Lösungsblatt 2 Signalverarbeitung

Größe: px
Ab Seite anzeigen:

Download "Lösungsblatt 2 Signalverarbeitung"

Transkript

1 Fakultät für nformatik Übung zu Kognitive Systeme Sommersemester 208 S. Constantin T. Nguyen Lösungsblatt 2 Signalverarbeitung Aufgabe : Faltung Abbildung : Faltung a) Bestimmen Sie die Faltung der Funktion f(x) mit sich selbst (f(x) f(x)) rechnerisch. echnung: f(x) f(x) = f(t)f(x t)dt () Gemäß der Definition der Faltung erhält man die Faltung von f(x) mit sich selbst durch die ntegration von f(t) mit der gespiegelten Funktion f( t). Bildlich gesprochen wird für die ntegration f( t) von links über f(t) geschoben. Lösungsblatt 2 zu Kognitive Systeme Seite

2 Fallunterscheidung: Fall : x < 0 f(t) f(x t)dt = 0 x > 2 f(t) f(x t)dt = 0 Fall 2: Wenn die gespiegelte Funktion f( x) (rotes echteck) über f(x) (blaues echteck) geschoben wird, entsteht ein Bereich der Überlappung (lila echteck). 0 x < = x 0 f(t) f(x t)dt 4dt = 4x Lösungsblatt 2 zu Kognitive Systeme Seite 2

3 Fall 3: x 2 = x f(t) f(x t)dt 4dt = 4x + 8 Das Faltungsergebnis ist demnach: b) Bestimmen Sie f(x) g(x) grafisch. echnung: Lösungsblatt 2 zu Kognitive Systeme Seite 3

4 f(x) g(x) = g(t) f(x t)dt (2) Fallunterscheidung: Fall : x < 0 g(t) f(x t)dt = 0 Fall 2: 0 x < = x 0 g(t) f(x t)dt 2t dt = x2 2 2 Fall 3: Lösungsblatt 2 zu Kognitive Systeme Seite 4

5 x < 2 = x g(t) f(x t)dt 2t dt + x ( 2t + 4) dt = [ t 2] x + [ t 2 + 4t ] x = 2x2 + 6x 3 Lösungsblatt 2 zu Kognitive Systeme Seite 5

6 Fall 4: 2 x < 3 = 2 x g(t) f(x t)dt ( 2t + 4) dt + x 2 2 dt = [ t 2 + 4t ] 2 x + [2t]x 2 = x2 4x + 5 Fall 5: 3 x g(t) f(x t)dt = 3 x 2 dt = [2t] 3 x = 2x + 8 Lösungsblatt 2 zu Kognitive Systeme Seite 6

7 Ausgehend von den vorangegangenen Berechnungen kann das Faltungsergebnis wie folgt visualisiert werden: Onlinefrage Nr. : Was ist der größte Wert des Ergebnisses der Faltung f(x) g(x)? i),0 ii),5 iii) 2,0 iv) 2,5 v) 3,0 Der größte Wert des Ergebnisses der Faltung f(x) g(x) ist 2, siehe Lösung der Aufgabe b). c) Bestimmen Sie die diskrete Faltung u(x) h(x) grafisch. Abbildung 2: Faltung Lösungsblatt 2 zu Kognitive Systeme Seite 7

8 echnung: u[x] h[x] = u[t] h[x t] (3) t= Fall : x = u[x] h[x] = Fall 2: x = 2 u[x] h[x] = + = 2 Fall 3: x = 3 u[x] h[x] = +, 5 = 2, 5 Fall 4: x = 4 u[x] h[x] =, = 3, 5 Fall 5: x = 5 u[x] h[x] = 2 Aufgabe 2: Digitalisierung von Signalen Gegeben sei das Signal f(t) = sin(2π20t) + cos(2π40t) Hinweise: Lösungsblatt 2 zu Kognitive Systeme Seite 8

9 = i 2 δ(f + 20) i 2 δ(f 20) + 2 δ(f + 40) + 2 δ(f 40) (4) Zur Vereinfachung sei in der Zeichnung die Höhe von δ = Zur Fouriertransformation existieren diverse Konventionen! Lassen Sie sich davon nicht verwirren und verwenden Sie zur Lösung dieser Aufgabe die folgenden nformationen: Funktion Fouriertransformierte sin(2πf 0 t) i 2 (δ(f + f 0) δ(f f 0 )) cos(2πf 0 t) 2 (δ(f + f 0) + δ(f f 0 )) + k= δ(t kt ) + T k= δ(f k/t ) a) Das Signal wird mit 60 Hz abgetastet. Zeichnen Sie das komplexe Spektrum des abgetasteten Signals f(t), t in Sekunden. Die Fouriertransformation der Funktion f(t) ist: F (f) = i 2 (δ(f + 20) δ(f 20)) + (δ(f + 40) + δ(f 40)) 2 Komplexes Spektrum des Signals und der mpulsfolge (Verschiebung des mpulszugs mit f o = 0): F (0) δ(0) = 0 Verschiebung des mpulszugs mit f o = 20: Lösungsblatt 2 zu Kognitive Systeme Seite 9

10 (F δ)(f o = 20) = 2 T i 2 T = 2T i 2T (F δ)(f o = 40) = (F δ)(f o = 20) = (F δ)(f o = 80) Verschiebung des mpulszugs mit f o = 40: (F δ)(f o = 40) = 2 T + i 2 T = 2T + i 2T (F δ)(f o = 20) = (F δ)(f o = 40) = (F δ)(f o = 00) Komplexes Spektrum nach der Abtastung: Lösungsblatt 2 zu Kognitive Systeme Seite 0

11 b) Welches Phänomen tritt auf, wie kommt es dazu und wie kann verhindert werden, dass es auftritt? Die gegebene Abtastfrequenz von 60Hz wurde gemäß des Abtasttheorems zu klein gewählt. Daher tritt Aliasing auf, d.h. aufgrund der Periodizität des Frequenzbereichs sich wiederholende Spektren überlagern sich. m gegebenen Fall überlagern sich die Frequenzen der Achsen des ealteils und maginärteils des Spektrums. Weitere denkbare Effekte, die durch Aliasing verursacht werden können sind das Auftreten von Frequenzen, die im Originalsignal nicht vorhanden sind, und das Verschwinden von im Originalsignal vorhandenen Frequenzen. Bei einer D/A-Wandlung kann das Originalsignal so nicht mehr aus den abgetasteten Werten rekonstruiert werden. Um Aliasing zu verhindern, muss als Abtastfrequenz eine Frequenz gewählt werden, die echt größer ist als das 2-fache der höchsten Frequenz im Signal, also in diesem Fall > 2 40 Hz. c) Das Signal wird nun mit dem doppelten der höchsten im Signal vorkommenden Frequenz abgetastet. Zeichnen Sie das komplexe Spektrum. Tritt das oben beschriebene Phänomen immernoch auf? Komplexes Spektrum des Signals und der mpulsfolge (Verschiebung des mpulszugs mit f o = 0): F (0) δ(0) = 0 Verschiebung des mpulszugs mit f o = 20: Lösungsblatt 2 zu Kognitive Systeme Seite

12 (F δ)(f o = 20) = i 2 T = i 2T (F δ)(f o = 60) = (F δ)(f o = 20) = (F δ)(f o = 00) Verschiebung des mpulszugs mit f o = 40: (F δ)(f o = 40) = 2 T + 2 T = T (F δ)(f o = 40) = (F δ)(f o = 40) = (F δ)(f o = 20) Verschiebung des mpulszugs mit f o = 60: (F δ)(f o = 60) = i 2 T = i 2T (F δ)(f o = 20) = (F δ)(f o = 60) = (F δ)(f o = 40) Lösungsblatt 2 zu Kognitive Systeme Seite 2

13 Komplexes Spektrum nach der Abtastung: Es kommt zu Aliasing, da das Abtasttheorem nicht befolgt wird. m Frequenzbereich findet eine Überlagerung der Frequenzen bei 40 Hz statt. d) Zeichnen Sie das Betragsspektrum des mit 00 Hz abgetasteten Signals. Was beobachten Sie in Bezug auf das beschriebene Phänomen? Komplexes Spektrum des Signals und der mpulsfolge (Verschiebung des mpulszugs mit f o = 0): F (0) δ(0) = 0 Verschiebung des mpulszugs mit f o = 20: Lösungsblatt 2 zu Kognitive Systeme Seite 3

14 (F δ)(f o = 20) = i 2 T = i 2T (F δ)(f o = 80) = (F δ)(f o = 20) = (F δ)(f o = 20) Verschiebung des mpulszugs mit f o = 40: (F δ)(f o = 40) = 2 T = 2T (F δ)(f o = 60) = (F δ)(f o = 40) = (F δ)(f o = 40) Verschiebung des mpulszugs mit f o = 60: (F δ)(f o = 60) = 2 T = 2T (F δ)(f o = 40) = (F δ)(f o = 60) = (F δ)(f o = 60) Lösungsblatt 2 zu Kognitive Systeme Seite 4

15 Verschiebung des mpulszugs mit f o = 80: (F δ)(f o = 80) = i 2 T = i 2T (F δ)(f o = 20) = (F δ)(f o = 80) = (F δ)(f o = 80) Komplexes Spektrum nach der Abtastung: Betragsspektrum nach der Abtastung (ohne periodisch wiederholte Frequenzen): Es tritt kein Aliasing mehr auf. Lösungsblatt 2 zu Kognitive Systeme Seite 5

16 Onlinefrage Nr. 2: Beim ekonstruieren des Signals aus dem abgetasteten Spektrum aus Aufgabe 2a) entsteht ein Signal mit verfälschter Frequenz. Welche Frequenzen sind verfälscht? i) 0 Hz ii) 20 Hz iii) 40 Hz iv) 60 Hz v) 80 Hz Sowohl die Frequenz 20 Hz als auch die Frequenz 40 Hz werden durch Aliasing verfälscht, siehe Zeichnung in a). Aufgabe 3: Filtern a) Gegeben sei die Funktion v(t) = π δ(t) sin(3ω 0t) sin(ω 0 t) t mit der Zeitvariablen t und ω 0 > 0. Die Multiplikation ihrer Fouriertransformierten V (ω) mit der Fouriertransformierten eines Signals stellt einen Filter dar. Um welchen Filter handelt es sich dabei? Berechnen Sie für diese Aufgabe V (ω) und vereinfachen Sie in geeigneter Weise. Hinweis: Die Funktion f(t) = sin(πt) πt entspricht der Funktion f(t) = sinc(t). Benutzen Sie als Fouriertransformierte von g(t) = sinc(at) folgende Funktion: G(ω) = a rect( ω 0, t > { 2πa ) mit rect(t) = 2, t 2 Umformung: v(t) = πδ(t) sin(3ω ot) sin(ω o t) t (5) = πδ(t) ( 3ω o sin(3ω o t) ω o sin(ω o t) ) 3ω o t ω o t (6) sin(3π ωo π = πδ(t) (3ω ω sin(π o o 3π ωo π t ω π t) o π ωo π t ) (7) = πδ(t) (3ω o sinc( 3ω o π t) ω osinc( ω o π t)) Fouriertransformation: Laut Formelsammlung ist die Fouriertransformierte von f(x) = δ(x) die Funktion F (ω) =. Lösungsblatt 2 zu Kognitive Systeme Seite 6

17 V (ω) = F (v(t)) = F (πδ(t) (3ω o sinc( 3ωo π t) ω osinc( ωo π t))) V (ω) = π (3ω o 3ωo rect(t) ist definiert als ω ) ω o ωo ω 2π ωo π π rect( 2π 3ωo π π rect( π = π (3ω o rect( ω π ) ω o rect( ω )) (8) 3ω o 6ω o ω o 2ω o = π (πrect( ω 6ω o ) πrect( ω 2ω o )) (9) = π πrect( ω 6ω o ) + πrect( ω 2ω o ) (0) { 0, t > 2, t 2 rect( ω 6ω o ) ist nur dann wenn ω 3ω o rect( ω 2ω o ) ist nur dann wenn ω ω o } )) () Onlinefrage Nr. 3: Um welches Filter handelt es sich in Aufgabe 3a)? i) Hochpass ii) Bandsperre iii) Tiefpass iv) nichts davon Es handelt sich um eine Bandsperre (ii; siehe Lösung 3a). Aufgabe 4: Diskrete Fouriertransformation, Sampling Die Frequenzauflösung der DFT hängt von der zeitlichen Auflösung ab. Je feiner die zeitliche Auflösung ist, desto gröber ist die Frequenzauflösung und umgekehrt. Berechnet man beispielsweise die DFT über einem gesamten Musikstück, so erhält man detaillierte nformationen über die auftretenden Frequenzen, dies jedoch nur kumuliert über das gesamte Musikstück hinweg. Berechnet man die DFT auf Basis von beispielsweise 00 Werten, so erhält man als Ergebnis ebenfalls 00 Werte. Da das esultat der DFT symmetrisch ist, trägt nur die Hälfte der Werte nformationen. Somit verteilt sich die Frequenzinformation auf 50 Werte. Betrachten wir zur Verdeutlichung ein Beispiel mit unterschiedlichen Samplingraten, berechnen dabei die DFT aber stets auf Basis von 00 Samples: Lösungsblatt 2 zu Kognitive Systeme Seite 7

18 Samplingrate Grenzfrequenz Frequenzauflösung Zeitauflösung 000 Hz 500 Hz 0 Hz 0. s 00 Hz 50 Hz Hz s 0 Hz 5 Hz 0. Hz 0 s Es wird deutlich, dass die Frequenzauflösung in einem reziproken Verhältnis zur zeitlichen Auflösung steht. a) Berechnen Sie die Anzahl N der Samples, die benötigt werden, damit eine DFT eine Frequenzauflösung von 3 Hz erreichen kann, wenn ein Signal mit 42 khz abgetastet wurde. Bei einer Abtastung mit 42 khz beträgt die Grenzfrequenz 2 khz. Bei einer gewünschten Frequenzauflösung von 3 Hz benötigen wir somit 7000 informationstragende Werte. Dies entspricht einer DFT mit 4000 Werten. Folglich benötigen wir N = 4000 Samples zur Berechnung der DFT. Onlinefrage Nr. 4: Welche zeitliche Auflösung wird benötigt, damit eine DFT eine Frequenzauflösung von 3 Hz erreichen kann, wenn ein Signal mit 42 khz abgetastet wurde? i) 8 s ii) 3 s iii) s iv) 3s Aus Teilaufgabe a) wissen wir, dass wir 4000 Samples benötigen. Bei einer Abtastrate von 42 khz entspricht dies einer zeitlichen Auflösung von 3 s. Lösungsblatt 2 zu Kognitive Systeme Seite 8

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Klausur zur Vorlesung Signale u. Systeme I

Klausur zur Vorlesung Signale u. Systeme I Name: 8. Februar 2001, 11.30-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 90 min, 1.5 Zeitstunden Skript, Vorlesungsmitschrift, Formelsammlung Schreiben Sie bitte auf dieses

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Das Abtasttheorem Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Problem bei zeitlicher Abtastung: Oliver Deussen Abtasttheorem 2 Darstellung auf Monitor Was geschieht eigentlich, wenn

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

2. Anordnung zur digitalen Signalverarbeitung

2. Anordnung zur digitalen Signalverarbeitung 2. Anordnung zur digitalen Signalverarbeitung Prof. Dr.-Ing. Dr. h.c. Norbert Höptner Prof. Dr.-Ing. Stefan Hillenbrand Ergänzende Informationen zur Vorlesung Signalverarbeitungssysteme Abschnitte 2.1-2.5.

Mehr

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel) 4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe 4.2! Frequenzspektren, Fourier-Transformation 4.3! Abtasttheorem: Eine zweite Sicht 4.4! Filter! Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

Prüfungsklausur Digitale Signalverarbeitung Ergebnis der Klausur

Prüfungsklausur Digitale Signalverarbeitung Ergebnis der Klausur Fakultät für Mathematik und Informatik Elektronische Schaltungen 58084 Hagen 02331 987 1166 Prüfungsklausur Digitale Signalverarbeitung 21411 Datum: 19. März 2011 (Bearbeitungszeit 120 Minuten, 6 Blätter)

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Abschlussprüfung Nachrichtentechnik 03. August 2015

Abschlussprüfung Nachrichtentechnik 03. August 2015 Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

3.7 Anti-Alias-Verfahren

3.7 Anti-Alias-Verfahren 3.7 Anti-Alias-Verfahren Wir hatten Treppeneffekte bereits beim Rastern von Bildern kennengelernt. Aber auch beim Wiederholen verkleinerter Texturen können sich durch Rasterungseffekte unschöne Interferenzerscheinungen

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

1 Fourier-Reihen und Fourier-Transformation

1 Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor SMV Versuch Erläuterungen zum Aliasing FB: EuI, Darmstadt, den 26.5 Elektrotechnik und Informationstechnik Rev., 9.5 Auf den folgenden Seiten sind einige typische Abtastsituationen zusammengestellt,

Mehr

Die Wärmeleitungsgleichung

Die Wärmeleitungsgleichung Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

Laborprotokoll SSY Abtastung

Laborprotokoll SSY Abtastung Laborprotokoll SSY Abtastung Daniel Schrenk, Andreas Unterweger SSYLB WS 05/06 Abtastung Seite 1 von 12 Einleitung Ziel der Übung In dieser Laborübung sollte ein Signal abgetastet werden und anschließend

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2 Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale ufgabe (5 Punkte) ufgabe : Kontinuierliche und diskrete Signale. Zeichnen Sie jeweils den geraden und den ungeraden nteil des Signals in bb..!. Sind Sie folgenden Signale periodisch? Falls ja, bestimmen

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer

Mehr

Praktikum, NT 1: Spektrumsschätzung

Praktikum, NT 1: Spektrumsschätzung Praktikum, NT 1: Spektrumsschätzung Versuchsentwurf: M.Sc., Dipl. Ing. (FH) Marko Hennhöfer, FG Nachrichtentechnik Version vom 4. Dezember 2007 1 1 Einführung und Motivation 1.1 Anwendung In der Praxis

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

d 1 P N G A L S2 d 2

d 1 P N G A L S2 d 2 Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) Herbert.Gruenbacher@tuwien.ac.at

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Musterlösung zur Klausur Digitale Signalverarbeitung

Musterlösung zur Klausur Digitale Signalverarbeitung Musterlösung zur Klausur Digitale Signalverarbeitung Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum 1. Oktober 2007 Aufgabe 1: Transformationen 25 Pkt. Gegeben war das reellwertige kontinuierliche

Mehr

Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation

Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation 30. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 11 und 12, Kammeyer & Kroschel (Absatz 8.4.1) Anwendungen

Mehr

3. Basisbandtransformation durch Integerband-Abtastung

3. Basisbandtransformation durch Integerband-Abtastung Bearbeiten von Frequenzbändern 1. Analyse-Filterbank, Basisbandtransformation 2. Basisbandtransformation durch Modulation 3. Basisbandtransformation durch Integerband-Abtastung 1 1. Analyse-Filterbank

Mehr

Spektralanalyse physiologischer Signale

Spektralanalyse physiologischer Signale Spektralanalyse physiologischer Signale Dr. rer. nat. Axel Hutt Vorlesung 1 - WS 2016/17 über mich Studium der Physik an U Stuttgart Promotion: Nichtlineare Dynamik in Gehirnsignalen Forschung in Neurowissenschaften

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

Übung 2: Spektrum periodischer Signale

Übung 2: Spektrum periodischer Signale ZHAW, SiSy, Rumc, Übung : Spektrum periodischer Signale Augabe Verschiedene Darstellungen der Fourierreihe. Betrachten Sie das periodische Signal s(t) = + sin(π t). a) Bestimmen Sie die A k - und B k -Koeizienten

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur WS 017/018 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Signalverarbeitung SS 2012

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Signalverarbeitung SS 2012 Name, Vorname: Matr.-Nr.: Wichtige Hinweise: Ausführungen, Notizen und Lösungen auf den Aufgabenblättern werden nicht gewertet. Vor der entsprechenden Lösung ist deutlich die dazugehörige Nummer der Aufgabe

Mehr

Übung 2. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017)

Übung 2. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017) Übung 2 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T SS27) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/fischerd Institut für Informatik Technische Universität

Mehr

Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid. Übung zur Vorlesung

Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid. Übung zur Vorlesung Übung zur Vorlesung Digitale Medien Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid Wintersemester 2016/17 LZW-Komprimierung Idee: Nicht einzelne Zeichen werden günstig kodiert, sondern ganze Zeichenketten

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Medien- Technik. Digital Audio

Medien- Technik. Digital Audio Digital Audio Medientyp digital audio representation Abtastfrequenz /sampling frequency Quantisierung (Bittiefe) Anzahl der Kanäle/Spuren Interleaving bei Mehrkanal Positiv/negativ Codierung operations

Mehr

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

Die schnelle Fouriertransformation

Die schnelle Fouriertransformation Die schnelle Fouriertransformation Die stetige Fouriertransformation ˆf : Z C eines Signals f : [0, π] C ist gegeben durch ˆf(k) = π 0 f(t)e kt dt Die folgende Umkehrformel drückt dann f als Fourierreihe

Mehr

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X.

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X. Audiotechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 21.1.21 1. Aufgabe: Amplitudenstatistik analoger Audiosignale a. Ein Signal x(t) hat die durch Abb. 1 gegebene Wahrscheinlichkeitsdichtefunktion

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 07 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation 23. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 10.1 und 11, Kammeyer & Kroschel (7.1-7.3) eues Thema in

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Diskrete Fourier Transformation (DFT): Zeitfenster, Frequenzauflösung, Fensterfunktionen

Diskrete Fourier Transformation (DFT): Zeitfenster, Frequenzauflösung, Fensterfunktionen Diskrete Fourier Transformation (DFT): Zeitfenster, Frequenzauflösung, Fensterfunktionen Fourier-Analyse Zeitfenster DFT Zeit [s] 2 Frequenz [Hz] Fourier-Analyse Abtastintervall TT aa : Zeit zwischen zwei

Mehr

TET - Formelsammlung

TET - Formelsammlung TET - Formelsammlung Matthias Jung 30. August 2008 1 Dierentialgleichungen Characterisierung von DGLn: Linear: y(t) sowie ẏ(t), ÿ(t)... kommen nur in der 1. Potenz vor Gewöhnlich: y(t) hängt nur von einer

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Versuchsprotokoll E208: Fourriertransformation und nichtlinearer Oszillator Fortgeschrittenenpraktikum Physik Universität Bonn

Versuchsprotokoll E208: Fourriertransformation und nichtlinearer Oszillator Fortgeschrittenenpraktikum Physik Universität Bonn Versuchsprotokoll E208: Fourriertransformation und nichtlinearer Oszillator Fortgeschrittenenpraktikum Physik Universität Bonn Alexander Rothkegel, Frank Fremerey unter Anleitung von Ursula Meyer 1. Juni

Mehr

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t)

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) Transformationen Übungen 1 1 Signale und Systeme 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) 1 c) f(-t) d) f(t + 3) 1 t e) f(t / 4) f) f(t) + 2 g)

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Filterentwurf. Aufgabe

Filterentwurf. Aufgabe Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich

Mehr

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons.

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons. 1 Vorbereitungen 1.1 Was ist und wofür braucht man Fourieranalysis? Anwendungsgebiete der Fourier-Analysis sind z.b. Signalverarbeitung, Bildverarbeitung, Schaltkreisentwurf, Elektrodynamik, Optik, Akustik,

Mehr

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie Abschnitt: 2.1 Allgemeine Beschreibung A2.1: Gleichrichtung Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie so erhält man am Ausgang das

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Fourier-Transformation: Anwendung

Fourier-Transformation: Anwendung Fourier-Transformation: Anwendung Sebastian Krieter Seminar: Integraltransformationen Dozent: Prof. Dr. Raimar Wulkenhaar WS 0/3 Westfälische Wilhelms-Universität Münster 06..0 Inhaltsverzeichnis Berechnung

Mehr