9. Festkörperreaktionen

Größe: px
Ab Seite anzeigen:

Download "9. Festkörperreaktionen"

Transkript

1 9. Festkörperreaktionen Wir hatten bereits bei der Diskussion von Diffusionsvorgängen gesehen, dass auch im festen Zustand Atome ständig ihre Plätze tauschen und so chemische Reaktionen in fester Materie möglich werden. In technischen Prozessen werden diese Reaktionen ausgenutzt, um die während der Erstarrung eingestellte Mikrostruktur zu modifizieren. Hierbei ist zu berücksichtigen, dass die Stabilität von Phasen temperaturabhängig. Manche gewünschte Struktur ist deshalb erst bei tiefen Temperaturen, bei denen das System bereits erstarrt ist, erreichbar ist. Als grundsätzliche Regel gilt, Strukturen, die durch eine Festkörperreaktion gebildet werden sind mehrere Größenordnungen kleiner als solche die bei der Erstarrung entstehen. Herstellung gewünschter Strukturen ist ein Aspekt, die Beständigkeit einer einmal eingestellten Struktur ein anderer. Werkstoffe im technischen Gebrauchszustand befinden sich in der Regel nicht im thermodynamischen Gleichgewicht sondern in einem metastabilen oder kinetisch eingefrorenen Zwischenzustand. Sie haben deshalb nur eine begrenzte Lebensdauer. Für die Anwendung ist entscheidend abzuschätzen, wie schnell die Materialien altern und ihre idealen Eigenschaften verlieren. Nach der Ausgangssituation kann man zwei grundlegende Typen von Reaktionen unterscheiden: i) Liegt ein mehrkomponentige Legierung als homogene Mischung vor, obwohl die Thermodynamik bei der Einsatztemperatur ein Mehrphasengebiet vorhersagt, so findet im Festkörper eine Entmischungsreaktion statt, bei der das homogene System in zwei oder mehrere Phasen zerfällt. ii) Umgekehrt, liegt das System bereits als heterogener Materialverbund vor, so neigt es möglicherweise zu Mischungsreaktionen an den Grenzflächen, falls das Phasendiagramm eine Mischung vorhersagt. In diesem Fall wird z.b. eine künstlich hergestellte Schichtstruktur nach und nach degenerieren. Wir betrachten nun zunächst die Entmischungsvorgänge. 9.1 Entmischungsvorgänge Die thermodynamische Situation bei einer Entmischungsreaktion ist in Abbildung 9.1 angedeutet. Aufgrund des Verlaufs der Freien Enthalpiefunktion muss ein System mit der Ausgangszusammensetzung 0 in die beiden Phasen mit der Zusammensetzung α und zerfallen. Ist das System zu Beginn homogen, so besitzt es die Freie Enthalpiedichte g( 0 ). Welche Enthalpiedichte hätte das System nach der Entmischung? Um diese Frage zu beantworten, müssen wir die Freien Abbildung 9.1 1

2 Enthalpien der Gleichgewichtsphasen gemäß ihrer Volumenanteile gewichtet addieren; die Volumenanteile ergeben sich aus dem Hebelgesetz: 0 0 α g = gα + g α α = ( ) α 0 α gα + g gα α α (9.1) (9.1) ist eine einfache Geradengleichung, die der Doppeltangenten an die Freie Enthalpiekurve entspricht. Die Freie Enthalpie des entmischten Zustands liegt also auf der Doppeltangenten bei der Zusammensetzung 0. Der Unterschied zwischen der Freien Enthalpiedichte des Endzustandes und der des Ausgangszustands wird als die treibende Kraft der Gesamt-Reaktion bezeichnet. Aufgrund des Verlaufes der Freien Enthalpie-Funktion muss man zwei verschiedene grundlegende Mechanismen der Entmischung erwarten: Abbildung 9. Abbildung 9.3 i) Keimbildungsmechanismus Ist die Freie Enthapiefunktion bei 0 aufwärts (positiv) gekrümmt, so würde eine kontinuierliche Entmischung in zwei Phasen mit Zusammensetzungen in der Nähe von 0 zunächst zu einer Erhöhung der Freien Enthalpie führen (siehe Abbildung 9.). Ein solcher Reaktionsverlauf ist thermodynamisch gesehen nicht möglich. Stattdessen müssen sich durch zufällige Fluktuation kleine Bereiche mit einer Zusammensetzung bilden, die in etwa bereits den Endkonzentrationen α und entsprechen, um eine Absenkung der Freien Enthalpie zu erreichen. ii) Spinodale Entmischung Anders sieht es aus, falls die Freie Enthalpie-Funktion im Bereich der Ausgangszusammensetzung abwärts (negativ) gekrümmt ist. Hier kann das System kontinuierlich in Fraktionen zerfallen, deren Konzentrationen nach und nach auseinander driften und schließlich die Gleichgewichtswerte α und erreichen. Offensichtlich werden diese beiden kinetischen Bereiche gerade durch die Grenzkonzentrationen getrennt, für die gilt *

3 g = 0 * (9.) Die Linie * ( T ) im Phasendiagramm wird als Spinodale bezeichnet. Diese liegt innerhalb des Zweiphasengebiets (=Mischungslücke) Abb. 9.4: Schematisches Phasendiagramm eines entmischenden Systems. Die Spinodale liegt innerhalb der Mischungslücke. 10. Klassische Keimbildungstheorie Die klassische Beschreibung der Keimbildung geht auf Becker und Döring (etwa 1930) zurück. Ähnlich wie bereits bei der Erstarrung von Schmelzen diskutiert, erfordert die Bildung eines Keims der neuen Phase zunächst sogar einen Aufwand an Freier Enthalpie, der zum Aufbau von Grenzflächen benötigt wird. Im Falle von Festkörperreaktionen tritt sogar oft Abbildung 9.5: schematischer Verlauf der Konzentrationsänderung und Dimension bei Entmischung durch (a) Keimbildung und Wachstum, (b) spinodale Entmischung noch eine elastische Verzerrungsenergie hinzu, so dass wir genauer formulieren müssen 4π 3 4π 3 G = r gv + r gelast + 4π r σ (9.3) 3 3 3

4 Bei dem gewählten Ansatz gilt für die drei auftretenden Koeffizienten die Vorzeichenwahl: g > 0; g > 0; σ > 0 v elast Allgemein findet man in der Elastizitätstheorie, dass der Aufwand an elastischer Energie bei Einschluss von fehlgepassten Teilchen proportional zum Volumen der Ausscheidungen wächst. Für den speziellen Fall einer harten Ausscheidung der -Phase, welche kohärent in eine weiche Matrix (α-phase) eingebettet ist, gilt z.b.: Eα g ( ) elast = δ α ϕ (9.4) 1 Hierbei bedeuten E α und das Elastizitätsmodul und die Querkontraktionszahl der Matrixphase. δ bezeichnet die relative Variation des Gitterparameters a 0 mit der lokalen Zusammensetzung gemäß d ln a0 1 da0 δ : = = d a d und ϕ bezeichnet einen Formfaktor, der für eine kugelförmige Ausscheidung exakt 1 und für andere ellipsoide Geometrien von gleicher Größenordnung ist. Bei der Bildung des ersten kleinen Keimes wird die Zusammensetzung der Matrix praktisch nicht verändert, so dass zur Berechnung der momentanen treibenden Kraft pro Volumen der Ausscheidung (g v ) etwas anders vorgegangen werden muss, als bei der Gesamtbetrachtung in Abschnitt 9.1. Es werden cp 0 V B-Atome und ( 1 cp ) V A-Atome von der Matrixphase in die Ausscheidungsphase überführt, also p m p m g = 1 c µ µ + c µ µ ( )( ) ( ) v p A A p B B (9.5) (Der Index p steht hier und im Weiteren immer für Ausscheidung = precipitate.) Durch Umordnung der Terme p p p m m m g = µ + c µ µ µ c µ µ ( ) ( ) v A p B A A p B A erkennt man die geometrische Interpretation der treibenden Kraft, wie in Abbildung 9.7 angedeutet. Für eine noch genauere Betrachtung müsste man darüber hinaus berücksichtigen, dass der kritische Keim momentan im lokalen Gleichgewicht zur Matrix steht, d.h. die Abbildung 9.6: Bei der Bildung eines sehr kleinen Keims (V << V Probe ) der Zusammensetzung c p verändert sich die Konzentration der Matrix praktisch nicht. Abbildung 9.7 4

5 Grenzfläche muss stabil sein gegen Austausch eines A-B Paares. In der Sprache der chemischen Potentiale bedeutet dies! m p p m µ + µ = µ + µ A B A B m m! p p A B A B µ µ = µ µ (9.6) d.h. die Steigungen der Tangenten an die Freie Enthalpie-Funktion bei der Matrix- und der Keimzusammensetzung (gestrichelt in der Zeichnung) müssen gleich sein. Ein kritischer Keim hat also genau genommen noch nicht die erwartete Gleichgewichtszusammensetzung p, sondern die Zusammensetzung p ' der Skizze, was die treibende Kraft zur Bildung des kritischen Keimes noch ein wenig modifiziert. In guter Näherung kann dieser Unterschied in der Praxis oft vernachlässigt werden. 5

Ausscheidungsvorgänge

Ausscheidungsvorgänge 9 Ausscheidungsvorgänge Die Kristallstruktur von Metallen kann sich auch im festen Zustand ändern. Sie muß nicht notwendigerweise unterhalb der Schmelztemperatur bei allen Temperaturen stabil sein. Diejenige

Mehr

1 Einführung. reine Metalle i.a. sehr weich für praktischen Einsatz nur bedingt geeignet verschiedene Möglichkeiten der Festigkeitssteigerung

1 Einführung. reine Metalle i.a. sehr weich für praktischen Einsatz nur bedingt geeignet verschiedene Möglichkeiten der Festigkeitssteigerung 1 Einführung reine Metalle i.a. sehr weich für praktischen Einsatz nur bedingt geeignet verschiedene Möglichkeiten der Festigkeitssteigerung eine Möglichkeit = Festigkeitssteigerung durch Teilchen technische

Mehr

10.1 Einschub: Ein berühmtes Entmischungssystem: Al(Cu) Dur-Aluminium

10.1 Einschub: Ein berühmtes Entmischungssystem: Al(Cu) Dur-Aluminium 10.1 Einschub: Ein berühmtes Entmischungssystem: Al(Cu) Dur-Aluminium Ein technisch wichtiges Legierungssystem mit Entmischungstendenz ist das sogenannte Duraluminium (Kennt man ja aus der Musik Dur =hart,

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper ist im Gleichgewicht,

Mehr

4. Strukturänderung durch Phasenübergänge

4. Strukturänderung durch Phasenübergänge 4. Strukturänderung durch Phasenübergänge Phasendiagramm einer reinen Substanz Druck Phasenänderung durch Variation des Drucks und/oder der Temperatur Klassifizierung Phasenübergänge 1. Art Phasenübergänge

Mehr

10.3 Flussquantisierung durch Supraleitung

10.3 Flussquantisierung durch Supraleitung Bemerkung : Die Londonsche Eindringtiefe ist über die Dichte der Cooperpaare temperaturabhängig Sie divergiert bei Annäherung an die kritische Temperatur Experimentell bestätigt ist das folgende Verhalten

Mehr

3. Mikrostruktur und Phasenübergänge

3. Mikrostruktur und Phasenübergänge 3. Mikrostruktur und Phasenübergänge Definition von Mikrostruktur und Gefüge Gefüge bezeichnet die Beschaffenheit der Gesamtheit jener Teilvolumina eines Werkstoffs, von denen jedes hinsichtlich seiner

Mehr

Van der Waals-Theorie und Zustandsgleichung

Van der Waals-Theorie und Zustandsgleichung Van der Waals-Theorie und Zustandsgleichung Eine verbesserte Zustandsgleichung für klassische Gase bei höheren Dichten liefert die Van der Waals-Gleichung. Diese Gleichung beschreibt auch den Phasenübergang

Mehr

Heterogene Keimbildung

Heterogene Keimbildung Heterogene Keimbildung - heterogene Keimbildung ist der allgemeinste Fall, da sich der Einfluss von Grenzflächen praktisch nicht ohne weiteres ausschalten lässt. - Voraussetzung: Benetzbarkeit Eigentlicher

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Phasendiagramme Das Phasendiagramm zeigt die Existenzbereiche der Phasen eines Stoffes in Abhängigkeit von thermodynamischen Parametern. Das einfachste Phasendiagramm erhält man für eine symmetrische binäre

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper

Mehr

4.5 KLASSISCHE FLÜSSIGKEITEN 85

4.5 KLASSISCHE FLÜSSIGKEITEN 85 4.5 KLASSISCHE FLÜSSIGKEITEN 85 σ / 2 σ / 2 Abbildung 4.9: Modell der harten Scheiben Wie wir sehen werden, besitzt dieses Modell mehrere Phasen und ist damit ideal zum Studium gewisser Eigenschaften solcher

Mehr

Begriffsdefinitionen Heterogene Gleichgewichte

Begriffsdefinitionen Heterogene Gleichgewichte Begriffsdefinitionen Heterogene Gleichgewichte Begriff Erklärung Illustration Stoff oder chemisches Element oder Komponente Verbindung Zustand Zustandsvariable Aggregatzustand (fest, flüssig, gasförmig)

Mehr

Mechanik der Kontinua (Mechanik deformierbarer Körper)

Mechanik der Kontinua (Mechanik deformierbarer Körper) Guido Schmitz 15.1. Mechanik der Kontinua (Mechanik deformierbarer Körper) 1. Begriffsbestimmung: 3 wesentliche Materiezustände: fest, flüssig, gasförmig. Unterscheidung durch a) Phasendiagramm b) mechanische

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de innere Energie U Energieumsatz bei

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Spinodale Entmischung

Spinodale Entmischung Benjamin Andrae Spinodale Entmischung Seminarvortrag im Hauptseminar zur statistischen Mechanik bei Prof. Dr. Erwin Frey Inhalt: Vorbemerkung zur Methode Qualitatives Quantitatives Weiterführendes: Van-der-Waals

Mehr

1 Die elastischen Konstanten 10 Punkte

1 Die elastischen Konstanten 10 Punkte 1 Die elastischen Konstanten 10 Punkte 1.1 Ein Würfel wird einachsig unter Zug belastet. a) Definieren Sie durch Verwendung einer Skizze den Begriff der Spannung und der Dehnung. b) Der Würfel werde im

Mehr

Landau-Theorie der Phasenumwandlung von Membranen

Landau-Theorie der Phasenumwandlung von Membranen Landau-Theorie der Phasenumwandlung von Membranen Vorbemerkung Vorbemerkung: Um Einblick in die thermodynamischen aber auch strukturellen Eigenschaften von Lipidschichten zu erhalten, ist die klassische

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

1.1 Wichtige Begriffe und Größen 1.2 Zustand eines Systems 1.3 Zustandsdiagramme eines Systems 1.4 Gibb sche Phasenregel

1.1 Wichtige Begriffe und Größen 1.2 Zustand eines Systems 1.3 Zustandsdiagramme eines Systems 1.4 Gibb sche Phasenregel Studieneinheit II Grundlegende Begriffe. Wichtige Begriffe und Größen. Zustand eines Systems. Zustandsdiagramme eines Systems.4 Gibb sche Phasenregel Gleichgewichtssysteme. Einstoff-Systeme. Binäre (Zweistoff-)

Mehr

Thermodynamik und Statistische Mechanik

Thermodynamik und Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen

Mehr

Kristallstruktur und Mikrostruktur Teil II Vorlesung 2

Kristallstruktur und Mikrostruktur Teil II Vorlesung 2 Kristallstruktur und Mikrostruktur Teil II Vorlesung 2 Teil II 1 Erstarrung/ Grundlagen 2 Erstarrung/ Wachstum/ Gefüge (Mikrostruktur) 3 Praktische Aspekte/ Schweißen; Thermisches Spritzen 4 Texturanalyse

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

Phasen, Komponenten, Freiheitsgrade

Phasen, Komponenten, Freiheitsgrade Phasendiagramme 1 Lernziele: Ø Phasen, Komponenten, Freiheitsgrade Ø Die Phasenregel Ø Zweikomponentensysteme: Dampfdruckdiagramme, Hebelgesetz Ø Zweikomponentensysteme: Siedediagramme (die Destillation

Mehr

10. Phasendiagramme 10.1 Definition und Konstruktion

10. Phasendiagramme 10.1 Definition und Konstruktion 10. Phasendiagramme 10.1 Definition und Konstruktion Definition: Phasendiagramme geben die Existenzbereiche und Grenzen der Gleichgewichts-Phasenstabilität als Funktion der emperatur und Konzentration

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

PC V: Physikalische Chemie der Festkörper WS 2009/10 1. Einführung Kristallsymmetrie und physikalische Eigenschaften, Neumannsches Prinzip

PC V: Physikalische Chemie der Festkörper WS 2009/10 1. Einführung Kristallsymmetrie und physikalische Eigenschaften, Neumannsches Prinzip PC V: Physikalische Chemie der Festkörper WS 2009/10 1. Einführung Kristallsymmeie und physikalische Eigenschaften, Neumannsches Prinzip 2. Thermodynamik fester Körper Phänomenologische Thermodynamik (Potentiale,

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Aggregatzustände fest Kristall, geordnet Modifikationen Fernordnung flüssig teilgeordnet Fluktuationen Nahordnung gasförmig regellose Bewegung Unabhängigkeit ngigkeit (ideales Gas) Zustandsbeschreibung

Mehr

Materialphysik I. Die explizite Darstellung der Freien Enthalpie erlaubt ein sehr einfaches Phasendiagramm zu be-

Materialphysik I. Die explizite Darstellung der Freien Enthalpie erlaubt ein sehr einfaches Phasendiagramm zu be- Prof. Dr. Guido Schmitz Materialphysik I 07.1.01 eispiel: erechnung eines Phasendiagramms Die eplizite Darstellung der Freien Enthalpie erlaubt ein sehr einfaches Phasendiagramm zu be- ε = ε (Grund- stimmen.

Mehr

70 4. REALE ZUSTANDSDIAGRAMME UND IHRE INTERPRETATION. x 1 x 4 x

70 4. REALE ZUSTANDSDIAGRAMME UND IHRE INTERPRETATION. x 1 x 4 x 70 4. REALE ZUTANDDIAGRAMME UND IHRE INTERPRETATION 4.. Verlauf der Kristallisation T α 4 α+ x x x 4 A x B Abbildung 4.7: Verlauf der Erstarrung eines zweikomponentigen ystems Ist eine flüssige Phase ()

Mehr

4.Legierungen. 4.Legierungen

4.Legierungen. 4.Legierungen a) Systeme mit völliger Unlöslichkeit in Schmelze und Festkörper (Unlöslichkeit = Insolubility) - keinerlei Mischung im atomaren Bereich - Monotektisches Zustandsdiagramm - Beispiele: Cu-Pb, Fe-Pb, Cu-W

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Physikalisch-chemische Grundlagen der Verfahrenstechnik

Physikalisch-chemische Grundlagen der Verfahrenstechnik Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik guenter.tovar@igvt.uni-stuttgart.de Physikalisch-chemische Grundlagen der

Mehr

Zustandsänderungen Was sollen Sie mitnehmen?

Zustandsänderungen Was sollen Sie mitnehmen? Was sollen Sie mitnehmen? Wie entstehen Phasen? Welche Zusammensetzungen haben sie? Teil A: Keimbildung und Kristallwachstum. Langsame und rasche Erstarrung Erstarrung von Mischungen Teil B: Zustandsdiagramme

Mehr

Zustandsänderungen Was sollen Sie mitnehmen?

Zustandsänderungen Was sollen Sie mitnehmen? Was sollen Sie mitnehmen? Wie entstehen Phasen? Welche Zusammensetzungen haben sie? Teil A: Keimbildung und Kristallwachstum. Langsame und rasche Erstarrung Erstarrung von Mischungen Teil B: Zustandsdiagramme

Mehr

Karl Stephan Franz Mayinger. Thermodynamik. Grundlagen und technische Anwendungen. Zwölfte, neubearbeitete und erweiterte Auflage

Karl Stephan Franz Mayinger. Thermodynamik. Grundlagen und technische Anwendungen. Zwölfte, neubearbeitete und erweiterte Auflage Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Zwölfte, neubearbeitete und erweiterte Auflage Band 2 Mehrstoffsysteme und chemische Reaktionen Mit 135 Abbildungen Springer-Verlag

Mehr

Azeotrope. Viele binäre flüssige Mischungen zeigen das vorhin diskutierte Siedediagramm, doch

Azeotrope. Viele binäre flüssige Mischungen zeigen das vorhin diskutierte Siedediagramm, doch Azeotrope B A Viele binäre flüssige Mischungen zeigen das vorhin diskutierte Siedediagramm, doch zahl- reiche wichtige Systeme weichen davon ab. Ein solches Verhalten kann auftreten, a wenn die Wechselwirkungen

Mehr

5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht

5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht 5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht Ein Teilchen, oder auch ein ganzes System von Teilchen, befindet sich im Gleichgewicht, falls sich "nichts" mehr ändert. Bei

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

PC I Thermodynamik und Transportprozesse

PC I Thermodynamik und Transportprozesse 20.06.2006 15:19 1 PC I Thermodynamik und Transportprozesse Kapitel 5 20.06.2006 15:19 2 V. Lösungen und Mischungen Im Winter des Jahres 1729 setzte ich Bier, Wein, Essig und Salzwasser in großen offenen

Mehr

Thermodynamik & Kinetik

Thermodynamik & Kinetik Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters

Mehr

Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I

Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I Institut für Anorganische Chemie Prof. Dr. R. Streubel Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I Vorlesung für die Studiengänge Bachelor Chemie und Lebensmittelchemie Im WS 08/09 Die

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit

Mehr

Austenitbildung und -stabilität in 9-12% Chromstählen ein Anwendungsbeispiel für ThermoCalc

Austenitbildung und -stabilität in 9-12% Chromstählen ein Anwendungsbeispiel für ThermoCalc Austenitbildung und -stabilität in 9-12% Chromstählen ein Anwendungsbeispiel für ThermoCalc Ulrich E. Klotz EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Dübendorf, Schweiz TCC Anwendertreffen

Mehr

Charakterisierung von Strukturen und Strukturbildungsprozessen im Bernalschen Modell einfacher Flüssigkeiten. Antje Elsner

Charakterisierung von Strukturen und Strukturbildungsprozessen im Bernalschen Modell einfacher Flüssigkeiten. Antje Elsner Charakterisierung von Strukturen und Strukturbildungsprozessen im Bernalschen Modell einfacher Flüssigkeiten Antje Elsner Überblick Modell Algorithmus Simulation Analyse Grundprinzipien Eigenschaften Ablauf

Mehr

Lernziele: Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme,

Lernziele: Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme, Phasendiagramme Lernziele: ee Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme, Hebelgesetz Zweikomponentensysteme: Siedediagramme (die Distillation von Mischungen,

Mehr

Physikalische Werkstoffeigenschften

Physikalische Werkstoffeigenschften Prof. Dr. Ludwig Schultz Dr. Jens Freudenberger Physikalische Werkstoffeigenschften Inhalt Einleitung Thermodynamik von Legierungen Kristallstruktur und reziprokes Gitter Kristallisation Reale Zustandsdiagramme

Mehr

Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung

Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung Grenzflächenphänomene 1. Oberflächenspannung Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie Grenzflächenphänomene Phase/Phasendiagramm/Phasenübergang Schwerpunkte: Oberflächenspannung

Mehr

Zusammenfassung 118 tet, konnte den Verlauf der experimentellen Daten wiedergeben. Das Wachstum der festen Phase aus der unterkühlten Schmelze wurde m

Zusammenfassung 118 tet, konnte den Verlauf der experimentellen Daten wiedergeben. Das Wachstum der festen Phase aus der unterkühlten Schmelze wurde m Zusammenfassung In dieser Arbeit wurde die elektrostatische Levitation aufbauend auf der Arbeit von Meister [93] und Lohöfer weiterentwickelt und erfolgreich zum Einsatz gebracht. Die elektrostatische

Mehr

Onsagersche Gleichung. Energetische Beziehungen

Onsagersche Gleichung. Energetische Beziehungen Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

Mehrphasendiffusion in Metallen

Mehrphasendiffusion in Metallen Prozesstechnik-Übung, Wintersemester 2008-2009 Mehrphasendiffusion in Metallen 1 Versuchsziel Das Diffusionsverhalten fester metallischer Stoffe soll am Beispiel Cu-Zn untersucht werden. 2 Theoretische

Mehr

9. Phasengleichgewichte und Zustandsänderungen 9.1 Einkompentige Systeme

9. Phasengleichgewichte und Zustandsänderungen 9.1 Einkompentige Systeme 9. Phasengleichgewichte und Zustandsänderungen 9.1 Einkompentige Systeme Temperaturabhängigkeit der freien Enthalpie dg = d( H TS ) = dh T ds S dt = C P dt TC P T H Da S > 0, nimmt G mit zunehmender Temperatur

Mehr

HANDOUT. Vorlesung: Glas-Grundlagen. Glasbildung und Glasübergang

HANDOUT. Vorlesung: Glas-Grundlagen. Glasbildung und Glasübergang Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOU Vorlesung: Glas-Grundlagen Glasbildung und Glasübergang Leitsatz: 27.04.2017 Wenn man davon ausgeht, dass Flüssigkeiten

Mehr

Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu

Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu Fragenteil : Aufgabe 1 Phasengleichgewichte 15 P a Eine binäre Mischung wird in einer Verdamfereinheit kontinuierlich teilweise verdamft. Messtechnisch wurden für die Ausgangsströme der Temeratur, der

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Kinetische Vorgänge setzen ATOMTRANSPORT voraus: in Flüssigkeiten: Konvektion, Diffusion in Festkörpern: Diffusion

Kinetische Vorgänge setzen ATOMTRANSPORT voraus: in Flüssigkeiten: Konvektion, Diffusion in Festkörpern: Diffusion Skript Werkstofftechnik Anja Pfennig Rohfassung 1 Diffusion Thermische Aktivierung Kinetik Atomtransport Konvektion Wechseln Atome infolge thermischer Schwingungen ihre Plätze so nennt man diese Vorgänge

Mehr

Blatt 08: Reihenentwicklung

Blatt 08: Reihenentwicklung Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepagesphysikuni-muenchende/~vondelft/lehre/3t0/ Blatt 08: Reihenentwicklung Abgabe:

Mehr

Molekulare Simulation gekrümmter Dampf-Flüssigkeits-Grenzflächen

Molekulare Simulation gekrümmter Dampf-Flüssigkeits-Grenzflächen Molekulare Simulation gekrümmter Dampf-Flüssigkeits-Grenzflächen Dortmund, den 16. Juni 11 Martin Horsch, Enyuan Wu und Jadran Vrabec Phasengrenzflächen Phasen sind im phänomenologischen Verständnis die

Mehr

5.Thermisch aktivierbare Prozesse. 5.Thermisch aktivierbare Prozesse

5.Thermisch aktivierbare Prozesse. 5.Thermisch aktivierbare Prozesse 5.1. Thermodynamische Betrachtung Zustand eines Systems Der Zustand eines Systems wird durch ihre Freie Energie G charakterisiert Zustandsänderungen im Festkörper laufen ab, um dessen Freie Energie G herabzusetzen

Mehr

Bachelorprüfung. "Werkstofftechnik der Metalle" am

Bachelorprüfung. Werkstofftechnik der Metalle am Institut für Eisenhüttenkunde Department of Ferrous Metallurgy Bachelorprüfung "Werkstofftechnik der Metalle" am 24.07.2013 Name: Matrikelnummer: Aufgabe Maximale Punkte 1 6 2 4 3 5 4 6 5 4 6 3 7 4 8 4

Mehr

Zusammenfassung. Reale feste und flüssigekörper

Zusammenfassung. Reale feste und flüssigekörper Zusammenfassung Kapitel l6 Reale feste und flüssigekörper 1 Reale Körper Materie ist aufgebaut aus Atomkern und Elektronen-Hülle Verlauf von potentieller Energie E p (r) p und Kraft F(r) zwischen zwei

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 8. Thermodynamik und Informationstheorie

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Theoretischen Physik F SS 10 Prof. Dr. G. Schön Lösungsvorschlag zu Blatt 2 Dr. J. Cole 30.04.2010 1. Van-der-Waals

Mehr

Klausur-Musterlösungen

Klausur-Musterlösungen Klausur-Musterlösungen 9.7.4 Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay. Der in Abb. dargestellte Kreisprozess wird mit einem elektromagnetischen Feld ausgeführt. Abb..

Mehr

EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg.

EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg. Studienvorbereitung Chemie EinFaCh 2 Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik tu-freiberg.de tu-freiberg.de/fakultaet2/einfach Was bedeutet Chemische Reaktionskinetik?

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit

A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Aufgabe: Es ist die Dampfdruckkurve einer leicht flüchtigen Flüssigkeit zu ermitteln

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

9. Tutorium zur Werkstoffkunde für Maschinenbauer im WS 2010/2011

9. Tutorium zur Werkstoffkunde für Maschinenbauer im WS 2010/2011 9. Tutorium zur Werkstoffkunde für Maschinenbauer im WS 2010/2011 Aufgabe 1 Die mechanischen Eigenschaften von Werkstoffen sind bei Konstruktionen zu berücksichtigen. Meist kann ein kompliziertes makroskopisches

Mehr

SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie in der Systemanalyse

SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie in der Systemanalyse Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

3 Erstarrung. 3.1 Einphasige Erstarrung von Legierungen. 3.2 Zweiphasige Erstarrung

3 Erstarrung. 3.1 Einphasige Erstarrung von Legierungen. 3.2 Zweiphasige Erstarrung Studieneinheit IV Erstarrung. Einphasige Erstarrung von Legierungen.. Planare Erstarrung Makroseigerung.. Nicht-planare dendritische Erstarrung Mikroseigerung.. Gussstrukturen. Zweiphasige Erstarrung..

Mehr

C44 C C 2C. Physik der kondensierten Materie WS 2010/ Für die freie Energie f hatten wir bereits formuliert:

C44 C C 2C. Physik der kondensierten Materie WS 2010/ Für die freie Energie f hatten wir bereits formuliert: Für die reie Energie hatten wir bereits ormuliert: Cijkl ij kl ijkl Für isotrope Systeme vereinacht sich diese zu: 0 ii ij Wo stehen die Lamé-Koeizienten in der C IJ -Matrix? 33 (5.30)! J C J J (5.3) iso

Mehr

Gefrierpunktserniedrigung

Gefrierpunktserniedrigung Knoch, Anastasiya Datum der Durchführung: Petri, Guido 05.01.2016 (Gruppe 11) Datum der Korrektur: 02.02.2016 Praktikum Physikalische Chemie I. Thermodynamik Gefrierpunktserniedrigung 1. Aufgabenstellung

Mehr

Phasenseparation (Entmischung) in binären, homogenen Mischungen

Phasenseparation (Entmischung) in binären, homogenen Mischungen Phasenseparation (Entmischng) in binären homogenen Mischngen Exkrs: Tangenten an molare Zstandsfnktionen In einer binären Mischng (enthält 2 Komponenten) seien Teilchen der orte nd Teilchen der orte vorhanden.

Mehr

Einführung in Werkstoffkunde Phasenumwandlungen

Einführung in Werkstoffkunde Phasenumwandlungen Einführung in Werkstoffkunde Phasenumwandlungen Magnesium Innovations Center (MagIC) GKSS Forschungszentrum Geesthacht GmbH Dr.-Ing. Norbert Hort norbert.hort@gkss.de Inhalte Über mich Einführung Aufbau

Mehr

Protokoll: Aushärtbarkeit von Aluminiumlegierungen

Protokoll: Aushärtbarkeit von Aluminiumlegierungen Datum: 26.05.2009 Verfasser: Dimitrij Fiz Gruppe: 12 Betreuer: Regina Hörth Protokoll: Aushärtbarkeit von Aluminiumlegierungen 1. Einleitung Die Aushärtbarkeit zweier Aluminiumlegierungen soll analysiert

Mehr

1. Thermodynamik der Polymerlösungen

1. Thermodynamik der Polymerlösungen . Thermodynamik der Polymerlösungen. Polydispersität der Polymeren Polymere sind gewöhnlich polydispers, das heißt, sie bestehen aus einer Vielzahl chemisch ähnlicher Spezies, die sich vor allem in der

Mehr

Phasen, Komponenten, Freiheitsgrade

Phasen, Komponenten, Freiheitsgrade Phasendiagramme Lernziele: Phasen, Komonenten, Freiheitsgrade Die Phasenregel Zweikomonentensysteme: Damfdruckdiagramme, Hebelgesetz Zweikomonentensysteme: Siedediagramme (die Destillation von Mischungen,

Mehr

9. Oxidation von Legierungen

9. Oxidation von Legierungen Oxidation von Legierungen 66 9. Oxidation von Legierungen Wichtigste Anforderungen an Hochtemperaturlegierungen: langsame Verzunderung unter Bildung dichter und schützender Oxidschichten (in der Regel

Mehr

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r )

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r ) .7. RANDWERTPROBLEME 39.7 Randwertprobleme Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische Potential φ( r) mit φ( r) ρ( r ) 4πε r r d3 r berechnen läßt. Hierbei

Mehr

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie 30.11.2007 Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie Johanna Flock Gliederung Einleitung Kurze Wiederholung Statistischer Mechanik Ensemble Statistische Beschreibung von Kolloid

Mehr

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer Landau-Theorie Seminar zur Theorie der Teilchen und Felder Daniel Schröer 1.Einleitung Um ein Problem der Statistischen Physik zu lösen, wird ein relevantes thermodynamisches Potential, wie beispielsweise

Mehr

Band 2: Mehrstoffsysteme und chemische Reaktionen. Grundlagen und technische Anwendungen

Band 2: Mehrstoffsysteme und chemische Reaktionen. Grundlagen und technische Anwendungen Karl Stephan Franz Mayinger n 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. or Band 2: Mehrstoffsysteme und chemische

Mehr

Masterprüfung. Teil I Werkstoffdesign der Metalle

Masterprüfung. Teil I Werkstoffdesign der Metalle Masterprüfung Teil I Werkstoffdesign der Metalle 03.08.2017 Name, Vorname: Matrikelnummer: Erklärung: Ich fühle mich gesund und in der Lage an der vorliegenden Prüfung teilzunehmen. Unterschrift: Aufgabe

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr