Diskriminatives syntaktisches Reranking für SMT

Größe: px
Ab Seite anzeigen:

Download "Diskriminatives syntaktisches Reranking für SMT"

Transkript

1 Diskriminatives syntaktisches Reranking für SMT Fortgeschrittene Themen der statistischen maschinellen Übersetzung Janina Nikolic

2 2 Agenda Problem: Ranking des SMT Systems Lösung: Reranking-Modell Nutzung Perzeptron-Algorithmus Besonderheit: syntaktische Merkmale Evaluation

3 3 Problemstellung Komponenten der SMT Systeme: Übersetzungsmodell, Sprachmodell, Reordering Modell Ziel: Verbesserung des Sprachmodells Ausgangspunkt: SMT System liefert als Output eine Liste der besten n Übersetzungen Problem: Ranking nicht immer das Beste

4 4 Der Himmel wird morgen blau sein The sky blue tomorrow The sky will be blue tomorrow Sky will be blue tomorrow

5 5 Lösung: Reranking SMT System Reranking Algorithmus Beste Übersetzung

6 6 Reranking durch Klassifikation Datensätze Klassifizierte Stichprobe Merkmale Klasse Lernen (Training) Modell Nicht klassifizierte Datensätze Anwenden auf??

7 7 Was wird klassifiziert? Daten werden Klasse zugeordnet Daten: übersetzte Sätze aus der Liste (bzw. deren Merkmale) Entspricht Referenzübersetzung (oracle best) Klasse 1, sonst Klasse 0 Merkmale durch Merkmalsvektor repräsentiert Anpassbare Gewichtungen für jedes Merkmal (Gewichtungsvektor): Wie entscheidend ist ein Merkmal für eine gute Übersetzung?

8 8 Beispiel Gegeben: Trainingsmenge Gesucht: Gewichtsvektor, der die Trainingsmenge korrekt klassifiziert

9 9 Diskriminatives Sprachmodell (DLM) Input: Liste der n-besten Übersetzungen Ausgabe des SMT Systems Extraktion syntaktischer Merkmale jedes Satzes, Kodierung in Merkmalsvektor durch Parsbäume oder POS- Tagger Perzeptron-Algorithmus Vergleich der Merkmale mit Referenzsatz Ausgabe: Gewichtungsvektor Reranking der Liste Auswahl der besten Übersetzung

10 10 Merkmalsvektoren Beschreiben die syntaktischen Eigenschaften der Sätze: enthält ein Verb, Verb Agreement etc. Trainingsdaten, mit denen Modell gelernt wird Testdaten, die klassifiziert werden Jeder Merkmalsvektor gehört ausschließlich zu einer Klasse

11 11 Wie werden die syntaktischen Merkmale extrahiert?

12 12 Merkmalsextraktion Vollständige Parsbäume POS Sequenzen

13 13 Parsbäume Drei Arten von syntaktischen Informationen werden extrahiert Informationen über Sequenzen Head-Informationen (Head = Kern einer Phrase) Kontextfreie Grammatikregeln (Informationen über NT-Folgen)

14 14 Beispiel Parsbaum S NP VP DT NNP MD VP The sky will VB ADVP be JJ RB blue tomorrow

15 15 Unterscheidung von Sequenzen POS The/DT sky/nnp will/md be/vb blue/jj tomorrow/rb SEQ-B: Teilstrukturen (chunks) The/NP b sky/np c will/vp b be/vp b blue/advp b tomorrow/advp c SEQ-C: Kombination der ersten beiden Strukturen The/DT-NP b

16 16 POS Tagger Zwei Tagging-Ansätze Conditional Random Fields Einfacher Unigramm-Tagger Nutzt keinen Kontext <UNK> als Tag für unbekannte Wörter

17 17 Beispiele für Merkmale Abfolgen von POS-Tags Häufigkeit von POS-Typen für eine bestimmte Satzlänge: length(x)/num(pos,x) Fehlen gewisser POS-Typen (z.b. Verb) Verb Agreement ( George was shouting and screaming )

18 18 Merkmalsextraktion erfolgreich Was nun?

19 19 Perzeptron-Algorithmus Künstliches neurales Netz mit anpassbaren Gewichtungen und Schwellwert Bildet biologisches Nervensystem nach (ein Neuron) Eingabe: Merkmalsvektor eines übersetzten Satzes Aufgabe: Lernen des optimalen Gewichtungsvektors aus den Trainingsbeispielen

20 20 Perzeptron-Algorithmus Zu Beginn Gewichtungsvektor 0 Bestimmung der besten Übersetzung (oracle best) hinsichtlich BLEU ausgewählter Satz aus der Liste: Skalarprodukt aus Merkmalsvektor und Gewichtungsvektor Wenn ausgewählter Satz mit oracle best Satz übereinstimmt, fertig (Wert größer als Schwellenwert) Sonst: Gewichtungsvektor wird angepasst

21 21 Perzeptron-Algorithmus y i : oracle best z i : ausgewählter Satz der Liste z i = ɸ(z) * ω Merkmalsvektor Gewichtsvektor wenn z i y i Anpassung Gewichtsvektor

22 22 Anpassung Gewichtsvektor ω = ω + ɸ(y i ) - ɸ(z i ) Neue Gewichtung Alte Gewichtung Änderung: gewünschte Ausgabe tatsächliche Ausgabe

23 23 Reranking Jeder Satz der n-best Liste erhält einen neuen Score, der sich folgendermaßen ergibt: Gewichteter Score des SMT-Systems für den Satz + Gewichtsvektor * Merkmalsvektor Satz mit dem höchsten Score wird als beste Übersetzung ausgewählt

24 24 Evaluation Wie effektiv sind die verschiedenen syntaktischen Merkmale? Evaluierung von Arabisch-zu-Englisch Übersetzungen Testsets von NIST s MT-Eval von 2002 bis 2006, bezeichnet als MT02 bis MT06 Baseline SMT System: Moses

25 25 Evaluation - Genauigkeit der POS Tagger CM2 (für Development und Test Sets) POS Accuracy 94.4% CRF (Conditional Random Fields) 97.0% S-POS (simple tagger) 86.8%

26 26 Evaluation - Baseline Ergebnisse (BLEU) MT04 MT05 MT06 Moses DLM n-gram Oracle

27 27 Evaluation nach Merkmalen der Parsbäume MT04 MT05 MT06 Moses DLM n-gram n-gram + POS n-gram + SEQ-B n-gram + SEQ-C n-gram + CFG n-gram + H

28 28 Evaluation - Anteil an Sätzen, die einen Parse haben # Sätze p.p.s% MT % MT % MT % MT %

29 29 Evaluation Merkmale von POS Taggern und POS- Annotationen des Parsbaums MT04 MT05 MT06 DLM n-gram DLM n-gram + POS Verbesserung DLM n-gram + CRF Verbesserung DLM n-gram + S-POS Verbesserung

30 30 Evaluation POS Tag Häufigkeit, Fehlen von POS Typen, Verb Agreement MT04 MT05 MT06 + DLM n-gram S-POS+vn+dn S-POS+allnum S-POS+noall S-POS+verbagr

31 31 Evaluation n-gramm Precision Task System n-gram Precision (%) MT04 n-gram + Syntax Verbesserung (%) -0.1% 0.2% 0.5% 0.5% MT05 n-gram + Syntax Verbesserung (%) -0.04% 0.3% 0.5% 0.6% MT06 n-gram + Syntax Verbesserung (%) -0.2% 0.2% 0.4% 0.4%

32 32 Fazit Nutzen syntaktischer Merkmale Nutzen einfacher POS Tagger Signifikante Verbesserungen Zukünftig: mögliche Nutzung von partiellen Parsern weniger Informationen als bei Fullparsern, aber mehr als bei POS Taggern

33 Vielen Dank! 33

34 34 Quellen Discriminative Syntactic Reranking for Statistical Machine Translation, S. Carter & C. Monz, AMTA paderborn.de/fileadmin/informatik/ag- Kleine-Buening/files/ws11/ml11/folienneuronale-netze.pdf ative_lm_for_smt_zhifei_amta_08.pdf

Sharon Goldwater & David McClosky. Sarah Hartmann Advanced Topics in Statistical Machine Translation

Sharon Goldwater & David McClosky. Sarah Hartmann Advanced Topics in Statistical Machine Translation Sharon Goldwater & David McClosky Sarah Hartmann 13.01.2015 Advanced Topics in Statistical Machine Translation Einführung Modelle Experimente Diskussion 2 Einführung Das Problem Der Lösungsvorschlag Modelle

Mehr

Maschinelle Sprachverarbeitung: Part-of-Speech-Tagging

Maschinelle Sprachverarbeitung: Part-of-Speech-Tagging HUMBOLDT-UNIVERSITÄT ZU BERLIN Institut für Informatik Lehrstuhl Wissensmanagement Maschinelle Sprachverarbeitung: Part-of-Speech-Tagging Tobias Scheffer Ulf Brefeld POS-Tagging Zuordnung der Wortart von

Mehr

Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation. Yupeng Guo

Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation. Yupeng Guo Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation Yupeng Guo 1 Agenda Introduction RNN Encoder-Decoder - Recurrent Neural Networks - RNN Encoder Decoder - Hidden

Mehr

Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten

Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten Albert-Ludwigs-Universität zu Freiburg 13.09.2016 Maximilian Dippel max.dippel@tf.uni-freiburg.de Überblick I Einführung Problemstellung

Mehr

Satz Umstrukturierung für statistisch. Anna Schiffarth Dozentin: Miriam Kaeshammer Fortgeschrittene Methoden der statistisch maschinellen Übersetzung

Satz Umstrukturierung für statistisch. Anna Schiffarth Dozentin: Miriam Kaeshammer Fortgeschrittene Methoden der statistisch maschinellen Übersetzung Satz Umstrukturierung für statistisch maschinelle Übersetzung Anna Schiffarth Dozentin: Miriam Kaeshammer Fortgeschrittene Methoden der statistisch maschinellen Übersetzung Einführung Beschreibung einer

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung

Mehr

Vortrag SWP Gruppe 3

Vortrag SWP Gruppe 3 Translation Memories für automatische Patentübersetzung Institut für Computerlinguistik 22.07.2013 2 / 26 Inhaltsübersicht 1 2 3 4 5 6 3 / 26 Erinnerung Aus PatTR-Korpus SMT-System lernen Fuzzy Matches

Mehr

Named Entity Recognition auf Basis von Wortlisten

Named Entity Recognition auf Basis von Wortlisten Named Entity Recognition auf Basis von Wortlisten EDM SS 2017 Lukas Abegg & Tom Schilling Named Entity Recognition auf Basis von Wortlisten Lukas Abegg - Humboldt Universität zu Berlin Tom Schilling -

Mehr

Extraktion von Preordering-Regeln für Maschinelle Übersetzung

Extraktion von Preordering-Regeln für Maschinelle Übersetzung Extraktion von Preordering-Regeln für Maschinelle Übersetzung Gruppe4 -Otedama- Julian Hitschler, Benjamin Körner, Mayumi Ohta Computerlinguistik Universität Heidelberg Softwareprojekt SS13 Übersicht 1.

Mehr

Latent Vector Weighting. Word Meaning in Context

Latent Vector Weighting. Word Meaning in Context Latent Vector Weighting for Word Meaning in Context Tim Van de Cruys, Thierry Poibeau, Anna Korhonen (2011) Präsentation von Jörn Giesen Distributionelle Semantik 16.01.2012 1 Distributational Hypothesis

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl {peter,guta,rosendahl}@i6.informatik.rwth-aachen.de Vorbesprechung 4. Aufgabe 2. Juni 2017 Human Language

Mehr

So bewerten Sie einen Test

So bewerten Sie einen Test Fortgeschrittene Themen der statistische maschinelle Übersetzung (Advanced SMT) Evaluierung Miriam Kaeshammer Heinrich-Heine-Universität Düsseldorf Folien angepasst von T. Schoenemann Wintersemester 2014/15

Mehr

Probabilistische kontextfreie Grammatiken

Probabilistische kontextfreie Grammatiken Probabilistische kontextfreie Grammatiken Vorlesung Computerlinguistische Techniken Alexander Koller 08. Dezember 2015 Let s play a game Ich gebe Ihnen ein Nichtterminalsymbol. S, NP, VP, PP, oder POS-Tag

Mehr

Qualitätskriterien für MT-Systeme Machen Mensch und Maschinen dieselben Fehler? Konika Minolta Symposium am 24. Februar 2011 in Langenhagen

Qualitätskriterien für MT-Systeme Machen Mensch und Maschinen dieselben Fehler? Konika Minolta Symposium am 24. Februar 2011 in Langenhagen Qualitätskriterien für MT-Systeme Machen Mensch und Maschinen dieselben Fehler? Konika Minolta Symposium am 24. Februar 2011 in Langenhagen D.O.G. Dokumentation ohne Grenzen GmbH www.dog-gmbh.de Dr. F.

Mehr

Abusive Language Detection in Online User Content

Abusive Language Detection in Online User Content Abusive Language Detection in Online User Content Basierend auf Chikashi Nobata, Joel R. Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang (2016) Proseminar: Natural Language Processing and the Web

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Verfahren in der lexikalischen Semantik WS 2/22 Manfred Pinkal Beispiel: Adjektive im Wahrig-Korpus Frequenzen in einem kleinen Teilkorpus: n groß - -

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de 5. Mai 2017 Human Language Technology and Pattern Recognition Lehrstuhl

Mehr

Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen

Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen Mark Reinke Bachelorarbeit TU Dresden 17. Februar 2014 Webtabellen Warum sind Webtabellen von Bedeutung? Sie können relationale

Mehr

1/19. Kern-Methoden zur Extraktion von Informationen. Sebastian Marius Kirsch Back Close

1/19. Kern-Methoden zur Extraktion von Informationen. Sebastian Marius Kirsch Back Close 1/19 Kern-Methoden zur Extraktion von Informationen Sebastian Marius Kirsch skirsch@moebius.inka.de 2/19 Gliederung 1. Verfahren zur Extraktion von Informationen 2. Extraktion von Beziehungen 3. Maschinelles

Mehr

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Übung Aufgabe 5: Gen-Erkennung mit Maschinellen Lernen Mario Sänger Problemstellung Erkennung von Genen in Texten NEU: Beachtung von Multi-Token-Entitäten (B-/I-protein)

Mehr

Klassifikation von Textabschnitten

Klassifikation von Textabschnitten Klassifikation von Textabschnitten Am Beispiel von Stellenanzeigen (JASC - Job Ads Section Classifier) Gliederung 1. Einführung: Zu welchem Zweck machen wir das? 2. Klassifikation ein kurzer Überblick

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Mehrdeutigkeit der Wortart Einführung in die Computerlinguistik Statistische Modellierung und Evaluation WS 2008/2009 Manfred Pinkal Sie haben in Moskau liebe genossen Sie haben in Moskau liebe Genossen

Mehr

Automatisches Lernen von Regeln zur quellseitigen Umordnung

Automatisches Lernen von Regeln zur quellseitigen Umordnung Automatisches Lernen von Regeln zur quellseitigen Umordnung E I N A N S AT Z V O N D M I T R I Y G E N Z E L Duwaraka Murugadas Fortgeschrittene Methoden der statistischen maschinellen Übersetzung (Miriam

Mehr

Maschinelle Übersetzung

Maschinelle Übersetzung Maschinelle Übersetzung Kluge Andreas, 13IN-M basierend auf Computerlinguistik und Sprachtechnologie, 3. Auflage, Spektrum, Heidelberg 2010 19. Juni 2014 Übersicht Gewünschte Funktionalität Schwierigkeiten

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Linear nichtseparable Probleme

Linear nichtseparable Probleme Linear nichtseparable Probleme Mustererkennung und Klassifikation, Vorlesung No. 10 1 M. O. Franz 20.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten 16.08.2016 David Spisla Albert Ludwigs Universität Freiburg Technische Fakultät Institut für Informatik Gliederung Motivation Schwierigkeiten bei

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Peter Haider Uwe Dick Paul Prasse

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Peter Haider Uwe Dick Paul Prasse Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen NLP-Pipeline Tobias Scheffer Peter Haider Uwe Dick Paul Prasse NLP-Pipeline Folge von Verarbeitungsschritten für Informationsextraktion,

Mehr

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING Andreas Nadolski Softwareentwickler andreas.nadolski@enpit.de Twitter: @enpit Blogs: enpit.de/blog medium.com/enpit-developer-blog 05.10.2018, DOAG Big Data

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Peter Haider Paul Prasse

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Peter Haider Paul Prasse Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen NLP-Pipeline Tobias Scheffer Peter Haider Paul Prasse NLP-Pipeline Folge von Verarbeitungsschritten für Informationsextraktion,

Mehr

Institut für Informatik Lehrstuhl Maschinelles Lernen

Institut für Informatik Lehrstuhl Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen NLP-PipelinePipeline Tobias Scheffer Peter Haider Uwe Dick Paul Prasse NLP-Pipeline Folge von Verarbeitungsschritten für Informationsextraktion,

Mehr

TreeTagger. Deborah Watty

TreeTagger. Deborah Watty TreeTagger Deborah Watty POS-Tagging store Das ist ein Haus. Artikel Verb Artikel Nomen Nom The 1977 PCs could only store two pages Modalverb Adverb of data. Wir wissen: store kann Nomen oder Verb sein.

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Sprachtechnologien und maschinelle Übersetzung heute und morgen eine Einführung Martin Kappus (ZHAW)

Sprachtechnologien und maschinelle Übersetzung heute und morgen eine Einführung Martin Kappus (ZHAW) Martin Kappus (ZHAW) Ablauf: Warum sprechen wir heute über maschinelle Übersetzung? Geschichte und Ansätze Eingabe-/Ausgabemodi und Anwendungen 2 WARUM SPRECHEN WIR HEUTE ÜBER MASCHINELLE ÜBERSETZUNG?

Mehr

Evaluation und Training von HMMs

Evaluation und Training von HMMs Evaluation und Training von MMs Vorlesung omputerlinguistische Techniken Alexander Koller. Dezember 04 MMs: Beispiel initial p. a 0 0.8 0.7 0. Eisner 0. transition p. 0. 0.6 a 0.5 0. emission p. b () States

Mehr

NLP Eigenschaften von Text

NLP Eigenschaften von Text NLP Eigenschaften von Text Dr. Andreas Hotho Dominik Benz Beate Krause Sommersemester 2008 Folie: 1 Übersicht Einführung Eigenschaften von Text Words I: Satzgrenzenerkennung, Tokenization, Kollokationen

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Sommer-Semester 2008 Konzept-Lernen Konzept-Lernen Lernen als Suche Inductive Bias Konzept-Lernen: Problemstellung Ausgangspunkt:

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation

Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation Hochdimensionaler Eingaberaum {0,1} Z S quadratisch aufgemalt (zwecks besserer Visualisierung) als Retina bestehend

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2008/2009 Musterlösung für das 5. Übungsblatt Aufgabe 1: Covering-Algorithmus und Coverage-Space Visualisieren Sie den Ablauf des Covering-Algorithmus

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Klassifikation linear separierbarer Probleme

Klassifikation linear separierbarer Probleme Klassifikation linear separierbarer Probleme Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation linear

Mehr

Syntax-basierte maschinelle Übersetzung mit Baumübersetzern

Syntax-basierte maschinelle Übersetzung mit Baumübersetzern yntax-basierte maschinelle Übersetzung mit Baumübersetzern Andreas Maletti Leipzig 28. April 2015 Maschinelle Übersetzung Original Übersetzung (GOOGLE TRANLATE) The addressees of this paper are students

Mehr

PROBABILISTIC PARSING FOR GERMAN USING SISTER-HEAD DEPENDENCIES

PROBABILISTIC PARSING FOR GERMAN USING SISTER-HEAD DEPENDENCIES Ausgangsfrage PROBABILISTIC PARSING FOR GERMAN USING SISTER-HEAD DEPENDENCIES Irina Gossmann Carine Dombou 9. Juli 2007 INHALT Ausgangsfrage 1 AUSGANGSFRAGE 2 SYNTAX DES DEUTSCHEN + NEGRA 3 PROBABILISTISCHE

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

HOW TO AVOID BURNING DUCKS

HOW TO AVOID BURNING DUCKS HOW TO AVOID BURNING DUCKS EIN KOMBINIERTER ANSATZ ZUR VERARBEITUNG VON KOMPOSITA IM DEUTSCHEN nach Fritzinger & Fraser STEFANIE VIETEN, ADVANCED STATISTICAL MACHINE TRANSLATION WS 2014/15 13.01.2015 GLIEDERUNG

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Strukturelle Modelle Conditional Random Fields Katharina Morik LS 8 Informatik Technische Universität Dortmund 17.12. 2013 1 von 27 Gliederung 1 Einführung 2 HMM 3 CRF Strukturen

Mehr

Extended Question Answering on Freebase

Extended Question Answering on Freebase Bachelorarbeit Extended Question Answering on Freebase Matthias Urban Sommersemester 2016 Albert-Ludwigs-Universität Freiburg Technische Fakultät Lehrstuhl für Algorithmen und Datenstrukturen Lehrstuhlinhaberin:

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Verfahren in der lexikalischen Semantik Evaluation Annotation eines Goldstandard : Testkorpus mit der relevanten Zielinformation (z.b. Wortart) Automatische

Mehr

Space Usage Rules. Neele Halbur, Helge Spieker InformatiCup 2015 19. März 2015

Space Usage Rules. Neele Halbur, Helge Spieker InformatiCup 2015 19. März 2015 Space Usage Rules? InformatiCup 2015 1 Agenda 1. Vorstellung des Teams 2. Entwicklungsprozess und Umsetzung 3. Verbesserung der Strategien 4. Auswertung der Strategien 5. Ausblick 6. Fazit 2 Vorstellung

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25 Mathematische Grundlagen III Evaluation 16 Juli 2011 1/25 Training Set und Test Set Ein fairer Test gibt an, wie gut das Modell im Einsatz ist Resubstitution: Evaluation auf den Trainingsdaten Resubstitution

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Modellierung Fragebogenaktion Bachelor-StudentInnen http://www.coli.uni-saarland.de/bsc/page.php?id=fragebogen WS 2013/2014 Andrea Horbach mit Folien von

Mehr

SKOPOS Webinar 22. Mai 2018

SKOPOS Webinar 22. Mai 2018 SKOPOS Webinar 22. Mai 2018 Marktforschung 2020: Künstliche Intelligenz und automatische Text Analysen? Christopher Harms, Consultant Research & Development 2 So? Terminator Exhibition: T-800 by Dick Thomas

Mehr

Erkennung fremdsprachiger Ausdrücke im Text

Erkennung fremdsprachiger Ausdrücke im Text Erkennung fremdsprachiger Ausdrücke im Text Jekaterina Siilivask Betreuer: Dr. Helmut Schmid Centrum für Informations- und Sprachbearbeiting Ludwig- Maximilians- Universität München 19.05.2014 Jekaterina

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Mustererkennung und Klassifikation

Mustererkennung und Klassifikation Mustererkennung und Klassifikation WS 2007/2008 Fakultät Informatik Technische Informatik Prof. Dr. Matthias Franz mfranz@htwg-konstanz.de www-home.htwg-konstanz.de/~mfranz/heim.html Grundlagen Überblick

Mehr

VO Sprachtechnologien. Informations- und Wissensmanagement. Bartholomäus Wloka. Zentrum für Translationswissenschaft

VO Sprachtechnologien. Informations- und Wissensmanagement. Bartholomäus Wloka. Zentrum für Translationswissenschaft , Informations- und Wissensmanagement Zentrum für Translationswissenschaft Outline Begriffe MÜS Maschinelles Übersetzungssystem MÜ Maschinelle Übersetzung MT Machine Translation SMT Statistical Machine

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Übersetzung. Tobias Scheffer Michael Großhans Paul Prasse Uwe Dick

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Übersetzung. Tobias Scheffer Michael Großhans Paul Prasse Uwe Dick Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Übersetzung Tobias Scheffer Michael Großhans Paul Prasse Uwe Dick Maschinelle Übersetzung 2 Maschinelle Übersetzung Gegeben Text

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Projektgruppe. Text Labeling mit Sequenzmodellen

Projektgruppe. Text Labeling mit Sequenzmodellen Projektgruppe Enes Yigitbas Text Labeling mit Sequenzmodellen 4. Juni 2010 Motivation Möglichkeit der effizienten Verarbeitung von riesigen Datenmengen In vielen Bereichen erwünschte automatisierte Aufgabe:

Mehr

Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik.

Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik. Harald Hauptseminarpräsentation Kirschenmann Personenerkennung 1 Inhaltsübersicht Motivation Grundlagen Benchmark Eigene Gesichtserkennung 2 Motivation Baustein einer Microservice Architektur Personenerkennung

Mehr

Was denken denkende Maschinen? WI-Award, Crowne Plaza Zürich, Thilo Stadelmann

Was denken denkende Maschinen? WI-Award, Crowne Plaza Zürich, Thilo Stadelmann Was denken denkende Maschinen? WI-Award, Crowne Plaza Zürich, 20.10.2016 Thilo Stadelmann Was? Wie? Wohin? 1 Was ist passiert? (Eine kurze Geschichte der letzten Monate) 2 3 4 5 6 7 Generierte Sprache

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Paul Prasse Michael Großhans

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Paul Prasse Michael Großhans Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen NLP-Pipeline Tobias Scheffer Paul Prasse Michael Großhans NLP- (Natural Language Processing-) Pipeline Folge von Verarbeitungsschritten

Mehr

Semiüberwachte Paarweise Klassifikation

Semiüberwachte Paarweise Klassifikation Semiüberwachte Paarweise Klassifikation Andriy Nadolskyy Bachelor-Thesis Betreuer: Prof. Dr. Johannes Fürnkranz Dr. Eneldo Loza Mencía 1 Überblick Motivation Grundbegriffe Einleitung Übersicht der Verfahren

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Christoph Sawade

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Christoph Sawade Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen NLP-Pipeline Tobias Scheffer Christoph Sawade NLP-Pipeline Folge von Verarbeitungsschritten für Informationsextraktion, Übersetzung,

Mehr

Automatisches Verstehen gesprochener Sprache

Automatisches Verstehen gesprochener Sprache Automatisches Verstehen gesprochener Sprache 6. Syntaxanalyse Martin Hacker Bernd Ludwig Günther Görz Professur für Künstliche Intelligenz Department Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Mehr

Maschinelles Übersetzen natürlicher Sprachen 2. Praktikum. SS 2012 Torsten Stüber

Maschinelles Übersetzen natürlicher Sprachen 2. Praktikum. SS 2012 Torsten Stüber Maschinelles Übersetzen natürlicher Sprachen 2 Praktikum SS 2012 Torsten Stüber Zielstellung Entwicklung eines einfachen Übersetzungssystems I saw her duck. Übersetzer Ich sah ihre Ente. SMT-System Statistical

Mehr

Hidden Markov Models in Anwendungen

Hidden Markov Models in Anwendungen Hidden Markov Models in Anwendungen Prof Dr. Matthew Crocker Universität des Saarlandes 18. Juni 2015 Matthew Crocker (UdS) HMM Anwendungen 18. Juni 2015 1 / 26 Hidden Markov Modelle in der Computerlinguistik

Mehr

KLAUSUR ZUM BACHELORMODUL PROBEKLAUSUR VORLESUNG COMPUTERLINGUISTISCHE ANWENDUNGEN PROBEKLAUSUR, DR. BENJAMIN ROTH KLAUSUR AM

KLAUSUR ZUM BACHELORMODUL PROBEKLAUSUR VORLESUNG COMPUTERLINGUISTISCHE ANWENDUNGEN PROBEKLAUSUR, DR. BENJAMIN ROTH KLAUSUR AM KLAUSUR ZUM BACHELORMODUL PROBEKLAUSUR VORLESUNG COMPUTERLINGUISTISCHE ANWENDUNGEN PROBEKLAUSUR, DR. BENJAMIN ROTH KLAUSUR AM VOR NACH MATRIKELNUMMER: STUDIENGANG: B.Sc. Computerlinguistik, B.Sc. Informatik,

Mehr

, Data Mining, 2 VO Sommersemester 2008

, Data Mining, 2 VO Sommersemester 2008 Evaluation 188.646, Data Mining, 2 VO Sommersemester 2008 Dieter Merkl e-commerce Arbeitsgruppe Institut für Softwaretechnik und Interaktive Systeme Technische Universität Wien www.ec.tuwien.ac.at/~dieter/

Mehr

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation Überblick 4.1 Einleitung 4.2 Clustering 4.3 Klassifikation 1 Klassifikationsproblem Gegeben: eine Menge O D von Objekten o = (o 1,..., o d ) O mit Attributen A i, 1 i d eine Menge von Klassen C = {c 1,...,c

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014

Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014 idden Markov Models Vorlesung omputerlinguistische Techniken Alexander Koller 8. Dezember 04 n-gramm-modelle Ein n-gramm ist ein n-tupel von Wörtern. -Gramme heißen auch Unigramme; -Gramme Bigramme; -Gramme

Mehr

Hidden Markov Models in Anwendungen

Hidden Markov Models in Anwendungen Hidden Markov Models in Anwendungen Dr. Vera Demberg Universität des Saarlandes 31. Mai 2012 Vera Demberg (UdS) HMM Anwendungen 31. Mai 2012 1 / 26 Hidden Markov Modelle in der Computerlinguistik Table

Mehr

Formale Sprachen und Automaten: Tutorium Nr. 8

Formale Sprachen und Automaten: Tutorium Nr. 8 Formale Sprachen und Automaten: Tutorium Nr. 8 15. Juni 2013 Übersicht 1 Nachtrag 2 Besprechung von Übungsblatt 7 Aufgabe 1 Aufgabe 2 Aufgabe 3 3 CFG PDA Definitionen Ein Beispiel! Aufgabe 4 Der PDA als

Mehr

Parsing von unifikationsbasierten Grammatikformalismen

Parsing von unifikationsbasierten Grammatikformalismen Parsing von unifikationsbasierten Grammatikformalismen Vorlesung Grammatikformalismen Alexander Koller. Juli 016 Parsing Warum kann man kfgen in polynomieller Zeit parsen, wenn doch jeder Substring exponentiell

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Neuronale Netze Aufgaben 3

Neuronale Netze Aufgaben 3 Neuronale Netze Aufgaben 3 martin.loesch@kit.edu (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus

Mehr

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008

Maschinelles Lernen I Einführung. Uwe Reichel IPS, LMU München 22. April 2008 Maschinelles Lernen I Einführung Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 22. April 2008 Inhalt Einführung Lernen Maschinelle Lernverfahren im Überblick Phonetische Anwendungsbeispiele

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze Vorlesung Künstliche Intelligenz Wintersemester 2008/09 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Dieses Kapitel basiert auf Material von Andreas Hotho Mehr Details sind in der

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 8 Aufgabe 1 Probabilistische Inferenz (32 Punkte) In einer medizinischen Studie werden zwei Tests zur Diagnose von Leberschäden verglichen. Dabei wurde folgendes festgestellt: Test 1 erkennt

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Projekt-INF Folie 1

Projekt-INF Folie 1 Folie 1 Projekt-INF Entwicklung eines Testbed für den empirischen Vergleich verschiedener Methoden des maschinellen Lernens im Bezug auf die Erlernung von Produktentwicklungswissen Folie 2 Inhalt Ziel

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 3 Maschinelles Lernen und Klassifikation Aufgabe : Zufallsexperiment

Mehr

Robust Named Entity Recognition (NER) in Idiosyncratic Domains. Eine automatische Identifikation und Klassifikation von Eigennamen

Robust Named Entity Recognition (NER) in Idiosyncratic Domains. Eine automatische Identifikation und Klassifikation von Eigennamen Robust Named Entity Recognition (NER) in Idiosyncratic Domains Eine automatische Identifikation und Klassifikation von Eigennamen Gliederung 1 Einführung 2 Ein neues Neuronales Netzwerk 3 Datexis 4 Evaluation

Mehr

Speech Recognition Grammar Compilation in Grammatikal Framework. von Michael Heber

Speech Recognition Grammar Compilation in Grammatikal Framework. von Michael Heber Speech Recognition Grammar Compilation in Grammatikal Framework von Michael Heber Agenda 1. Einführung 2. Grammatical Framework (GF) 3. Kontextfreie Grammatiken und Finite-State Modelle 4. Quellen 2 1.

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 1. Übungsblatt Aufgabe 1: Anwendungsszenario Überlegen Sie sich ein neues Szenario des klassifizierenden Lernens (kein

Mehr

Machine Translation. Hermann Ney! RWTH%Aachen%University% Aachen,%Germany%

Machine Translation. Hermann Ney! RWTH%Aachen%University% Aachen,%Germany% Machine Translation Hermann Ney! RWTH%Aachen%University% Aachen,%Germany% task definition: input: text (written language) Teams in Machine Translation source language target language input: speech (spoken

Mehr