27 Energie und Leistung

Größe: px
Ab Seite anzeigen:

Download "27 Energie und Leistung"

Transkript

1 0 Energie und Leistung Wärmeenergie kann in mechanische Energie und umgekehrt verwandelt werden. Wenn eine Dampflokomotive einen Eisenbahnzug fortbewegt, verrichtet sie mechanische Arbeit, denn: Arbeit ist die Wirkung einer Kraft längs eines Weges. Da sich die verrichtete Arbeit im Verhältnis der wirkenden Kraft bzw. auch im Verhältnis des unter Krafteinfluss zurückgelegten Weges ändert, gilt: Die von einer Dampflokomotive auf den Zug übertragene mechanische Arbeit wird in den beiden Dampfzylindern dadurch erzeugt, dass der Dampfdruck nach dem Gesetz des hydraulischen Druckes an der Kolbenfläche die Kraft F erzeugt. Diese bewegt den Kolben, wodurch die erforderliche mechanische Arbeit erzeugt wird. Der Druck entsteht aber durch das Verdampfen von Wasser, d. h. durch die Zuführung von Wärmeenergie aus dem Feuerraum im Kessel. Es gilt also der erste Hauptsatz der Wärmelehre: Um die zwar gleichwertigen aber unterschiedlichen Energieformen voneinander zu unterscheiden wurde die Einheit, für die Wärmeenergie das Joule mit dem Einheitenbuchstaben J eingeführt. Durch Versuche von Joule und Mayer wurde die bereits erwähnte Äquivalenz, d. h. Gleichwertigkeit von Wärmeenergie und mechanischer Arbeit festgestellt.. Leistung Arbeit Kraft Weg W F L H in Nm Wärmeenergie und mechanische Arbeit sind einander gleichwertig. p p A Die von einer Maschine verrichtete Arbeit ist also durch die Kraft und die Länge des Weges bedingt. Für den wirtschaftlichen Nutzen einer Kälteanlage ist aber maßgebend, in welcher Zeit eine Arbeit verrichtet wird. Im Sprachgebrauch sprechen wir --- F A J Nm Ws Ein Joule ist gleich der Arbeit, die verrichtet wird, wenn der Angriffspunkt der Kraft ein Newton in Richtung der Kraft um einen Meter verschoben wird. Nm Newton mal Meter James Prescott Joule, engl. Physiker Wichtig für den Kälteanlagenbauer! Julius Robert Mayer, Heilbronner Arzt,

2 0 Energie und Leistung P Power Leistung; W nach James Watt, engl. Ing. ; W Work Arbeit Beispiel dann von einer Leistung, wenn eine Arbeit in einer Zeit verrichtet wird. Entsprechend wurde festgesetzt: Die Leistung ist der Quotient aus der Arbeit und der für sie benötigten Zeit. Wenn in einer festgelegten Zeit eine Arbeit verrichtet wird, berechnet sich die Leistung mit der Gleichung: Aus dieser Gleichung erhalten wir für die Einheit W der Leistung den folgenden Zusammenhang zu anderen Einheiten: Durch Umstellen der Gleichung folgt J Ws; deshalb wird auch die Arbeitseinheit J als Ws bezeichnet.. Verdampfungsleistung der Kälteanlage Ist der Kältebedarf bekannt, kann die Verdampfungsleistung aus der Betriebszeit für die Kälteanlage ermittelt werden. Betriebszeiten für Kälteanlagen sind beispielsweise für das Abtauen der Verdampfer, oder für nicht vorhersehbare zusätzliche Wärmeströme, notwendig. Für Kälteanlagen wird eine Betriebszeit für den Normalkühlbereich von h/d und für den Tiefkühlbereich von h/d zugrundegelegt. Es gilt: Darin bedeutet: Q Kältebedarf in W, kw, h/d Zeitkonstante, Betriebszeit der Kälteanlage in h/d, Verdampfungsleistung in W, kw. Q 0 Gegeben: Kältebedarf kw. Betriebszeit der Kälteanlage h/d. Gesucht: Verdampfungsleistung in kw! Arbeit Leistung - P Zeit W J s - N m kg m s W P in Ws s kw Q h Q 0 in d -- - kw h -- d Lösung: kw Q h Q 0 d h , kw. d -- W in W 0

3 0 Spezifische Wärmekapazität von festen und flüssigen Stoffen Die spezifische Wärmekapazität ist diejenige Wärmeenergie, die benötigt wird um kg eines Stoffes um K zu erwärmen. Die Einheit der spezifischen Wärmekapazität ist: c in Die spezifische Wärmekapazität kann mit dem aufgebauten Versuch gemäß der Abbildung. festgestellt werden. In einem Reagenzglas sind 0 g Wasser in dem anderen 0 g Glyzerin. Abb..: Versuch zum Nachweis der spez. Wärmekapazität Beide Reagenzien sind in ein mit Wasser gefülltes Kalorimetergefäß eingetaucht. Das Wasser im Becher wird erwärmt und gut vermischt. Nach jeweils einer halben Minute wird die Temperatur des Wassers und die Temperatur des Glyzerins in den Reagenzgläsern gemessen. Die Werte werden in die Tabelle eingetragen und anschließend in ein Koordinatensystem eingezeichnet. Tabelle.: m W m G 0 g Zeit-Temperatur-Messwertetabelle in min 0 0,,,,, t G in C 0,,,,, t W in C 0 in min,,,,, t G in C,,,,, t W in C Versuch Kaloriemeter ist ein mit Wasser gefülltes doppelwandiges Gefäß

4 Spezifische Wärmekapazität von festen und flüssigen Stoffen in C Und mit der Voraussetzung: Q ergibt sich: Ergebnis: Da die beiden Flüssigkeiten in einem gemeinsamen Wasserbad erwärmt werden, wird ihnen in der gleichen Zeit annähernd die gleiche Wärmeenergie zugeführt. Für gleiche Massen m W m G gilt bei gleicher Temperaturerhöhung nach Gleichung: Abb..: Der Tabelle. entnehmen wir folgende Werte: T 0 K ; W, min ; G min ; Der theoretische Wert beträgt , ,., Koordinatensystem Die Abweichung vom theoretischen Wert beruht auf der sehr unterschiedlichen Wärmeleitfähigkeit der beiden Flüssigkeiten! Der Zahlenwert für die spezifische Wärmekapazität wurde in ähnlichen Versuchen ermittelt. Einige dieser Werte sind auszugsweise in den Tabellen. bis. zusammengestellt. Tabelle.: Metall c W c W Spez. Wärmekapazität von Metallen in min Aluminium 0,0 Eisen und Stahl 0, Gold 0, Kupfer 0, g W G c W Q W Q G c W m W T --- m G T c W 0

5 Spezifische Wärmekapazität von festen und flüssigen Stoffen 0 Tabelle.: Metall Messing 0, Nickel 0, Platin 0, Silber 0, Zink 0, Zinn 0, Tabelle.: Spez. Wärmekapazität fester Stoffe bei + 0 C Feste Stoffe Spez. Wärmekapazität von Metallen (Fortsetzung) Beton 0, Eis, Eis C, Eis 0 C,0 Eis 0 C, Fett, Glas 0, Gummi,0 Hartgummi, Holz, bis, Kalksandstein 0, Mauerwerk 0, bis, Marmor, Kalkstein 0, Papier, Paraffin bei 0 C/± 0 C, Paraffin bei ±0 C/+0 C, Polyurethan, Porzellan 0, Sandstein 0, Steinkohle, Styropor,

6 Spezifische Wärmekapazität von festen und flüssigen Stoffen Tabelle.: Feste Stoffe Tannenholz, Trockeneis (festes CO ), Ziegelsteine 0, bis,0 Zement 0, Tabelle.: Spez. Wärmekapazität von Flüssigkeiten bei +0 C Flüssigkeiten bei + 0 C Äthylalkohol (0 C), Methylalkohol (+ C), Benzol (+ C), Bier, Glycerin (+ C bis + C), Gummimasse, Maschinenöl, Petroleum (+0 C bis + C), Sauerstoff, Seewasser ( % Salzgehalt) Seewasser ( % Salzgehalt) Stickstoff,0 Terpentin (0 C), Wasser (+ C), Tabelle.: Spez. Wärmekapazität von Kältemitteln bei 0 C Flüssige Kältemittel Spez. Wärmekapazität fester Stoffe bei + 0 C (Fortsetzung), ( C), ( C) -- R-00a, R-a, R-, R-0, R-a ( C), R-, 0

7 Spezifische Wärmekapazität von festen und flüssigen Stoffen 0 Von allen festen und flüssigen Stoffen besitzt Wasser die größte spezifische Wärmekapazität! Bei gleicher Temperaturerhöhung und der doppelten Wassermasse ist die doppelte Wärmeenergie erforderlich. Die doppelte Wärmeenergie ist auch erforderlich, wenn bei gleicher Wassermasse die doppelte Temperaturerhöhung gefordert ist. Daraus ergibt sich das Grundgesetz der Wärmelehre kg Q m c T in K Es bedeuten: Q Wärmeenergie in, c spezifische Wärmekapazität in -, T Temperaturdifferenz in K. Mit diesem Gesetz kann also die erforderliche Wärmeenergie für die Erwärmung einer bestimmten Masse eines bestimmten Stoffes berechnet werden. Der erwärmte Körper gibt die zugeführte Wärmeenergie wieder ab, wenn die Umgebungstemperatur niedriger ist als seine Eigentemperatur. Da Wasser, infolge seiner hohen spezifischen Wärmekapazität imstande ist sehr große Wärmeenergien aufzunehmen, gilt es als ausgezeichneter Wärmespeicher. Diese Wärmeenergie wird, sobald die Umgebungstemperatur niedriger ist als die Wassertemperatur, wieder abgegeben. Dies erklärt das ausgewogene Klima in der Nähe großer Wassermassen, beispielsweise Meer, Seen und Flüsse.

Der Kälteanlagenbauer

Der Kälteanlagenbauer Der Kälteanlagenbauer Band : Grundkenntnisse Bearbeitet von Karl Breidenbach., überarbeitete und erweiterte Auflage 00 00. Buch. S. Hardcover ISBN 0 Format (B x L): x cm Weitere Fachgebiete > Technik >

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: W4 Die spezifische Wärmekapazität fester Körper Gliederung: Seite Einleitung 1 Berechnung 1 Versuchsbeschreibung

Mehr

A Sie ist weniger als 1 kg/dm 3. B E F D A G C. Zusammengesetzte Grössen 15

A Sie ist weniger als 1 kg/dm 3. B E F D A G C. Zusammengesetzte Grössen 15 1. Richtig oder falsch? A Stoffe mit einer Dichte unter 1 kg/dm 3 schwimmen in Wasser. Richtig B Die Dichte von kleinen Körpern ist immer kleiner als die Dichte von grossen Körpern. Falsch C Schwere Körper

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #10 30/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Thermisches Gleichgewicht Soll die Temperatur geändert werden, so muss dem System Wärme (kinetische

Mehr

Fachrichtung Klima- und Kälteanlagenbauer

Fachrichtung Klima- und Kälteanlagenbauer Fachrichtung Klima- und Kälteanlagenbauer 1-7 Schüler Datum: 1. Titel der L.E. : 2. Fach / Klasse : Fachrechnen, 3. Ausbildungsjahr 3. Themen der Unterrichtsabschnitte : 1. Zustandsänderung 2. Schmelzen

Mehr

Auswertung. B04: Spezifische Wärme

Auswertung. B04: Spezifische Wärme Auswertung zum Versuch B04: Spezifische Wärme Alexander FufaeV Partner: Jule Heier Gruppe 254 Inhaltsverzeichnis 2. Bestimmung der Wärmekapazität C1 des blauen Dewargefäßes... 3 3. Bestimmung der Schmelzwärme

Mehr

Die Messzeit beträgt zwanzig Minuten, daher müssen die SchülerInnen unabhängig arbeiten, um rechtzeitig fertig zu werden.

Die Messzeit beträgt zwanzig Minuten, daher müssen die SchülerInnen unabhängig arbeiten, um rechtzeitig fertig zu werden. WÄRME Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Spezifische Wärme von Wasser Wärme Gudrun Dirmhirn gudrun_dirmhirn@gmx.at Dieses Experiment und

Mehr

Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m

Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m GRATIS-Übungsdokument Gymnasium Klasse 8 Physik Thema: Mechanik, Wärmelehre, Elektrizitätslehre CATLUX de Energie Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m Energie ist gespeicherte

Mehr

Masse, Volumen und Dichte

Masse, Volumen und Dichte Masse, Volumen und Dichte Ziel: Uns umgeben zahlreiche Gegenstände, die in der Physik als Körper bezeichnet werden. Diese Körper haben eine Reihe von grundlegenden Eigenschaften: Sie nehmen einen Raum

Mehr

Technische Thermodynamik

Technische Thermodynamik Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik

Mehr

Formelsammlung Abfallwirtschaft Seite 1/6 Wärmekapazität Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer

Formelsammlung Abfallwirtschaft Seite 1/6 Wärmekapazität Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer Formelsammlung Abfallwirtschaft Seite 1/6 1 Energiebedarf zur Erwärmung von Stoffen Der Energiebetrag, der benötigt wird, um 1 kg einer bestimmten Substanz um 1 C zu erwärmen, wird als die (auch: Spezifische

Mehr

Lösungen Serie 16: Kalorimetrie

Lösungen Serie 16: Kalorimetrie en Serie 16: Kalorimetrie Aufgabe 16.1 A Sie wollen in einem Kochtopf ( =0.6, =0.4 ( =4.182 k K gegeben: =0.6 =0.4 k K ) einen halben Liter Wasser ) von 10 auf 40 erwärmen. Welche Wärmemenge ist dazu notwendig?

Mehr

Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1.

Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1. Physik Inhaltsverzeichnis 1. Mechanik...1 1.1 Mechanische Grössen...1 1.1.1 Kraft (F) und Masse (m)...1 1.1.2 Die Masse m...1 1.1.3 Die Kraft F...1 1.1.4 Die Geschwindigkeit (v) und die Beschleunigung

Mehr

SI-Handbuch Naturwissenschaftliche Grundlagen

SI-Handbuch Naturwissenschaftliche Grundlagen .1 Physikalische Eigenschaften 3.2 Wasserdichte 6.3 Viskosität 7.4 h, x-diagramm für feuchte Luft 8 Dieses Kapitel wurde erstellt unter Mitwirkung von: 5. Auflage: Otto Fux, Masch. Ing. SIA, dipl. Sanitärplaner,

Mehr

Experimentalphysik VO, Kapitel 4Wärme: Wärme als Energieform (1. Hauptsatz), Mischungsvorgänge,

Experimentalphysik VO, Kapitel 4Wärme: Wärme als Energieform (1. Hauptsatz), Mischungsvorgänge, 3 Wärme 3.1 Lernziel Die Studierenden vertiefen das Verständnis der Begriffe Innere Energie, Wärme, spezifische Wärmekapazität und molare Wärme von Festkörpern und Flüssigkeiten. Sie können den Wasserwert

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Grund- und Angleichungsvorlesung Physik der Wärme.

Grund- und Angleichungsvorlesung Physik der Wärme. 2 Grund- und Angleichungsvorlesung Physik. Physik der Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

oder 10 = 1bar = = 10 Pa Für viele Zwecke wird die Umrechnung 1bar = 10 verwendet.

oder 10 = 1bar = = 10 Pa Für viele Zwecke wird die Umrechnung 1bar = 10 verwendet. R. Brinkmann http://brinkmann-du.de Seite 1 5.11.013 HF14S Arbeitsblatt Wärme als Energieform Die Celsius-Skala ist durch folgende Fixpunkte definiert: 0 0 C: Schmelzpunkt des Eises bei einem Druck von

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Physik 7 Lernbuffet Teilchenmodell und thermisches Verhalten von Körpern Damköhler

Physik 7 Lernbuffet Teilchenmodell und thermisches Verhalten von Körpern Damköhler Physik 7 Lernbuffet Teilchenmodell und thermisches Verhalten von Körpern Damköhler Aufgabe 1 (Aggregatzustände nennen und Aufbau und Bewegung beschreiben) N1: Betrachte aufmerksam die Bilder und benenne

Mehr

16.1 Arten der Wärmeübertragung

16.1 Arten der Wärmeübertragung 16 Wärmeübertragung 16.1 Arten der Wärmeübertragung Bei der Wärmeübertragung, die gemäß dem 2. Hauptsatz der Wärmelehre nur bei Vorliegen einer Temperaturdifferenz stattfindet, sind drei Arten zu unterscheiden:

Mehr

PHYSIKTEST 3A 19. Dezember 2016

PHYSIKTEST 3A 19. Dezember 2016 PHYSIKTEST 3A 19. Dezember 2016 GRUPPE C ARBEITSZEIT: 15 Min. SCHÜLERNAME: PUNKTEANZAHL: /20 NOTE: NOTENSCHLÜSSEL 18-20 Sehr Gut (1) 15-17 Gut (2) 13-14 Befriedigend (3) 10-12 Genügend (4) 0-9 Nicht Genügend

Mehr

2.2 Spezifische und latente Wärmen

2.2 Spezifische und latente Wärmen 1 Einleitung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 2 Wärmelehre 2.2 Spezifische und latente Wärmen Die spezifische Wärme von Wasser gibt an, wieviel Energie man zu 1 kg Wasser zuführen

Mehr

Kraft Arbeit Energie

Kraft Arbeit Energie Kraft Arbeit Energie Definition Kraft mit Beispielen Kraftmessung und Hooke sches Gesetz Gewichtskraft Kräftegleichgewicht Einfache Maschinen und Goldene Regel der Mechanik Definition Physikalische Arbeit

Mehr

Maßeinheiten der Wärmelehre

Maßeinheiten der Wärmelehre Maßeinheiten der Wärmelehre Temperatur (thermodynamisch) Benennung der Einheit: Einheitenzeichen: T für Temp.-punkte, ΔT für Temp.-differenzen Kelvin K 1 K ist der 273,16te Teil der (thermodynamischen)

Mehr

1. Was bedeutet das griechische Wort Energie? Definiere (Erkläre) den Begriff Energie: Energie ist die F

1. Was bedeutet das griechische Wort Energie? Definiere (Erkläre) den Begriff Energie: Energie ist die F Probetest 01 für den 1. PH-Test am Alle Lösungen findest du in deinen PH-Unterlagen! 1. Was bedeutet das griechische Wort Energie? Definiere (Erkläre) den Begriff Energie: Energie ist die F 2. Welches

Mehr

Protokoll zum Versuch: Elektrisches Wärmeäquivalent

Protokoll zum Versuch: Elektrisches Wärmeäquivalent Protokoll zum Versuch: Elektrisches Wärmeäquivalent Nils Brüdigam Fabian Schmid-Michels Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 07.12.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet.

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Übungsaufgaben zur Wärmelehre mit Lösungen 1) Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Berechnen Sie die Wärme, die erforderlich

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Tutorium Physik 1. Wärme.

Tutorium Physik 1. Wärme. Tutorium Physik 1. Wärme. WS 18/19 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen

Mehr

*«KLASSE»* *«NAME»$I«VORNAME»$I* 1 *1* 2 *2* 3 *3* 4 *4* 5 *5* 6 *6* 7 *7* 8 *8* 9 *9* -> *$I* cr *$M* <- *$H* Pkte

*«KLASSE»* *«NAME»$I«VORNAME»$I* 1 *1* 2 *2* 3 *3* 4 *4* 5 *5* 6 *6* 7 *7* 8 *8* 9 *9* -> *$I* cr *$M* <- *$H* Pkte 1. Schulaufgabe Physik am Klasse «klasse»; Name «vorname» «name» 1. In vielen Fällen ist das Auftreten von Reibung erwünscht. 1.1 Nenne drei solche Fälle. 1.2 Was kann man tun, um die Reibung ganz allgemein

Mehr

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand 7.5.016 Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik:

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

B E I S P I E L A R B E I T / Aufgaben. Kultusministerium

B E I S P I E L A R B E I T / Aufgaben. Kultusministerium B E I S P I E L A R B E I T / Aufgaben Kultusministerium Name, Vorname: Klasse: Schule: Seite 1 von 6 B E I S P I E L A R B E I T / Aufgaben Aufgabe 1: Stoffe und ihre Eigenschaften a) Die Naturwissenschaft

Mehr

Tutorium Physik 1. Wärme

Tutorium Physik 1. Wärme 1 Tutorium Physik 1. Wärme WS 15/16 1.Semester BSc. Oec. und BSc. CH 2 Themen 1. Einführung, Umrechnen von Einheiten / Umformen von Formeln 2. Kinematik, Dynamik 3. Arbeit, Energie, Leistung 4. Impuls

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Physiklabor 2 Michel Kaltenrieder 9. Februar

Mehr

Übungsprüfung A zur Physik-Prüfung vom 21. Juni 2012

Übungsprüfung A zur Physik-Prüfung vom 21. Juni 2012 Physik FS 2012 Übungsprüfung A zur Physik-Prüfung vom 21. Juni 2012 1. Glühbirne (2 Punkte) a) Wie viel Energie verbraucht eine 60-Watt-Glühbirne (Glühbirne mit einer Leistung von 60 W), wenn sie vier

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie 10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong

Mehr

Kalorimeter ohne Widerstände Best.- Nr. MD00174

Kalorimeter ohne Widerstände Best.- Nr. MD00174 Kalorimeter ohne Widerstände Best.- Nr. MD00174 VORSTELLUNG 1. Einführung Einfacher Kalorimeter mit zwei konzentrischen Aluminiumzylindern. Der innere Zylinder B ruht auf einem Plastikkragen, der ihn vom

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Wie stelle ich Kärtchen her, auf denen hinten die Lösung aufgedruckt ist?

Wie stelle ich Kärtchen her, auf denen hinten die Lösung aufgedruckt ist? Wie stelle ich Kärtchen her, auf denen hinten die Lösung aufgedruckt ist? 1. Fragen- und Lösungsblätter ausdrucken! 3. Von beiden Blättern den Rand abschneiden! 2. Jeweiliges Lösungsblatt zum richtigen

Mehr

Wärme, unsere wichtigste Energieform.

Wärme, unsere wichtigste Energieform. Kalorik Lehrwerkstätten und Berufsschule Zeughausstrasse 56 für Mechanik und Elektronik Tel. 052 267 55 42 CH-8400 Winterthur Fax 052 267 50 64 Thermo-Gefäss, 1 Liter PA6100 Wärme, unsere wichtigste Energieform.

Mehr

Prüfungsvorbereitung Physik: Wärme

Prüfungsvorbereitung Physik: Wärme Prüfungsvorbereitung Physik: Wärme Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt (Theoriefragen, physikalische Grössen, Fähigkeiten). Das heisst: Gut repetieren! Theoriefragen:

Mehr

Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität

Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität 1. Erläutern Sie die Begriffe innere Energie, Wärme, Wärmeleitung und spezifische Wärme

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h 1. Kraft und ihre Wirkungen KA 22h Energie, Umwelt, Mensch 8h 2. Projekt Physik Klasse 7 3. Elektrische Leitungsvorgänge KA 20h 4. Naturgewalten Blitz und Donner 3h Kraft und ihre Wirkungen Lies LB. S.

Mehr

Übungsklausur Physik (für Zahnmediziner)

Übungsklausur Physik (für Zahnmediziner) Übungsklausur Physik (für Zahnmediziner) 1. Linse, Abbildung Ein Gegenstand soll mit Hilfe einer Sammellinse der Brennweite f abgebildet werden. Die Entfernung zwischen Linse und Gegenstand beträgt 2*f.

Mehr

Die Schmelz- und Verdampfungswärme von Wasser

Die Schmelz- und Verdampfungswärme von Wasser 1/1 01.10.00,19:27Erstellt von Oliver Stamm Die Schmelz- und Verdampfungswärme von Wasser 1. Einleitung 1.1. Die Ausgangslage zum Experiment 1.2. Die Vorgehensweise 2. Theorie 2.1.

Mehr

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent)

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) 1. Ziel des Versuches Umwandlung von mechanischer Reibungsarbeit in Wärme, Umwandlung von elektrischer Arbeit bzw. Energie in Wärme,

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Spezifische Schmelzwärme von wis (Artikelnr.: P )

Spezifische Schmelzwärme von wis (Artikelnr.: P ) Lehrer-/Dozentenblatt Spezifische Schmelzwärme von wis (Artikelnr.: P1044700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Wärmelehre Unterthema: Schmelzen,

Mehr

Spezifische Wärmekapazität fester Körper

Spezifische Wärmekapazität fester Körper Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze

Mehr

Versuch HP 300. Modul II: KWK Wirkungsgradmessung BHKW Teststände. Dipl. Ing. (FH) Peter Pioch

Versuch HP 300. Modul II: KWK Wirkungsgradmessung BHKW Teststände. Dipl. Ing. (FH) Peter Pioch Modul II: KWK Wirkungsgradmessung BHKW Teststände Dipl. Ing. (FH) Peter Pioch 5.3.05 Weiterbildungszentrum für innovative Energietechnologien der Handwerkskammer Ulm (WBZU) ersuch HP 300 Quelle: WBZU Energieumwandlung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kalorik I: Ausdehnung: Gase, Flüssigkeiten, feste Körper

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kalorik I: Ausdehnung: Gase, Flüssigkeiten, feste Körper Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kalorik I: Ausdehnung: Gase, Flüssigkeiten, feste Körper Das komplette Material finden Sie hier: School-Scout.de Kalorik I (Best.

Mehr

ENERGIE BAUPHYSIK TGA

ENERGIE BAUPHYSIK TGA ENERGIE BAUPHYSIK TGA Prof. Dipl.-Ing. Architektin Susanne Runkel ENERGIE, BAUPHYSIK UND TGA PROGRAMM WS 2016/17 1. 05.10.2016 Einführung, Entwicklung und Hintergrund Bauphysik 2. 12.10.2016 Wärmetransport

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Tutorium der Grund- und Angleichungsvorlesung Physik. Wärme.

Tutorium der Grund- und Angleichungsvorlesung Physik. Wärme. 1 Tutorium der Grund- und Angleichungsvorlesung Physik. Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Tutorium Physik 1. Wärme.

Tutorium Physik 1. Wärme. 1 Tutorium Physik 1. Wärme. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen

Mehr

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz.

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. W1 Spezifische Wärmekapazität von festen Stoffen Stoffgebiet: Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. Versuchsziel: Bestimmung der spezifischen

Mehr

B E I S P I E L A R B E I T / Aufgaben. Kultusministerium. Name, Vorname: Klasse: Schule: Seite 1 von 6

B E I S P I E L A R B E I T / Aufgaben. Kultusministerium. Name, Vorname: Klasse: Schule: Seite 1 von 6 B E I S P I E L A R B E I T / Aufgaben Kultusministerium Name, Vorname: Klasse: Schule: Seite 1 von 6 B E I S P I E L A R B E I T / Aufgaben Aufgabe 1: Stoffe und ihre Eigenschaften a) Die Naturwissenschaft

Mehr

Anorganische Chemie! der unbelebten Natur keine Kohlenstoffverbindung (Kohlenstoffatome C) Metall Nichtmetallverbindungen Ionenbindung

Anorganische Chemie! der unbelebten Natur keine Kohlenstoffverbindung (Kohlenstoffatome C) Metall Nichtmetallverbindungen Ionenbindung 3 Chemie / Physik 3.1 Eigenheiten der Chemie und Physik Chemie ist die Lehre von den Stoffen, ihrer Zusammensetzung, dem Aufbau, der Struktur und ihrer Umwandlung Die Chemie untersucht und beschreibt die

Mehr

Whitekalorimeter. Wärmekapazitätsbestimmung verschiedener Materialien. Dominik Büchler 5HL. Betreuer: Mag. Dr. Per Federspiel

Whitekalorimeter. Wärmekapazitätsbestimmung verschiedener Materialien. Dominik Büchler 5HL. Betreuer: Mag. Dr. Per Federspiel Dominik Büchler Physikalisch chemisches Laboratorium Betreuer: Mag. Dr. Per Federspiel 5HL Whitekalorimeter sbestimmung verschiedener Materialien Note: Datum: Unterschrift: Whitekalorimetrie Seite 1 von

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Temperatur Der nullte Hauptsatz der Thermodynamik: Thermoskop und Thermometer Kelvin, Celsius- und der Fahrenheit-Skala Wärmeausdehnung

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 3. Übung (KW 19/20) Temperaturen ) Dampfmaschine )

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 3. Übung (KW 19/20) Temperaturen ) Dampfmaschine ) 3. Übung (KW 19/20) Aufgabe 1 (T 4.1 Temperaturen ) Zwischen den beiden Wärmespeichern einer Carnot-Maschine (Wirkungsgrad η) besteht eine Temperaturdifferenz T. Welche Temperaturen und T t haben die beiden

Mehr

Mischen von Flüssigkeiten mit verschiedener Temperatur

Mischen von Flüssigkeiten mit verschiedener Temperatur V13 Thema: Wärme 1. Einleitung Ob bei der Regelung der Körpertemperatur, dem Heizen des Zimmers oder zahlreichen technischen Prozessen: Der Austausch von Wärme spielt eine wichtige Rolle. In diesem Versuch

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Lösungen zu den Zusatzübungen zur hysik für Ingenieure (Maschinenbau) (WS 13/14) rof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Zusatzübung (Lösung) alle Angaben ohne Gewähr Zusatzaufgabe

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: Temperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers sind der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

Anlage zum Zertifikat Nr. f-14-10222 BRELO Rohstoff-Recycling GmbH & Co. KG, Am Maifeld 3, 59457 Werl

Anlage zum Zertifikat Nr. f-14-10222 BRELO Rohstoff-Recycling GmbH & Co. KG, Am Maifeld 3, 59457 Werl Sammeln, Befördern Containerdienst Alle Abfallarten gemäß der Anlage zur Verordnung über das Europäische Abfallverzeichnis (AVV) mit Ausnahme von infektiösen Abfällen (Gruppe 18 01 und 18 02), explosiven

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Zusammengesetzte Grössen 15

Zusammengesetzte Grössen 15 B315-01 1 2 mathbuch 2 LU 15 Arbeitsheft weitere Aufgaben «Grundanforderungen» (Lösungen) Dichte 1 Wie schwer sind die Stoffe? Stoff Gewicht (Masse) [g] Volumen [cm 3 ] Dichte [g/cm 3 ] Wasser 250 250

Mehr

II. Der nullte Hauptsatz

II. Der nullte Hauptsatz II. Der nullte Hauptsatz Hauptsätze... - sind thermodyn. Gesetzmäßigkeiten, die als Axiome (Erfahrungssätze) formuliert wurden - sind mathematisch nicht beweisbar, basieren auf Beobachtungen und Erfahrungen

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

N & T (R) 2 Temperatur und Wirkung 01 Name: Vorname: Datum:

N & T (R) 2 Temperatur und Wirkung 01 Name: Vorname: Datum: N & T (R) 2 Temperatur und Wirkung 01 Name: Vorname: Datum: Schon im letzten Thema haben wir festgestellt, dass nicht alle Stoffe die Wärme gleich gut leiten. So leitet ein Stab aus Metall die Wärme gut,

Mehr

Heissluftmotor ******

Heissluftmotor ****** luftmotor 8.3.302 luftmotor ****** 1 Motivation Ein luft- bzw. Stirlingmotor erzeugt mechanische Arbeit. Dies funktioniert sowohl mit einer Beheizung als auch mit einem Kältebad. Durch Umkehrung der Laufrichtung

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Thermodynamik der Atmosphäre II

Thermodynamik der Atmosphäre II Einführung in die Meteorologie Teil I Thermodynamik der Atmosphäre II Der erste Hauptsatz der Thermodynamik Die Gesamtenergie in einem geschlossenen System bleibt erhalten. geschlossen steht hier für thermisch

Mehr

Höhenenergie: Bewegungsenergie: Spannenergie: = ½ m v 2

Höhenenergie: Bewegungsenergie: Spannenergie: = ½ m v 2 Seite 1 von 5 Energieformen in der Mechanik Höhenenergie: Bewegungenergie: Spannenergie: E h maximal, E h maximal, Δh = m g E H = m g Δh N Ortfaktor: g = 9,81 bzw. kg m Fallbechleunigung: g = 9,81 2 maximal,

Mehr

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG)

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG) Datei Debye.docx Titel Debye-Temperatur Debye-Temperatur Bei tiefen Temperaturen (T

Mehr

Energie und Energieumwandlung

Energie und Energieumwandlung Schulversuchspraktikum Maximilian Wolf Sommersemester Klassenstufen 7 & 8 Energie und Energieumwandlung Kurzprotokoll Auf einen Blick: In Versuch 1 werden Lycopodium-Sporen (Bärlapp) in der Gasbrennerflamme

Mehr

E2: Wärmelehre und Elektromagnetismus 6. Vorlesung

E2: Wärmelehre und Elektromagnetismus 6. Vorlesung E2: Wärmelehre und Elektromagnetismus 6. Vorlesung 26.04.2018 Heute: - Kondensationskerne - Van der Waals-Gas - 2. Hauptsatz https://xkcd.com/1166/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 26.04.2018 Prof.

Mehr

Sauce im Simmertopf. Kontextorientierte Aufgabe. Th. Wilhelm

Sauce im Simmertopf. Kontextorientierte Aufgabe. Th. Wilhelm Sauce im Simmertopf Kontextorientierte Aufgabe Th. Wilhelm Ein Problem in der Wärmelehre ist, dass Lernende die Begriffe Temperatur und Wärme gleichsetzen (auf die Unterscheidung zwischen der Zustandsgröße

Mehr

Elektrische Antriebe in der Kältetechnik

Elektrische Antriebe in der Kältetechnik Kapitel 8 Elektrische Antriebe in der Kältetechnik In diesem Kapitel sollen die elektromotorischen Antriebe, die im Kälteanlagenbau eine wichtige Stellung einnehmen, näher betrachtet werden. Einen wesentlichen

Mehr

audis Zertifizierungsgesellschaft mbh bescheinigt dem Unternehmen dass es für die abfallwirtschaftlichen Tätigkeiten

audis Zertifizierungsgesellschaft mbh bescheinigt dem Unternehmen dass es für die abfallwirtschaftlichen Tätigkeiten Zertifikat audis Zertifizierungsgesellschaft mbh bescheinigt dem Unternehmen Heimerdinger & Schwarz GmbH dass es für die abfallwirtschaftlichen Tätigkeiten Sammeln, Befördern, Lagern, Behandeln, Handeln

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

Bestimmung der spezifischen Wärmekapazität fester Körper

Bestimmung der spezifischen Wärmekapazität fester Körper - B02.1 - Versuch B2: Bestimmung der spezifischen Wärmekapazität fester Körper 1. Literatur: Demtröder, Experimentalphysik, Bd. I Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Walcher, Praktikum der Physik

Mehr

2. Schulaufgabe im Fach Physik am xx. x.xxxx

2. Schulaufgabe im Fach Physik am xx. x.xxxx 2. Schulaufgabe im Fach Physik am xx. x.xxxx Name: Klasse 8x III www.klemm.biz 1. Aufgabe a) Was versteht man in der Physik unter einem Kraftwandler? b) Beschreibe einen Kraftwandler. Welche Komponenten

Mehr

Übungsaufgaben Energie und Energieerhaltung

Übungsaufgaben Energie und Energieerhaltung Übungsaufgaben Energie und Energieerhaltung 1. Ein Körper wird mit der Kraft 230 N eine Strecke von 120 Metern geschoben. a) Berechne die dafür notwendige Arbeit. Es handelt sich um eine waagerechte Strecke

Mehr

Physikalisches Schulversuchspraktikum Katharina Wieser WS 00/01. Wärmelehre. Schülerversuche und Arbeitsblätter für ein physikalisches Labor

Physikalisches Schulversuchspraktikum Katharina Wieser WS 00/01. Wärmelehre. Schülerversuche und Arbeitsblätter für ein physikalisches Labor Physikalisches Schulversuchspraktikum Katharina Wieser - 9855124 WS 00/01 Wärmelehre Schülerversuche und Arbeitsblätter für ein physikalisches Labor Lehrplan: vor allem 3. und 6. Klasse (7. und 10. Schulstufe)

Mehr

1. Welche Länge hat ein Kupferstab bei 0 C, wenn er bei 18 C eine Länge von 200 mm hat? -6-1

1. Welche Länge hat ein Kupferstab bei 0 C, wenn er bei 18 C eine Länge von 200 mm hat? -6-1 Thermische Ausdehnung 1. Welche Länge hat ein Kupferstab bei 0 C, wenn er bei 18 C eine Länge von 00 mm hat? ( a = 14 10 K ). Um wie viel vergrössert sich die Fläche einer rechteckigen Tafel aus Kupferblech

Mehr