuchsplanung und multivariate Statistik Sommersemester 2018 Vorlesung 11: Lineare und nichtlineare Modellierung I Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 6.6.2018

Mehr

M0 BIO - Reaktionszeit

M0 BIO - Reaktionszeit M0 BIO - Reaktionszeit 1 Ziel des Versuches In diesem Versuch haben Sie die Möglichkeit, sich mit Messunsicherheiten vertraut zu machen. Die Analyse von Messunsicherheiten erfolgt hierbei an zwei Beispielen.

Mehr

Statistik Übungsblatt 5

Statistik Übungsblatt 5 Statistik Übungsblatt 5 1. Gaussverteilung Die Verteilung der Messwerte einer Grösse sei durch eine Gaussverteilung mit Mittelwert µ = 7.2 und σ = 1.2 gegeben. (a) Wie gross ist die Wahrscheinlichkeit

Mehr

Übungen mit dem Applet Wahrscheinlichkeitsnetz

Übungen mit dem Applet Wahrscheinlichkeitsnetz Wahrscheinlichkeitsnetz 1 Übungen mit dem Applet Wahrscheinlichkeitsnetz 1 Statistischer Hintergrund... 1.1 Verteilungen... 1. Darstellung von Daten im Wahrscheinlichkeitsnetz...4 1.3 Kurzbeschreibung

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Wie kann ich überprüfen, welche Verteilung meinen Daten zu Grunde liegt? Chi-Quadrat-Test auf Normalverteilung

Wie kann ich überprüfen, welche Verteilung meinen Daten zu Grunde liegt? Chi-Quadrat-Test auf Normalverteilung Wie kann ich überprüfen, welche Verteilung meinen Daten zu Grunde liegt? Chi-Quadrat-Test auf Normalverteilung T. Kießling: Fortgeschrittene Fehlerrechnung - Korrelation 5.04.018 Vorlesung 03-1 Chi-Quadrat-Test:

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY23) Herbstsemester 207 Olaf Steinkamp 36-J-05 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Physikalisches Praktikum I. Umgang mit Messunsicherheiten (Fehlerrechnung)

Physikalisches Praktikum I. Umgang mit Messunsicherheiten (Fehlerrechnung) Fachbereich Physik Physikalisches Praktikum I Name: Umgang mit Messunsicherheiten (Fehlerrechnung) Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser

Mehr

Experimentalphysik E1!

Experimentalphysik E1! Experimentalphysik E1! Prof. Joachim Rädler! Paul Koza (Vorlesungsbetreuung)! Alle Informationen zur Vorlesung unter :! http://www.physik.lmu.de/lehre/vorlesungen/index.html! Fehlerrechnung! Der freie

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum 4: Messfehler und Vektoren Dr. Daniel Bick 25. Oktober 2013 Daniel Bick Physik für Biologen und Zahnmediziner 25. Oktober 2013 1 / 41 Organisatorisches

Mehr

Laborübungen aus Physikalischer Chemie (Bachelor) Universität Graz

Laborübungen aus Physikalischer Chemie (Bachelor) Universität Graz Arbeitsbericht zum Versuch Temperaturverlauf Durchführung am 9. Nov. 2016, M. Maier und H. Huber (Gruppe 2) In diesem Versuch soll der Temperaturgradient entlang eines organischen Kristalls (Bezeichnung

Mehr

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR Im Allgemeinen wird sich das Verhalten einer ZR über die Zeit ändern, z.b. Trend, saisonales Verhalten, sich verändernde Variabilität. Eine ZR wird als stationär bezeichnet, wenn sich ihr Verhalten über

Mehr

IF0. Modul Fehlerrechnung. Fehleranalyse

IF0. Modul Fehlerrechnung. Fehleranalyse IF0 Modul Fehlerrechnung Fehleranalyse In diesem einführenden Versuch wird mittels eines Pendels die sinnvolle Durchführung und Auswertung eines wissenschaftlichen Experimentes veranschaulicht. Des Weiteren

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Wirtschaftsstatistik-Klausur am

Wirtschaftsstatistik-Klausur am Wirtschaftsstatistik-Klausur am 0.07.017 Aufgabe 1 Ein Handy- und PC-Hersteller verfügt über ein exklusives Filialnetz von 900 Filialen. Der Gewinn (in GE) der Filialen ist in der folgenden Tabelle nach

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse PHY31 Herbstsemester 016 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Auswertung von Messungen Teil II

Auswertung von Messungen Teil II Auswertung von Messungen Teil II 1. Grundgesamtheit und Stichprobe. Modellverteilungen.1 Normalverteilung. Binominalverteilung.3 Poissonverteilung.4 Näherungen von Binominal- und Poissonverteilung 3. Zentraler

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

ZUM UMGANG MIT MESSUNSICHERHEITEN IM PHYSIKUNTERRICHT. 25. Oktober Didaktik der Physik Julia Glomski und Burkhard Priemer

ZUM UMGANG MIT MESSUNSICHERHEITEN IM PHYSIKUNTERRICHT. 25. Oktober Didaktik der Physik Julia Glomski und Burkhard Priemer ZUM UMGANG MIT MESSUNSICHERHEITEN IM PHYSIKUNTERRICHT 25. Oktober 2010 und Burkhard Priemer Was sind Messfehler? Was ist Fehlerrechnung? Warum misst man etwas? Wann ist eine Messung gut gelaufen? 2 4 Dimensionen

Mehr

Stichproben und statistische Fehler

Stichproben und statistische Fehler Kapitel 0 Stichproben und statistische Fehler 0. Verfahren zur Auswahl von Stichproben Stichprobenauswahl als Bestandteil von Teilerhebungen: Aus dem Ergebnis der Untersuchung der Stichprobe soll dann

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Kapitel 2. Fehlerrechnung

Kapitel 2. Fehlerrechnung Fehlerrechnung 1 Messungen => quantitative Aussagen Messungen müssen zu jeder Zeit und an jedem Ort zu den gleichen Ergebnissen führen Messungen sind immer mit Fehler behaftet. => Angabe des Fehlers! Bespiel

Mehr

F2 Volumenmessung Datum:

F2 Volumenmessung Datum: Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum Mechanik und Thermodynamik Datum: 14.11.005 Heiko Schmolke / 509 10 Versuchspartner: Olaf Lange / 507 7

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Anleitung. zur. Anfertigung der Versuchsprotokolle. Praktikum Physikalisch-Chemische Übungen für Pharmazeuten

Anleitung. zur. Anfertigung der Versuchsprotokolle. Praktikum Physikalisch-Chemische Übungen für Pharmazeuten Anleitung zur Anfertigung der Versuchsprotokolle im Praktikum Physikalisch-Chemische Übungen für Pharmazeuten Dr. Hans-Dieter Barth Institut für Physikalische und Theoretische Chemie Goethe-Universität

Mehr