Reader Teil 5: Clusteranalyse

Größe: px
Ab Seite anzeigen:

Download "Reader Teil 5: Clusteranalyse"

Transkript

1 r. Katharina est Sommersemester Mai 2011 Reader Teil 5: Clusteranalyse WiMa-raktikum ei der Clusteranalyse wollen wir Gruppen in aten auffinden. ie Aufgabe ist, in vorhandenen aten Klassen resp. Cluster so zu bestimmen, dass sich die lemente einer Klasse ähneln währed diejenigen aus unterschiedlichen Klassen möglichst unterschiedlich sind. etrachten Sie dazu die Abbildung 1. Wie ließe sich da gruppieren? Relativer Anteil der andwirtschaft in % ruttosozialprodukt Abbildung 1: ie aten sind rhebungen der U aus dem Jahr ie waagrechte Achse zeigt das ruttosozialprodukt, die senkrechte den relativen Anteil der andwirtschaft am ruttosozialprodukt. ie unkte stellen die änder da, sind jedoch unbeschriftet. Seite 1 von 5

2 Katharina est: Wima-raktikum Reader 1 Vorgehen der Clusteranalyse ie Verfahren der Clusteranalyse unterscheiden sich im Aufbau in ihrem istanz- bzw. Ähnlichkeitsbegriff und ihrer algorithmischen Ausrichtung. artitionierende Verfahren ine Zielfunktion soll optimiert werden. Zu diesem Zweck wird eine artition der unkte festgelegt und diese werden mittels ermutationen und anderen Austauschfunktionen den einzelnen Klassen zugeordnet. Hierbei ist die Anzahl der Klassen von vornherein feststehend. Hierarchische Verfahren s kann der top-down oder der bottom-up Ansatz gewählt werden. abei wird von der feinsten (jedes lement in einer eigenen Menge) resp. gröbsten artition (eine Menge) ausgegangen. Anschließend werden diese artitionen zusammengefasst resp. aufgespalten. Augenscheinlich ist, dass hier eine Abbruchbedingung von Nöten ist, denn sonst endet man mit der gröbsten resp. feinsten artition. 2 istanz- und Ähnlichkeitsmaße 2.1 efinition des istanzmaßes in istanzmaß auf dem Raum S ist eine Abbildung δ : S S [0, ) mit δ(x, x) = 0 und δ(x, y) = δ(y, x) für x, y S. Natürlich ist eine Metrik auch ein istanzsmaß. er Abstand zweier eobachtungen wird durch den Abstand ihrer Merkmalsvektoren angegeben, gemessen mit δ. 2.2 eispiele von istanzmaßen ie bekanntesten istanzmaße sind durch p-normen erzeugte Metriken, genannt Minkowski-Metriken. abei ist δ p (x, y) = x y p und ( n ) 1/p x p := x i p, (1) i=1 die bekanntesten istanzmaße sind p = 1: Manhattan-Metrik, p = 2: uklidische Abstand, p = : Maximumsabstand. Seite 2 von 5

3 Katharina est: Wima-raktikum Reader in weiteres wichtiges istanzmaß ist die Mahalanobis-istanz, gegeben durch wobei δ S := S y,n := 1 n 1 ( (y i y j ) T S y,n 1 (y i y j )) 1/2, (2) n i=1 die empirische Kovarianzmatrix der Werte y 1,... y n R r ist. (y i y j )(y i y j ) T (3) 2.3 igenschaften von istanzmaßen Skaleninvarianz in istanzmaß δ ist skaleninvariant auf der Menge {y 1,..., y n }, falls δ(y i, y j ) = δ(αy i, αy j ) gilt für alle i, j {1,..., n} und alle iagonalmatrizen α = diag(α 1,..., α r ). Translationsinvarianz in istanzmaß δ ist translationsinvariant auf der Menge {y 1,..., y n }, falls δ(y i, y j ) = δ(y i + z, y j + z) gilt für alle i, j {1,..., n} und alle z R r. nvarianz unter orthogonalen Transformationen in istanzmaß δ ist invariant unter orthogonalen Transformationen auf der Menge {y 1,..., y n }, falls δ(y i, y j ) = δ(αy i, αy j ) gilt für alle i, j {1,..., n} und alle orthogonalen Matrizen α, d. h. α T α = r, wobei r die inheitsmatrix des R r ist. ie Minkovski-Metriken sind zwar translationsinvariant, jedoch nicht skaleninvariant. er euklidische Abstand ist darüber hinaus noch invariant unter orthogonalen Transformationen. ie Mahalanobis-istanz ist so beliebt, da sie sowohl skalen- als auch translationsinvariant ist, desweiteren auch invariant unter orthogonalen Transformationen. 2.4 efinition des Ähnlichkeitsmaßes in Ähnlichkeitsmaß auf dem Raum S ist eine Abbildung ρ : S S [0, 1] mit ρ(x, x) = 1 und ρ(x, y) = ρ(y, x) für x, y S. Natürlich sind istanz- und Ähnlichkeitsmaße verwandt, allein schon dadurch, dass zwei unkte, die bezüglich eines istanzmaßes einen kleinen Abstand haben, ähnlich sind. Überlegen Sie sich, wie diese ineinander übergeführt werden können. nsbesondere bei kategorialen aten werden lieber (aus historischen Gründen) ausgewiesene Ähnlichkeitsmaße verwendet. 2.5 eispiele von Ähnlichkeitsmaßen ie bekanntesten Ähnlichkeitsmaße bei ummy-kodierten Merkmalsvektoren sind Seite 3 von 5

4 Katharina est: Wima-raktikum Reader Jacard-Koeffizient, gegeben durch ρ J (i, j) := y T i y j r (1 y i ) T (1 y j ) 1 {(1 y i ) T (1 y j )<r} + 1 {(1 y i ) T (1 y j )=r}, Czekanowsky-Koeffizient, gegeben durch ρ X (i, j) := 2y T i y j y T i y j + r (1 y i ) T (1 y j ) 1 {(1 y i ) T (1 y j )<r} + 1 {(1 y i ) T (1 y j )=r}, M-Koeffizient, gegeben durch ρ M (i, j) := yt i y j + (1 y i ) T (1 y j ). r 3 Hierarchische Verfahren 3.1 Single-inkage-Verfahren Hierbei wird der Abstand zweier Mengen A, als der minimale Abstand der lemente, δ(a, ) = min δ(i, j) i A,j definiert. ie Methode wird als Single-inkage- oder Nearest-Neighbour-Verfahren bezeichnet. 3.2 Complete-inkage-Verfahren er Abstand zweier Mengen A, ist der maximale Abstand der lemente, δ(a, ) = max δ(i, j). i A,j ie Methode wird als Complete-inkage- oder urthest-neighbour-verfahren bezeichnet. 3.3 Average-inkage-Verfahren er Abstand zweier Mengen A, mit A = n A, = n wird hier gemittelt über die inzelabstände, definiert. δ(a, ) = 1 n A n i A j δ(i, j) Seite 4 von 5

5 Katharina est: Wima-raktikum Reader single N K average complete median K N N K N K Abbildung 2: endrogramme der oberen andwirtschaftsdaten für verschiedene hierarchische Verfahren, von links nach rechts: single linkage, average linkage, complete linkage, median. 3.4 Zentroid- und Median-Verfahren ei dieser Abstandsmessung wird jeweils ein Schwerpunkt der Menge gebildet, also Y A := 1 n A i A y i und Y := 1 n j y j. as Zentroid-Verfahren gibt dann als Abstand zweier Mengen δ(a, ) = δ 2 (Y A, Y ) 2, während das Median-Verfahren δ(a, ) = δ 1 (Y A, Y ), wählt. 4 Abbruch des hierarchischen rozesses 4.1 arstellung der Clusterbildung as Vorgehen des Vereinigens kann mit einem endrogramm dargestellt werden. Hierbei werden Klassen minimaler istanz verbunden. ie istanzen werden durch die Abstände zwischen den Verbindungen kodiert, siehe dazu die Abbildung 2 So kann visuell eine geeignete istanz, in der das Verfahren abgebrochen wird, bestimmt werden. arüber hinaus erhält man eine schöne Visualisierung des ffektes der verschiedenen Abstandsmaße. 4.2 Clusteranzahl as visuelle Vorgehen von oben kann auch funktional aufbereitet werden. azu wird eine unktion ϕ mittels ϕ(k) := min δ(a, ) (4) A, artition zur Zeit k+1 definiert, die Abstände der Zukunft abbildet und deren Steigung dann ein Abbruchkriterium liefert. Seite 5 von 5

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Ziel der Clusteranalyse: Bilde Gruppen (cluster) aus einer Menge multivariater Datenobjekte (stat

Mehr

4.Tutorium Multivariate Verfahren

4.Tutorium Multivariate Verfahren 4.Tutorium Multivariate Verfahren - Clusteranalyse - Hannah Busen: 01.06.2015 und 08.06.2015 Nicole Schüller: 02.06.2015 und 09.06.2015 Institut für Statistik, LMU München 1 / 17 Gliederung 1 Idee der

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Lineare Regression Zweck: Vorhersage x Dimensionsreduktion x x Klassifizierung x x Hauptkomponentenanalyse Korrespondenzanalyse Clusteranalyse Diskriminanzanalyse Eigenschaften:

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr

Entscheidungen bei der Durchführung einer Cluster-Analyse

Entscheidungen bei der Durchführung einer Cluster-Analyse 7712Clusterverfahren Entscheidungen bei der Durchführung einer Cluster-Analyse nach: Eckes, Thomas, und Helmut Roßbach, 1980: Clusteranalysen; Stuttgart:Kohlhammer A. Auswahl der Merkmale Festlegung des

Mehr

4.4 Hierarchische Clusteranalyse-Verfahren

4.4 Hierarchische Clusteranalyse-Verfahren Clusteranalyse 18.05.04-1 - 4.4 Hierarchische Clusteranalyse-Verfahren Ablauf von hierarchischen Clusteranalyse-Verfahren: (1) Start jedes Objekt sein eigenes Cluster, also Start mit n Clustern (2) Fusionierung

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Oliver Muthmann 31. Mai 2007 Gliederung 1 Einführung 2 Varianzanalyse (MANOVA) 3 Regressionsanalyse 4 Faktorenanalyse Hauptkomponentenanalyse 5 Clusteranalyse 6 Zusammenfassung Komplexe

Mehr

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten Projektgruppe Jennifer Post Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten 2. Juni 2010 Motivation Immer mehr Internet-Seiten Immer mehr digitale Texte Viele Inhalte ähnlich oder gleich

Mehr

Strukturerkennende Verfahren

Strukturerkennende Verfahren Strukturerkennende Verfahren Viele Verfahren der multivariaten Datenanalyse dienen dazu, die in den Daten vorliegenden Strukturen zu erkennen und zu beschreiben. Dabei kann es sich um Strukturen sehr allgemeiner

Mehr

Lösungen zu den Aufgaben zur Multivariaten Statistik Teil 4: Aufgaben zur Clusteranalyse

Lösungen zu den Aufgaben zur Multivariaten Statistik Teil 4: Aufgaben zur Clusteranalyse Prof. Dr. Reinhold Kosfeld Fachbereich Wirtschaftswissenschaften Universität Kassel Lösungen zu den Aufgaben zur Multivariaten Statistik Teil 4: Aufgaben zur Clusteranalyse 1. Erläutern Sie, wie das Konstrukt

Mehr

Ähnlichkeits- und Distanzmaße

Ähnlichkeits- und Distanzmaße Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8-1 - Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8 -

Mehr

Clustern: Voraussetzungen

Clustern: Voraussetzungen Clustering Gruppen (Cluster) ähnlicher Elemente bilden Elemente in einem Cluster sollen sich möglichst ähnlich sein, u. den Elementen in anderen Clustern möglichst unähnlich im Gegensatz zu Kategorisierung

Mehr

Clustering 2010/06/11 Sebastian Koch 1

Clustering 2010/06/11 Sebastian Koch 1 Clustering 2010/06/11 1 Motivation Quelle: http://www.ha-w.de/media/schulung01.jpg 2010/06/11 2 Was ist Clustering Idee: Gruppierung von Objekten so, dass: Innerhalb einer Gruppe sollen die Objekte möglichst

Mehr

Die Clusteranalyse 24.06.2009. Clusteranalyse. Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele. methodenlehre ll Clusteranalyse

Die Clusteranalyse 24.06.2009. Clusteranalyse. Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele. methodenlehre ll Clusteranalyse Clusteranalyse Thomas Schäfer SS 2009 1 Die Clusteranalyse Grundidee Mögliche Anwendungsgebiete gg Vorgehensweise Beispiele Thomas Schäfer SS 2009 2 1 Die Clusteranalyse Grundidee: Eine heterogene Gesamtheit

Mehr

Clusteranalyse. Mathematische Symbole Anzahl der Objekte, Versuchspersonen

Clusteranalyse. Mathematische Symbole Anzahl der Objekte, Versuchspersonen Clusteranalyse Ziel: Auffinden von Gruppen ( Cluster ) ähnlicher Obekte (bezogen auf die ausgewählten Variablen). Obekte i selben Cluster haben ähnliche Eigenschaften, Obekte in verschiedenen Clustern

Mehr

Ziel: Unterteilung beobachteter Objekte in homogene Gruppen. Vorab meist weder Anzahl noch Charakteristika der Gruppen bekannt.

Ziel: Unterteilung beobachteter Objekte in homogene Gruppen. Vorab meist weder Anzahl noch Charakteristika der Gruppen bekannt. 8 Clusteranalyse Ziel: Unterteilung beobachteter Objekte in homogene Gruppen. Vorab meist weder Anzahl noch Charakteristika der Gruppen bekannt. Anwendungsbeispiele: Mikrobiologie: Ermittlung der Verwandtschaft

Mehr

Einführung in die Ähnlichkeitsmessung

Einführung in die Ähnlichkeitsmessung Einführung in die Ähnlichkeitsmessung Reading Club SS 2008 Similarity Stefanie Sieber stefanie.sieber@uni-bamberg.de Lehrstuhl für Medieninformatik Otto-Friedrich-Universität Bamberg Agenda Worum geht

Mehr

1 Grundlagen der Numerik

1 Grundlagen der Numerik 1 Grundlagen der Numerik 1.1 Gleitpunkt-Arithmetik Es gibt nur endlich viele Zahlen auf dem Computer. Gleitpunktzahl: x = σmb E σ: Vorzeichen B: Basis (feste Zahl >1); M: Mantisse E: Exponent B = 2 : Dualzahl

Mehr

Charakterisierung von 1D Daten

Charakterisierung von 1D Daten Charakterisierung von D Daten Mittelwert: µ, Schätzung m x = x i / n Varianz σ2, Schätzung: s2 = (s: Standardabweichung) Höhere Momente s 2 = ( x i m x ) 2 n ( ) Eine Normalverteilung ist mit Mittelwert

Mehr

Ähnlichkeits- und Distanzmaße

Ähnlichkeits- und Distanzmaße Einheit 1 Ähnlichkeits- und Distanzmaße IFAS JKU Linz c 2015 Multivariate Verfahren 1 0 / 41 Problemstellung Ziel: Bestimmung von Ähnlichkeit zwischen n Objekten, an denen p Merkmale erhoben wurden. Die

Mehr

Unüberwachtes Lernen

Unüberwachtes Lernen Unüberwachtes Lernen Mustererkennung und Klassifikation, Vorlesung No. 12 M. O. Franz 17.01.2008 Übersicht 1 Hauptkomponentenanalyse 2 Nichtlineare Hauptkomponentenanalyse 3 K-Means-Clustering Übersicht

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Forschungsmethodik II, SS 2010

Forschungsmethodik II, SS 2010 Forschungsmethodik II, SS 2010 Michael Kickmeier-Rust Teil 5, 26. Mai 2010 Prinzipien statistischer Verfahren: Conclusio 1 Prinzipien statistischer Verfahren > χ 2 Beispiel: 4-Felder χ 2 Beobachtet: Erwartet:

Mehr

VII Unüberwachte Data-Mining-Verfahren

VII Unüberwachte Data-Mining-Verfahren VII Unüberwachte Data-Mining-Verfahren Clusteranalyse Assoziationsregeln Generalisierte Assoziationsregeln mit Taxonomien Formale Begriffsanalyse Self Organizing Maps Institut AIFB, 00. Alle Rechte vorbehalten.

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

Klassifikation und Ähnlichkeitssuche

Klassifikation und Ähnlichkeitssuche Klassifikation und Ähnlichkeitssuche Vorlesung XIII Allgemeines Ziel Rationale Zusammenfassung von Molekülen in Gruppen auf der Basis bestimmter Eigenschaften Auswahl von repräsentativen Molekülen Strukturell

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Clusteranalyse. Florian Löwenstein. Clusteranalyse eoda GmbH

Clusteranalyse. Florian Löwenstein. Clusteranalyse eoda GmbH Florian Löwenstein www.eoda.de 1 Übersicht Hypothesenfreies Verfahren Gehört zur Familie der Data-Mining-Techniken Ganze Verfahrensfamilie Ziel: Informationsreduktion und damit verbunden Abstraktion Typische

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete

Mehr

Formelsammlung zur Lehrveranstaltung Statistische Analyseverfahren. 4. Februar 2019

Formelsammlung zur Lehrveranstaltung Statistische Analyseverfahren. 4. Februar 2019 Formelsammlung zur Lehrveranstaltung Statistische Analyseverfahren 4 Februar 2019 Inhaltsverzeichnis 1 Diskriminanzanalyse 1 11 ML-Diskrimination für zwei Normalverteilungen mit identischen Kovarianzmatrizen

Mehr

... Text Clustern. Clustern. Einführung Clustern. Einführung Clustern

... Text Clustern. Clustern. Einführung Clustern. Einführung Clustern Clustern Tet Clustern Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so daß: Beispiele innerhalb eines Clusters sich sehr ähnlich Beispiele in verschiedenen Clustern

Mehr

P-Median Problem. Michael Enser Anzahl der ausgewählten Standorte oder Mediane

P-Median Problem. Michael Enser Anzahl der ausgewählten Standorte oder Mediane P-Median Problem Michael nser 4..20 Inhaltsverzeichnis Allgemeines p-median-problem. Allgemeine ention............................. 2.2 in kleines eispiel.............................. 2 2 -median Problem

Mehr

Determinante und Inverse

Determinante und Inverse Vorzeigeaufgaben: Determinante und Inverse Bestimmen Sie für welche a R die folgende Matrix invertierbar ist und berechnen Sie deren Inverse: A = a cos(x) sin(x) a sin(x) cos(x) Bestimmen Sie ob folgende

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Methoden der Klassifikation und ihre mathematischen Grundlagen

Methoden der Klassifikation und ihre mathematischen Grundlagen Methoden der Klassifikation und ihre mathematischen Grundlagen Mengenlehre und Logik A B "Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti Dr. V. Gradinaru T. Welti Herbstsemester 27 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Serie Aufgabe. Multiple Choice: Online abzugeben..a) Bezüglich des euklidischen Skalarprodukts in R

Mehr

Numerik I. Aufgaben und Lösungen

Numerik I. Aufgaben und Lösungen Universität zu Köln SS 2009 Mathematisches Institut Prof Dr C Tischendorf Dr M Selva, mselva@mathuni-koelnde Numerik I Musterlösung Übungsblatt 4, Kondition (5 Punkte) Aufgaben Lösungen (4 Punkte) Zeigen

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Clusteranalyse. Gliederung. 1. Einführung 2. Vorgehensweise. 3. Anwendungshinweise 4. Abgrenzung zu Faktorenanalyse 5. Fallbeispiel & SPSS

Clusteranalyse. Gliederung. 1. Einführung 2. Vorgehensweise. 3. Anwendungshinweise 4. Abgrenzung zu Faktorenanalyse 5. Fallbeispiel & SPSS Clusteranalyse Seminar Multivariate Verfahren SS 2010 Seminarleiter: Dr. Thomas Schäfer Theresia Montag, Claudia Wendschuh & Anne Brantl Gliederung 1. Einführung 2. Vorgehensweise 1. Bestimmung der 2.

Mehr

17. Orthogonalsysteme

17. Orthogonalsysteme 17. Orthogonalsysteme 17.1. Winkel und Orthogonalität Vorbemerkung: Sei V ein Vektorraum mit Skalaprodukt, und zugehöriger Norm, dann gilt nach Cauchy-Schwarz: x, y V \ {0} : x, y x y 1 Definition: (a)

Mehr

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt: 5 Zur Geometrie euklidischer Bewegungen 5.1 Bewegungen Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Mehr

Inhaltsverzeichnis 1. EINLEITUNG...1

Inhaltsverzeichnis 1. EINLEITUNG...1 VII Inhaltsverzeichnis Vorwort...V Verzeichnis der Abbildungen...XII Verzeichnis der Tabellen... XVI Verzeichnis der Übersichten...XXII Symbolverzeichnis... XXIII 1. EINLEITUNG...1 2. FAKTORENANALYSE...5

Mehr

Probeklausur zur Linearen Algebra 2

Probeklausur zur Linearen Algebra 2 Probeklausur zur Linearen Algebra Sommersemester Universität Heidelberg Mathematisches Institut Dr. D. Vogel Michael Maier Lösung Aufgabe. a) Die Aussage stimmt. Beweis: Da a (b) und b (a) gibt es c,d

Mehr

Chemometrie: von Daten zu Information

Chemometrie: von Daten zu Information Chemometrie: von Daten zu Information Chemometrie: Definition Warnungen Daten von Anscombe: numerisch x y x y x y x y 0 8.04 0 9.4 0 7.46 8 6.58 8 6.95 8 8.4 8 6.77 8 5.76 3 7.58 3 8.74 3 2.74 8 7.7 9

Mehr

Hilberts Drittes Problem

Hilberts Drittes Problem Hilberts rittes Problem Oliver Fortmeier Auf dem internationalen Kongress für Mathematiker 1900 in Paris formulierte Hilbert sein rittes Problem: Zwei Tetraeder mit gleicher Grundfläche und von gleicher

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B Sommersemester 6 Prof. Dr. Alexander Mirlin Musterlösung: Blatt. PD Dr. Igor

Mehr

Grundlagen der Statistik Übung FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft

Grundlagen der Statistik Übung FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Grundlagen der Statistik Übung 5 2009 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Vektoren - Basiswechsel - Matrix

Vektoren - Basiswechsel - Matrix Vektoren - asiswechsel - Matrix 1. Prinzip er Zusammenhang zwischen zwei asissystemen sollen formal eleganter durchgeführt werden. Ein Nachteil des "einfachen" Verfahrens - siehe Seite V0 - ist, dass teilweise

Mehr

Clustering. Methods Course: Gene Expression Data Analysis -Day Four. Rainer Spang

Clustering. Methods Course: Gene Expression Data Analysis -Day Four. Rainer Spang Clustering Methods Course: Gene Expression Data Analysis -Day Four Rainer Spang Eine Krankheit Drei alternative Therapien Klinische Studie Im Mittel 75% 55% 35% Erfolg Drei Subtypen der Krankheit A B C

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

Formelsammlung Klassische Feldtheorie

Formelsammlung Klassische Feldtheorie Formelsammlung Klassische Feldtheorie 6 (Pseudo-)Orthogonale Gruppen 1. Definition Gruppe: Menge G mit einer Operation (g 1,g 2 ) G G g 1 g 2 G (Multiplikation) (1) die folgende Bedingungen erfüllt: Assoziativität:

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen LACE Katharina Morik LS 8 Künstliche Intelligenz Fakultät für Informatik Technische Universität Dortmund 28.1.2014 1 von 71 Gliederung 1 Organisation von Sammlungen Web 2.0

Mehr

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Stefan K. 4.Übungsblatt Algebra I Aufgabe 1 gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler von G zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Beweis: Seien

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

Inhalt. 1 Unvollständige Clusteranalyseverfahren 35

Inhalt. 1 Unvollständige Clusteranalyseverfahren 35 Inhalt i Einleitung 15 1.1 Zielsetzung clusteranalytischer Verfahren 15 1.2 Homogenität als Grundprinzip der Bildung von Clustern 16 1.3 Clusteranalyseverfahren 18 1.4 Grundlage der Clusterbildung 20 1.5

Mehr

Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3

Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3 Zusättzlliiche Übungen zu lliinearren Funkttiionen Aufgabe Zeichnen Sie die Geraden mit den Gleichungen: a) y = x + ; b) y + x = ; c) f(x) = x ; d) x - x + e) + =. Was fällt bei der Gerade e) auf? Aufgabe

Mehr

6. Multivariate Verfahren Zufallszahlen

6. Multivariate Verfahren Zufallszahlen 4. Zufallszahlen 6. Multivariate Verfahren Zufallszahlen - werden nach einem determinist. Algorithmus erzeugt Pseudozufallszahlen - wirken wie zufäll. Zahlen (sollen sie jedenfalls) Algorithmus: Startwert

Mehr

Zusammenfassung des 2. Abends

Zusammenfassung des 2. Abends lgorithmen in der iologie r. Hans-Joachim öckenhauer r. ennis Komm Zusammenfassung des. bends Zürich, 0. pril 0 lignment-verfahren Für einen Überblick über die lignment-lgorithmen zur estimmung der Ähnlichkeit

Mehr

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 9. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching November, 07 Erinnerung Ein Skalarprodukt ist eine Abbildung, : E n E n E, (v, w) v, w n k v kw k so dass:

Mehr

Hans Delfs. Übungen zu Mathematik III für Medieninformatik

Hans Delfs. Übungen zu Mathematik III für Medieninformatik Hans Delfs Übungen zu Mathematik III für Medieninformatik 1 RÄUMLICHE DARSTELLUNGEN VON OBJEKTEN 1 1 Räumliche Darstellungen von Objekten Der Einheitswürfel ist der achsenparallele Würfel in A 3, der von

Mehr

Lösungen zur Klausur über Lie-Algebren

Lösungen zur Klausur über Lie-Algebren Universität zu Köln Sommersemester 2017 Mathematisches Institut 19. Juli 2017 Prof. Dr. P. Littelmann Lösungen zur Klausur über Lie-Algebren Dies ist keine Muster -Lösung, sondern eine Hilfe um die Lösung

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Distanzen und Ähnlichkeitsmaÿe

Distanzen und Ähnlichkeitsmaÿe Distanzen und Ähnlichkeitsmaÿe Michael Siebers Kognitive Systeme Universität Bamberg 25. Mai 2011 M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai 2011 1 / 14 Agenda 1 Distanzen 2 Ähnlichkeitsmaÿe

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

microm Gruppen Gruppen-Tabelle bzw. die Gruppen im Überblick

microm Gruppen Gruppen-Tabelle bzw. die Gruppen im Überblick microm ruppen rob skizziert n den Städten und auf dem existieren ganz unterschiedliche Wohngebiete wie z.. Städtische Problemgebiete und bevölkerung. ie microm ruppen beschreiben die Wohnumfelder der Menschen,

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

Clustering. Clustering:

Clustering. Clustering: Clustering Clustering: Gruppierung und Einteilung einer Datenmenge nach ähnlichen Merkmalen Unüberwachte Klassifizierung (Neuronale Netze- Terminologie) Distanzkriterium: Ein Datenvektor ist zu anderen

Mehr

4.3 Hierarchisches Clustering

4.3 Hierarchisches Clustering 4.3 Hierarchisches Clustering k-means teilt Daten in disjunkte flache Cluster auf, die in keiner Beziehung zueinander stehen Hierarchische Clusteranalyse erzeugt eine Folge C 1,...,C n von Clusterings,

Mehr

3: Bewegungen und Ähnlichkeiten:

3: Bewegungen und Ähnlichkeiten: 3: Bewegungen und Ähnlichkeiten: Was sind kongruente (bzw. deckungsgleiche) Figuren? [Box2-94] [Kra2-138] [Rei2-173a] [Rei2-173b] Zwei Teilmengen M,M einer Euklidischen Ebene (E,G) heißen kongruent, wenn

Mehr

Klassifikation durch direkten Vergleich (Matching)

Klassifikation durch direkten Vergleich (Matching) Klassifikation durch direkten Vergleich (Matching) Eine triviale Lösung für die Klassifikation ergibt sich durch direkten Vergleich des unbekannten Musters in allen Erscheinungsformen der Äquivalenzklasse

Mehr

Wenn PCA in der Gesichtserkennung eingesetzt wird heißen die Eigenvektoren oft: Eigenfaces

Wenn PCA in der Gesichtserkennung eingesetzt wird heißen die Eigenvektoren oft: Eigenfaces EFME-Zusammenfassusng WS11 Kurze Fragen: Wenn PCA in der Gesichtserkennung eingesetzt wird heißen die Eigenvektoren oft: Eigenfaces Unter welcher Bedingung konvergiert der Online Perceptron Algorithmus?

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

Clustering. Uwe Reichel IPS, LMU München 19. Mai 2010

Clustering. Uwe Reichel IPS, LMU München 19. Mai 2010 Clustering Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 19. Mai 2010 Inhalt Grundidee Vektoralgebra Distanzmaße Clusterrepräsentation Flaches Clustern Single Pass Reallokation Kmeans

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff.

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. 2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. a k y (k) (x) = b(x) k=0 (L) mit a 0, a 1,..., a n

Mehr

Clusteranalyse und Display-Methoden

Clusteranalyse und Display-Methoden Ziel: Erkennen von Strukturen in Daten Vergleich der Algorithmen für die Clusteranalyse Beurteilung verschiedener Displaymethoden Stabilitätsdiagramme Betreuer: Dipl.-Chem. Stefan Hesse IAAC, Lehrbereich

Mehr

Kapitel ML: X (Fortsetzung)

Kapitel ML: X (Fortsetzung) Kapitel ML: X (Fortsetzung) X. Clusteranalyse Einordnung Data Mining Einführung in die Clusteranalyse Hierarchische Verfahren Iterative Verfahren Dichtebasierte Verfahren Cluster-Evaluierung ML: X-31 Cluster

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop Mathematisches Kaleidoskop II Materialien Teil 3 Dr. Hermann Dürkop E-Mail: info@ermanus.de .3.3 Noch zwei Isomorphie-Beispiele Beispiel : Wir betrachten die Symmetrien eines nichtquadratischen Rechtecks.

Mehr

Dr. Ralf Gutfleisch, Stadt Frankfurt a.m.

Dr. Ralf Gutfleisch, Stadt Frankfurt a.m. Zentrale Fragestellungen: Was Wie Wann ist eine Clusteranalyse? wird eine Clusteranalyse angewendet? wird eine Clusteranalyse angewendet? Clusteranalyse = Gruppenbildungsverfahren = eine Vielzahl von Objekten

Mehr

Rudolf Brinkmann Seite und W = {x 3 x 6}

Rudolf Brinkmann Seite und W = {x 3 x 6} Rudolf Brinkmann Seite 0.0.008 Lineare Funktionen Es soll der Graph der Funktion f = {,y y = f() = } in den Bereichen D { } = und W = { 6} - - 0 f() = -6-0 6 9 erstellt werden. 6 6 5 0 Definition Eine

Mehr

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung M.Sc. Brice Hakwa hakwa@uni-wuppertal.de Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk

Mehr