Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 1

Größe: px
Ab Seite anzeigen:

Download "Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 1"

Transkript

1 Department Mathematik der Universität Hamburg WiSe / Prof. Dr. H. J. Oberle Dr. H. P. Kiani Aufgabe : Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt a) Zeigen Sie mit Hilfe von Wahrheitstafeln die Gültigkeit folgender Äquivalenzen: (je 3 Punkte) (i) (ii) (A B) (B C) A B C A B C D = A B B C F = (B C) D F A B C A (B C) (A B) (A C) A B C D = B C E = A B F = A C E F A (B C)

2 Analysis I, H. J. Oberle/H. P. Kiani, WiSe /, Blatt b) (4 Punkte) Das folgende Schaltbild mehrpoliger Schalter p, q, r und s kann durch die logischen Verknüpfungen ( p q r s) ( p r) (p q r s) (q r s) s q r s p p r p q r s q r s s s = nicht s dargestellt werden. Hierbei entspricht eine Parallelschaltung von Schaltern (z. B. von q und r) einer Oder Verknüpfung von Aussagen (z. B. q r). Eine Serienschaltung entspricht einer Und Verknüpfung und p entspricht der Negation von p. Vereinfachen Sie den oben angegebenen logischen Ausdruck und zeichnen Sie das dazugehörige einfachere Schaltbild. ( p [q r s]) (p [q r s]) ( p r) (q r s) s = ([ p p] [q r s]) (q r s) ( p r) s = ([q r] [s s]) ( p r) s = ([ p q] r) s

3 Analysis I, H. J. Oberle/H. P. Kiani, WiSe /, Blatt 3 Aufgabe : a) Sei I R ein Intervall und x I. Verneinen Sie die Aussage A(x ) : ( ǫ > :]x ǫ, x +ǫ[ I). Für welche reellen Intervalle I gilt: x I : A(x)? b) Beweisen Sie folgende Aussagen oder widerlegen Sie die Aussagen mit Hilfe von Gegenbeispielen. (i) Für alle n N gilt: Die Zahl m := 3n(n +) ist durch 9 teilbar. (ii) Voraussetzung: Für i =,, seien die Zahlen a i Z ungerade. Das heißt k i Z : a i = k i für i =,,. Behauptung: Dann hat das Polynom p(x) := a x + a x + a keine rationale Nullstelle. Hinweis: die Summe zweier ungerader Zahlen ist eine gerade Zahl. n (iii) Für alle n N gilt k = 5n 7n+4. k= Lösungshinweise zur Aufgabe : a) (3 Punkte) A(x ) : ( ǫ > :]x ǫ, x +ǫ[ I). Ist das Intervall beschränkt mit den Randpunkten a und b, so kann man für alle x I mit δ := min{ x a, x b } > z.b. ǫ = δ/ wählen. Für die Randpunkte gibt es kein ǫ mit der geforderten Eigenschaft. Für offene Intervalle (a,b) gilt also x I : A(x). Analoge Aussagen gelten für unbeschränkte Intervalle. b) (i) ( Punkte) Für jede natürliche Zahl n gilt mit einem geeignetem k N : n = 3k n = 3k n = 3k +. n = 3k = m := 3n(n +) = 9k(9k +) ist durch 9 teilbar. n = 3k± = m := 3(3k±)(9k ±6k+3) = 9(3k±)(3k ±k+) ist durch 9 teilbar. (ii) (3 Punkte) Voraussetzung: Für i =,, seien die Zahlen a i Z ungerade. Behauptung: Dann hat das Polynom p(x) := a x + a x + a keine rationale Nullstelle. Beweis: Wegen a ist Null keine Nullstelle des Polynoms. Annahme: x = m m,n Z\{} teilerfremd, mit n a ( m n ) + a ( m n ) + a = n a m + a mn + a n =

4 Analysis I, H. J. Oberle/H. P. Kiani, WiSe /, Blatt 4 Da die Summe dreier ungerader Zahlen nicht verschwindet, ist mindestens ein Summand gerade. = mindestens eine der Zahlen m oder n ist gerade. = Dann ist aber der gemischte Term a mn und mindestens ein quadratischer Term (o.e.d.a.) z.b. a n gerade. Die Summe zweier gerader Zahlen und einer ungeraden Zahl kann nicht verschwinden, also muss auch a m gerade sein. Damit folgt, dass m gerade ist. Dann sind aber m und n im Widerspruch zur Annahme nicht teilerfremd. Die Annahme war also falsch. (iii) ( Punkte) Für alle n N gilt n k= k = 5n 7n+4. Die Aussage ist falsch! Sie stimmt für n =,, 3 aber bereits mit n = 4 erhält man ein Gegenbeispiel: 4 k= k = = 3 = = 56. Aufgabe 3: a) (5 Punkte) Seien f, g, h : R R gegebene Funktionen. Verändern folgende Umformungen die Lösungsmenge der Gleichung f(x) g(x)? Wenn ja, wie? f(x)+h(x) g(x)+h(x) f(x) h(x) g(x) h(x) f(x) g(x) (f(x)) (g(x)) f(x) g(x) b) Eine reellwertige Funktion heißt gerade, wenn auf ihrem zum Ursprung symmetrischem Definitionsbereich ([ a;a] bzw ( a,a)) f( x) = f(x) gilt.sieheißt ungerade,wenn auf ihrem Definitionsbereich f( x) = f(x) gilt. Welche der folgenden Funktionen sind gerade und welche sind ungerade? f :R R g :R R f(x) = cos(x) +x g(x) = x sin(x) h :R R h(x) = sin(x π 4 ) k :[ ;] R k(x) = x g(x) f(x) l :R R l(x) = g(x)(f(x)) 3 +x 3 Skizzieren Sie den Graphen von g für x [ π, π ].

5 Analysis I, H. J. Oberle/H. P. Kiani, WiSe /, Blatt 5 Lösungsskizze zur Aufgabe 3: (Je Punkte) a) f(x)+h(x) g(x)+h(x) f(x) g(x) h(x) > f(x) h(x) g(x) h(x) f(x) g(x) h(x) = f(x) h(x) g(x) h(x) : unabhängig von f,g erfüllt. h(x) < f(x) h(x) g(x) h(x) f(x) g(x) f(x) g(x) (f(x)) (g(x)) f(x) g(x) falls f(x),g(x). Nehmen f und/oder g negative Werte an, so wird die Lösungsmenge verändert. Beispiel: f(x ) = 6 = g(x ), f(x ) = 6 = g(x ), usw. f(x) : Die Umformung lässt keine Lösungen mit f(x) g(x) = zu. Für g(x) negative g(x) muss das Zeichen in umgewandelt werden. Beispiel: f(x) = (x ) x = g(x) hat die Lösungsmenge L = [,]. x x = (x+)(x ) hat die Lösungsmenge L = (,]. x b) f ist gerade, denn Summe, Differenz, Produkt und Quotient gerader Fkt n sind gerade. Nachweis: z.b. f( x) g( x) = f(x) g(x). g ist ungerade, denn Summe und Differenz ungerader Fkt n sind ungerade. Produkt und Quotient zweier ungerader Fkt n sind gerade!! x sin(x).8.6 x sin(x) h ist weder gerade noch ungerade, denn z.b. ( h π ) ( = sin π ) = 4

6 Analysis I, H. J. Oberle/H. P. Kiani, WiSe /, Blatt 6 ( π und h 4) = sin() =. k ist gerade, denn der Zähler ist als Produkt ungerader Fkt n gerade und der Nenner ist gerade. Konkret: k( x) = x ( x sin( x)) cos( x) +( x) = x ( x+sin(x)) = cos(x) +x x (x sin(x)) cos(x) +x = k(x) l ist ungerade, denn ungerade x gerade + ungerade = ungerade. Aufgabe 4: Für welche x R sind die folgenden reellen Ausdrücke definiert? Welche Werte nimmt y an? y = y = (6+x x ) log(x 3 +x +x+) y = cos ( ) 5 x x y = arccos 3 Zusatzaufgabe: Skizzieren Sie für die zugehörigen Funktionen f : D R, y = f(x), mit geeignetem Definitionsbereich D die Funktionsgraphen. Benutzen Sie dazu z.b. Matlab. x=[-4:.:4]; % erzeugt x-vektor (-4, -3.98, -3.96,..., 3.96, 3,98, 4) y=sqrt((sin(x)).^+); % erzeugt zugehörigen y-vektor. Für jeden x-wert % wird sin(x) hoch genommen (.^, s. Anleitung) % sqrt: zweite Wurzel (square root) plot(x,y) erzeugt:

7 Analysis I, H. J. Oberle/H. P. Kiani, WiSe /, Blatt 7 Lösungsskizze zur Aufgabe 4:( Hinweis für die Korrektur : Die Bildbereiche können mit Hilfe einer Skizze oder durch Wertetabellen etc. bestimmt werden. Eine saubere Bestimmung von Extrema bzw. Grenzwerten können wir an dieser Stelle noch nicht erwarten!!) (3 Punkte) Die erste Funktion ist in den Nenner Nullstellen- und 3 nicht definiert. Der Ausdruck unter der Wurzel muss positiv sein. Parabeln sind aus der Schule bekannt. Durch Einsetzen verschiedener Werte (z.b. -3,,4) sieht man, dass 6+x x > x ( ;3) gilt. AnderStelle x = / nimmtdernennerseinenmaximalenwertan(quadr.ergänzung!). Der minimale Wert von y wird folglich für x = / angenommen. Nach oben gibt es keine Schranke. Es ist B = [/5; ). (4 Punkte) Zunächst stellen wir fest, dass die ln Funktion nur für positive reelle Zahlen definiert ist. x 3 +x +x+ = (x+)(x +) ist genau dann positiv, wenn x > gilt. Das Argument der ln Funktion durchläuft dann alle positiven reellen Zahlen. Der Nenner nimmt damit alle reellen Werte an. Der Bruch ist aber nicht definiert, wenn der Nenner verschwindet. Wir müssen daher die x Werte mit ( x 3 +x +x = x(x +x+) = x (x+ ) + 3 ) = 4 ausschließen. Es ist also D = ( ; ) \ {}. Der Nenner nimmt alle reellen Werte außer Null an. B = R\{}. (4 Punkte) Die innere Wurzel ist definiert für x. Der Cosinus ist für alle reellen Zahlen definiert. Er nimmt nichtnegative Werte für [ x kπ π ; kπ + π ] k Z an. Damit ist D = [(kπ π ) ; (kπ + π ] ) k= [, π ], k N, B = [,]. 4 ( Punkte) Wegen der Wurzel muss x [ 5;5] gelten. Da die Cosinusfunktion nur Werte zwischen - und annimmt, kann die arccos-funktion nur auf [ ;] definiert werden. Wir fordern also 5 x 5 x 9 6 x 5 3 Damit erhalten wir D = [ 5; 4] [4;5] und B = [;π/].

8 Analysis I, H. J. Oberle/H. P. Kiani, WiSe /, Blatt y=/sqrt(6+x x ) y=/log(+x+x +x 3 ) y=sqrt(cos(sqrt(x))) y=arccos(sqrt(5 x )/3) (4 Zusatzpunkte)

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 08/9 c Dr. K. Rothe Analysis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Mengen Darstellung durch: a) Aufzählung

Mehr

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu.

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion Eine Funktion f : D R, x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion 1-1 Der Graph von f besteht aus den Paaren (x, y) mit

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81 Kapitel 5 Reelle Funktionen Josef Leydold Auffrischungskurs Mathematik WS 207/8 5 Reelle Funktionen / 8 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

L.1 Aussagen, Mengen und Funktionen

L.1 Aussagen, Mengen und Funktionen L. Aussagen, Mengen und Funktionen L.. Aussagen Lösung.. a), c) A B C A B (A B) C A B (A B) C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A B C A B B C (B C) (A B) (B C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Dienstag: (Un)Gleichungen in einer Variable, Reelle Funktionen Reelle Funktionen und Lineare Gleichungen. Funktionen sind von

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Technische Universität Hamburg Harburg WiSe 016/17 Kai Rothe Brückenkurs Mathematik Beispielaufgaben 5 Aufgabe 1: Für folgende Funktionen gebe man den Definitionsbereich D und Wertebereich W an und berechne,

Mehr

Vertiefungskurs Mathematik. Anforderungen für das Universitäts-Zertifikat zum Schuljahr 2016/17 (unverändert seit 2012/13)

Vertiefungskurs Mathematik. Anforderungen für das Universitäts-Zertifikat zum Schuljahr 2016/17 (unverändert seit 2012/13) Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat zum Schuljahr 016/17 (unverändert seit 01/13) Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik im Schuljahr 016/17. Inhaltliche

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Hörsaalübung 3, Analysis II

Hörsaalübung 3, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 3, Analysis II SoSe 2016, 02/03. Mai Integration II: Partielle Integration Partialbruchzerlegung (PBZ) Die ins Netz gestellten

Mehr

Vertiefungskurs Mathematik

Vertiefungskurs Mathematik Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2017/2018 Dr. Hanna Peywand Kiani Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Polynome, Folgen, Reihen 1. Teil 11/12.12.2017

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 25. November 2010 1 Differentialrechnung Kurvendiskussion Trigonometrische Funktionen Bedeutung der Ableitung in

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012 Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Analysis I. Vorlesung 12. Stetige Funktionen. Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen

Analysis I. Vorlesung 12. Stetige Funktionen. Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 12 Stetige Funktionen Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen wir mit d(x,x ) := x x. Bei einer Funktion

Mehr

Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am

Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am 22.12.2014 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe

Mehr

y = a(x x 0 ) 2 + y 0 (1) Zunächst, um a zu bestimmen, benutzen wir die Bedienung dass f(x) durch P = (1; 2) läuft. Also:

y = a(x x 0 ) 2 + y 0 (1) Zunächst, um a zu bestimmen, benutzen wir die Bedienung dass f(x) durch P = (1; 2) läuft. Also: FU Berlin: WiSe 1-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 7 Aufgabe 8 Der Graph einer Funktion f : R R bestehe aus einem nach unten geöffneten Parabelbogen mit Scheitelpunkt S = ( 1; 4), welche im

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg WiSe 2011/2012 Dr. Hanna Peywand Kiani Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenfolgen 02.12.2011 Die ins Netz

Mehr

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i ETH-Aufnahmeprüfung Herbst 18 Mathematik I (Analysis) D C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5 α. A 1 Aufgabe [1 Punkte] Geben Sie die Lösungsmenge folgender Gleichungen in!

Mehr

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Department Mathemati der Universität Hamburg WiSe 20/202 Dr. Hanna Peywand Kiani Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenreihen 6.2.20 Die ins Netz gestellten

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4 Übungen zur Mathematik II für Studierende der Informatik und Wirtschaftsinformatik (Analysis und Lineare Algebra) im Sommersemester 017 Fachbereich Mathematik, Stefan Geschke, Mathias Schacht A: Präsenzaufgaben

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Übungsheft Dr. Johanna Dettweiler Institut für Analysis 0. Oktober 009 Aufgaben zu Kapitel Die Nummerierung der Aufgaben bezieht sich auf

Mehr

1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.

1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1. Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen 1. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y = x + x 6 b) y = x 3 3x + x c) y = (x + 4)(x + x ) d) y = x 4 5x + 4 e) y = x 3 + x

Mehr

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1 Analysis 1 Einführung Mathe-Squad GbR 22. März 2017 Einführung 1 y 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 910 2 x /* */ Einführung Allgemeines 2 Allgemeines Funktion f(x) bildet jeden

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS018/19 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 7x+3y 6}.

Mehr

1. Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (c) A B = A B und A B = A B.

1. Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (c) A B = A B und A B = A B. . Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (a) (A B) C = (A C) (B C) und (A B) C = (A C) (B C). (b) A (A B) = A und A (A B) = A. (c) (A B) = A B

Mehr

Brückenkurs Mathematik zum Sommersemester 2015

Brückenkurs Mathematik zum Sommersemester 2015 HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende

Mehr

Einführung und Überblick

Einführung und Überblick Einführung und Überblick Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Thomas Zehrt (Universität Basel) Einführung und Überblick 1 / 33 Outline 1

Mehr

Kapitel 5. Differenzialrechnung für Funktionen einer Variablen

Kapitel 5. Differenzialrechnung für Funktionen einer Variablen Kapitel 5. Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

x 2 14x+49 = x 2 2x+1 Ein Wechsel des Verhaltens der Ungleichung ist demnach nur bei x = 1, x = 4 und x = 7

x 2 14x+49 = x 2 2x+1 Ein Wechsel des Verhaltens der Ungleichung ist demnach nur bei x = 1, x = 4 und x = 7 Aufgabe 1. a) Die Ungleichung ist einfach und wird am besten direkt gelöst: 7 x > x 7 14 > 2x x < 7 Die Lösungsmenge ist das offene Intervall (, 7). b) Die Ungleichung ist für x = 7 nicht definiert. Um

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/ Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Die Funktion f (x) = e ix

Die Funktion f (x) = e ix Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Passerellen-Prüfungen 2007 Mathematik: 4 Stunden (3 Seiten)

Passerellen-Prüfungen 2007 Mathematik: 4 Stunden (3 Seiten) Punkte: Note: BME ISME MfB MSE Berner Maturitätsschule für Erwachsene Interstaatliche Maturitätsschule für Erwachsene St. Gallen/Sargans Maturitätsschule für Berufstätige, Basel Maturitätsschule für Erwachsene,

Mehr

Mathematik II Lösung 6. Lösung zu Serie 6

Mathematik II Lösung 6. Lösung zu Serie 6 Lösung zu Serie 6. a) In einem kritischen Punkt (x, ) von f gelten f x (x, ) x + und f (x, ) x, also x. Ferner gelten f xx (x, ) f (x, ) und f x (x, ), insbesondere also f xx (, ) < und f xx (, )f (, )

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. Michael Hinze Dr. Hanna Peywand Kiani Analysis I für Studiere der Ingenieurwissenschaften Blatt 6 Aufgabe 1) Bitte lösen Sie die angegebenen

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

2.September. Reelle Funktionen

2.September. Reelle Funktionen .September Reelle Funktionen Grundausstattung h n =(R,x7 h n (x) =x n, R) n N Symmetrie, Nullstellenstärke sin, cos Additionstheoreme exp=(r,x7 exp(x) =e x, R) "Siegt gegen jedes Polynom" Rekursive Konstruktionen:

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 2013 Doz.: Gündel-vom Hofe, Hömberg, Ortgiese Ass.

Technische Universität Berlin Fakultät II Institut für Mathematik SS 2013 Doz.: Gündel-vom Hofe, Hömberg, Ortgiese Ass. Technische Uniersität Berlin Fakultät II Institut für Mathematik SS 3 Doz.: Gündel-om Hofe, Hömberg, Ortgiese 5.7.3 Ass.: Böttle, Meiner Juli Klausur Analysis I für Ingenieure Name:... Vorname:... Matr.

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr