fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert

Größe: px
Ab Seite anzeigen:

Download "fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert"

Transkript

1 Die Veröffentlichung dieser Lösung geschieht ohne inhltliche Prüfung durch die Bezirksregierung Düsseldorf und den Mthe-Treff. Die Lösung stmmt nicht vom Originlutor der Aufgbe, sondern von einem Leser des Mthe- Treffs. Wir bednken uns herzlich für die Erstellung der Aufgbenlösung. Aufgbe mit Lösung. 4 ( 8 ) ( 4 8 ) f x = x x + = x x + = f x Achsensymmetrie. 4 lim x x + : = Fll c+ + d > 0! < 0 x ±.. Extrempunkte. NB: f ( x) = ( 4x 6 x) = x( x ) = x( x+ )( x ) MESt ( f ) = { ;0;}. HB: 0 f x = VZW f bei x x Extremstelle von f < 0 VZ der EP Stelle x x + x VZW EPArt Wert < = > x = / + + / / + HP TP x = + / + / + + / TP HP + 0 x = / + / + + / TP HP + 0 Die zusätzlichen frbigen Angben dienen der Unterstützung von Erklärungen in nchfolgenden Aufgbenteilen. Bei einer händischen Lösung dürfen sie ruhig etws gequetscht ber bitte deutlich von der eigentlichen Lösung bgesetzt eingefügt werden, weil mn im Vorhinein j nicht unbedingt die Notwendigkeit des Nchtrgens sieht. Wenn mn ber grundsätzlich dmit rechnet und die Vorteile sieht, sollte mn lle Tbellen und nderen Drstellungen im Anstz großzügig nlegen. 4. Wert: f ( 0) = ; f ( ± ) = ( 6 ) + = Die Berechnung. knn uf einem NR-Zettel erfolgen. Die Angbe der Werte in der erweiterten Tbelle genügt. 4. Wendepunkte 4. NB: f ( x) = ( x 6 ) = ( x ) = ( x )( x+ ) MWSt = ; 4. HB: f ( x) = 0 VZW ( f ) bei x x Wendestelle von f Stelle x + x VZW PA Wert 0 x = + / + + / WP 9 0 x = + + / + / + WP 9 Beim (+/-)-VZW steigt die Ableitung vor der Nullstelle dhinter fällt sie. Die Krümmung geht lso von einer Linkskrümmung in eine Rechtkrümmung über beim (-/+)-VZW ist es umgekehrt.

2 = 0 = 0 (NB). 5. Es muss gelten: f ( x) f ( x) D beide Gleichungen erfüllt sein müssen, kommen höchstens die Lösungen der ersten Gleichung ls Lösung des Systems in Frge; die setze ich in die zweite Gleichung ein. i) f ( 0) = 0 ( psst nicht! ) ii) f ± = = 0 = Höchstens = knn der gesuchte Wert sein; ich überprüfe, ob dfür uch ttsächlich ein Extrempunkt der verlngten Art vorliegt. f ± = x 6 = 4 6 = 4 0 f ( ) 0 x=± Es gibt keinen Wert für mit einem Extrempunkt uf der x-achse! Ups! muss den Wert hben. ± = Extrempunkte bei - und. Mit f( x) = g( x) + gilt: ( 4 f x x x ) ( x 4 x ) g x 8( ) = 8 + = 8 + = +. Der Grph von f ergibt sich us dem Grphen von f durch Spiegelung n der Gerden y =. Er ht entsprechend gespiegelte Grenz-, Extrem- und Wendewerte die Stellen bleiben dieselben; uch die Achsensymmetrie bleibt erhlten. 4 x x NSt: f ( x) = = 0 x x + 6 = 0 Substitution: z = ± = ± = ± Anzhl der Nullstellen: VZ < 0 < < < gesmt < < [ = ] = 0 für 0 Anzhl der Lösungen für z: für 0 für < 0 > Rücksubstitution: () 0< < : 0 Nullstellen für x () = : Nullstellen, nämlich und für x () < 0 > : Hier muss nchgewiesen werden, ob die z-terme kleiner, gleich oder größer ls null sind; dnn liegen 0, bzw. Nullstellen für z und somit 0, (wenn der z-wert null ist), (wenn der z-wert positiv ist), (wenn ein z-wert null und der ndere größer ls null ist) oder 4 Nullstellen (wenn die z-werte positiv sind) für x vor.

3 (.) Fll: ( ) 4 ± 4 = 0 die Folge wäre: eine Nullstelle für x, nämlich 0! + = 0 = Qudrieren für < 0*) 4 6 = 6 : 6 0! = Die beiden nebenstehenden Gleichungen hben die Lösung = 0 ; 0= [ flsch! ] dieser Wert kommt hier nicht in Frge. ( ) = 0 = ( ) Die Einschränkungen für kommen Qudrieren für zustnde, > 0*) weil nur bei gleichem Vorzeichen 4 6 = 6 ( ) :6 ( 0! ) beider Seiten ds Qudrieren eine Äquivlenzumformung ist. = 0= [ flsch!] *) Für > 0 bei bzw. < 0bei gibt es uch keine Lösung für, weil die Seiten verschiedenes Vorzeichen hben. (.) Fll: ( ) 4 ± 4 < 0 die Folge wäre: keine Nullstelle für x! + < 0 < Qudrieren für < 0**) 4 6 < 6 :6 < 0! > 0> [ whr!] **) Für > 0 gibt es keine Lösung für, weil die rechte Seite dnn negtiv ist und nicht größer ls die linke, positive Seite sein knn. x = z = + liefert lso für < 0 für x keine Lösung. < 0 < Qudrieren für > 0 ***) 4 6 < 6 :6 < 0< [ flsch!] ***) Für < 0 gibt es uch keine Lösung für, weil dnn die rechte Seite negtiv ist und nicht größer ls die linke, positive Seite sein knn.

4 (.) Fll: ( ) 4 ± 4 > 0 die Folge wäre: zwei oder vier Nullstellen für x! + > 0 > ( ) Qudrieren für < 0****) 4 6 > 6 ( ) :6 ( < 0! ) < 0< [ flsch!] ****) Für > gibt es ber eine Lösung für, weil die rechte Seite negtiv und dmit kleiner ls die linke, positive Seite ist. x = z = + liefert lso für > für x zwei Lösungen. > 0 > Qudrieren für > *****) 4 6 > 6 :6 > 0> [ whr!] *****) Für < 0 gibt es uch eine Lösung für, weil die rechte Seite negtiv ist und dmit kleiner ls die linke, positive Seite ist. x = z = liefert lso für < 0und für > für x zwei Lösungen. Für > gibt es lso immer 4 Nullstellen und für < 0 immer Nullstellen. Wenn mn mit. begonnen hätte, hätten sich die nderen beiden Fälle selbst erledigt. Aufgrund der Zeichnungen und der Grenzwerte hätte dieser Verdcht ufkommen können. Alterntive Lösung. Wegen der Lge der Extrempunkte (siehe. bei )) und der Grenzwerte (siehe. bei )) ergeben sich folgende Fälle: < 0 : Nullstellen ; 0< < : keine Nullstellen ; = : Nullstellen ; > : 4 Nullstellen. 4 4 f = + = = 0 :6 + = 0 Polynomdivision s. NR = 0 Nullprodukt, pq Formel = = ± 5

5 0< < = = + 5 > = 5 Es werden die drei Grphen zu Werten us 4. (Nullstelle ), ein Grph ohne Nullstelle (0<<) und ein weiterer mit vier Nullstellen (>) drgestellt.

6 Wegen > liegen die beiden Minim unterhlb ( < 0) und ds Mximum ( 0) der. Achse. Wegen der Symmetrie ( B D) ( linke Seite = C) doppelt so groß, wie der rechts unterhlb der. Achse liegende hlbe Teil ( D ) > oberhlb = muss dnn die oberhlb der. Achse liegende Fläche der unterhlb der. Achse liegenden Fläche sein. Die Betrgsstriche dienen dzu, us dem negtiven Integrlwert den positiven Flächeninhlt zu mchen. Der Anstz ist lso richtig. Wegen der Symmetrie muss die rechte Hälfte von C, der oberhlb der. Achse liegenden Fläche, genuso groß wie die Hälfte der unterhlb der. Achse liegenden Fläche und ds ist D sein. Der orientierte Flächeninhlt muss dnn wegen der verschiedenen Vorzeichen ntürlich null sein; diesen Schverhlt drückt der Anstz us und ist deshlb uch richtig. Die sich us den beiden Ansätzen ergebende Rechnung ist bei V jedoch wesentlich elementrer.

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =

Mehr

2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt.

2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt. 00 A I Lösung.0 Gegeben sind die reellen Funktionen f : x x x x mit ID f IR.. Ermitteln Sie in Abhängigkeit von die Anzhl, Lge und Vielfchheiten der Nullstellen von f. IR und ( BE) f x x x x 0 x 0; x ;

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3

+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3 Hilfsmittelfreier Teil. Beispielufgbe 1 zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x 3 + x x. Die zeigt den Grphen der Funktion f. (1) Berechnen Sie lle Nullstellen der Funktion

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

2012 A I Angabe. 1.0 f sei eine ganzrationale Funktion mit der Ableitungsfunktion

2012 A I Angabe. 1.0 f sei eine ganzrationale Funktion mit der Ableitungsfunktion 0 A I Angbe.0 sei eine gnzrtionle Funktion mit der Ableitungsunktion und ID ID IR.. Geben Sie die Nullstellen der Funktion n, skizzieren Sie den Grphen von und ermitteln Sie die mimlen Monotonieintervlle

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion KOMPETENZHEFT ZUM INTEGRIEREN, II. Aufgbenstellungen Aufgbe.. Wir untersuchen den Flächeninhlt unter der lineren Funktion f(t) = t + im Intervll [; x]. Kurz: F (x) = x f(t) dt Erkläre elementr, insbesondere

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhlb der c. 50.000 Mthemtikufgben zu orientieren, benutzen Sie unbedingt ds Lesezeichen Ihres Acrobt Reders: Ds Icon finden Sie in der links stehenden Leiste.

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Die Versiera der Agnesi

Die Versiera der Agnesi Vermischte Aufgben: Anlysis und Geometrie S.. 1 Die Versier der Agnesi Am 16. Mi 014 zeigte Google ls Erinnerung n den 96. Geburtstg der itlienischen Mthemtikerin Mri Getn Agnesi ein sogennntes Doodle.

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 7 Unterlgen für die Lehrkrft Abiturprüfung 2010 Mthemtik, Leistungskurs 1 Aufgbenrt Anlysis 2 Aufgbenstellung siehe Prüfungsufgbe 3 Mterilgrundlge entfällt 4 Bezüge zu den Vorgben 2010 1 Inhltliche

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel.

Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel. .8. Die indirekte (umgekehrte) Proportionlität Die Funktion f : y \ heisst umgekehrte (indirekte) Proportionlität. Spezilfll : f: Bilde den Kehrwert der gegebenen Zhl. An der Stelle ist die Funktion nicht

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Analysis. Ganzrationale Funktionen: komplettes Stoffgebiet. Allg. Gymnasien: ab J1 / Q1 Berufliche Gymnasien: ab Klasse 12.

Analysis. Ganzrationale Funktionen: komplettes Stoffgebiet. Allg. Gymnasien: ab J1 / Q1 Berufliche Gymnasien: ab Klasse 12. Anlysis Allg. Gymnsien: b J / Q Berufliche Gymnsien: b Klsse Alexnder Schwrz August 0 Aufgbe : 4 Gegeben ist die Funktion f mit f(x) x 4x mit xr. Ihr Schubild sei K. ) Untersuche K uf Schnittpunkte mit

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

Größe einer Wiese. Themenbereich Einstieg in die Integralrechnung

Größe einer Wiese. Themenbereich Einstieg in die Integralrechnung Inhlte Riemnn sche Summen Definition des bestimmten Integrls Bemerkungen: Größe einer Wiese Themenbereich Einstieg in die Integrlrechnung Ziele Approximtion einer Fläche mit Hilfe von Rechtecken Selbsttätiges

Mehr

Ortskurven besonderer Punkte

Ortskurven besonderer Punkte Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.

Mehr

lokales Maximum lokales u. globales Minimum

lokales Maximum lokales u. globales Minimum 6 Extrempunte Deinition: Eine Funtion : x (x) ht n der Stelle x ID ein loles (reltives) Mximum/Minimum, wenn die Funtionswerte in einer beliebig leinen Umgebung von x leiner/größer ls n dieser Stelle sind

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Unbestimmte Integrale. Üben. Unbestimmte Integrale. Lösung. Berechne: Klasse. Schwierigkeit. Nr. math. Thema. Art. Klasse. math. Thema.

Unbestimmte Integrale. Üben. Unbestimmte Integrale. Lösung. Berechne: Klasse. Schwierigkeit. Nr. math. Thema. Art. Klasse. math. Thema. f) e) cos sin sin) (cos d) ) ( ) ( Berechne: f) e) sin) (cos d) ) ( ) ( Bestimme diejenige Stmmfunktion von f, deren Grph durch P verläuft! f : ; P( /) f : P(/ ) f : cos P( / ) d) f : P(/ ). Eine beliebige

Mehr

( ) Gegeben sind die in IR definierten Funktionen f, g und h durch

( ) Gegeben sind die in IR definierten Funktionen f, g und h durch Hilfsmittelfreie Aufgben us dem Mthemtik-Pool zum Abitur 015 T. Wrncke m301 Abi015_M_Pool1_A1 Anlysis Gegeben sind die in IR definierten Funktionen f, g und h durch ( ) f = + 1, ( ) 3 g = + 1 und ( ) 4

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist. 7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

LS 04.M2 Aufgaben. Geometrie

LS 04.M2 Aufgaben. Geometrie 8 LS 04.M2 Aufgben Wie groß ist? (Die Zeichnung ist eine Skizze. Messen hilft lso nicht weiter.) Stellt eure Überlegungen übersichtlich uf einem DIN-A4-Bltt dr. Wie groß ist? (Die Zeichnung ist eine Skizze.

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Herleitung der Strasse für quadratische Räder

Herleitung der Strasse für quadratische Räder Herleitung der Strsse für qudrtische Räder P = P( P / y P ) sei der Berührungspunkt des Rdes mit der Strsse bzw mit der gesuchten Kurve P = P ( / y ) sei der Mittelpunkt der entsprechenden Qudrtseite des

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Mathematik für Informatiker II (Maikel Nadolski)

Mathematik für Informatiker II (Maikel Nadolski) Lösungen zum 7 Aufgbentt zur Vorlesung Mthemti für Informtier II Miel Ndolsi) Abgbe: bis Freitg, den 0Juni 0, 05 Uhr Häufungspunte ) Sei n ) eine reellwertige Folge mit Grenzwert sei b n ) eine beschränte

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Integrale

Übungen mit dem Applet Grundfunktionen und ihre Integrale Grundfunktionen und ihre Integrle 1 Übungen mit dem Applet Grundfunktionen und ihre Integrle 1 Ziele des Applets... 2 2 Begriffe und ihre Drstellung mit dem Applet... 2 b 2.1 Bestimmtes Integrl I (b) =

Mehr

2. Funktionen in der Ökonomie

2. Funktionen in der Ökonomie FHW, ZSEBY, ANALYSIS - - Funktionen in der Ökonomie Beispiele: qudrtische Funktionen, Eponentilfunktion Qudrtische Funktionen Einfchste qudrtische Funktion: y = Allgemeine qudrtische Funktion: y = + b

Mehr

Wir lassen die Funktionen grafisch darstellen: plotfunc2d(dq_f_a(h),dq_f_b(h),dq_f_c(h),h=-1..1)

Wir lassen die Funktionen grafisch darstellen: plotfunc2d(dq_f_a(h),dq_f_b(h),dq_f_c(h),h=-1..1) Lösungen zum Wochenpln Ableitungen f := -> *^; g := -> -^; k := -> sqrt(); - Wir können den Differenzenquotienten n den Stellen,b,c uch ls Funktion von h definieren dq_f_ := h->(f(+h)-f())/h; dq_f_b :=

Mehr

Abiturprüfung Mthemtik Bden-Württemberg (ohne CAS) Pflichtteil Lösungen Aufgbe : Umschreiben der Funktion: f(x) = sin(x) x Ableitung mit Produktregel und Kettenregel: Produktregel: f(x) = u(x) v(x) f (x)

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011

Bericht zur Mathematischen Zulassungsprüfung im Mai 2011 Bericht zur Mthemtischen Zulssungsprüfung im Mi Heinz-Willi Goelden, Wolfgng Luf, Mrtin Pohl Am 4. Mi fnd die Mthemtische Zulssungsprüfung sttt. Die Prüfung bestnd us einer 9-minütigen Klusur, in der 5

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Musterlösung zu Blatt 9, Aufgabe 2

Musterlösung zu Blatt 9, Aufgabe 2 Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1. Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Integralrechnung. Andreas Rottmann. 15. Oktober 2003

Integralrechnung. Andreas Rottmann. 15. Oktober 2003 Integrlrechnung Andres Rottmnn 15. Oktober 2003 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 1.1 Integrtion ls Umkehrung des Differenzierens........... 2 1.2 Integrtionsregeln...........................

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Wie man das Dreieck des Dreiecks löst

Wie man das Dreieck des Dreiecks löst Fch Prüfende Lehrpersonen Essodinm Alitiloh essodinmlitiloh@eduluch Mrkus T Schmid mrkustschmid@eduluch Roel Zuidem roelzuidem@eduluch Klssen Prüfungsdtum Freitg, 25 Mi 2018 Prüfungsduer Erlubte Hilfsmittel

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt (Ω, P) ein diskreter Whrscheinlichkeitsrum,

Mehr

Theoretische Physik IV - Blatt 3

Theoretische Physik IV - Blatt 3 Theoretische Physi IV - Bltt 3 Christopher Bronner, Frn Essenberger FU Berlin 4.November 006 Aufgbe 5 Energieeigenfuntionen Uns ist folgendes Potentil gegeben, wobei V 0 > 0 sei: V (x) V 0 bei x [, ] V

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung mthphys-online Abschlussprüfung Berufliche Oberschule Mthemtik Nichttechnik - A II - Lösung Teilufgbe. Der Grph G f einer gnzrtionlen Funktion f dritten Grdes besitzt den Extrempunkt E( / ), 7 schneidet

Mehr

6.4 Die Cauchysche Integralformel

6.4 Die Cauchysche Integralformel Die Cuchysche Integrlformel 6.4 39 Abb 6 Integrtionswege im Fresnelintegrl r ir 2 r 6.4 Die Cuchysche Integrlformel Aus dem Cuchyschen Integrlst folgt eine fundmentle Formel für die Drstellung einer holomorphen

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel)

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel) Etrkpitel für M. Integrtion durch Substitution (Umkehrung der Kettenregel Beispiel : Berechnen Sie ds Integrl I = + d D die Wurzel eine innere Funktion ht, substituieren wir diese und leiten dnn b... z

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr