Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Größe: px
Ab Seite anzeigen:

Download "Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017"

Transkript

1 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) Kraft (N) Annahme: Es gibt eine Funktion f : R R, die diese Daten erklärt. Aber wir haben Messfehler. Finde eine Funktion f : R R, die möglichst ähnlich zu f ist.

2 Welche Gerade? Welche Gerade? Fehlerfunktion Lokale Extrema der Fehlerfunktion ϕ(m, b) = 1 n ( y i f ) 2 1 m,b (x i ) = n (y i mx i b) 2 ϕ(m, b) = 1 n m (m, b) = 1 n ( y i f ) 2 1 m,b (x i ) = n = 1 n = 2 n b (m, b) = 2 n (y i mx i b) 2 m (y i mx i b) 2 2 (y i mx i b) ( x i ) ( xi y i mxi 2 ) bx i (x i y i mx i ) + 2b

3 Lokale Extrema der Fehlerfunktion ϕ(m, b) = ( 2 n ( xi y i mx 2 i bx i ), 2 n Löse b (m, b) = 0 nach b auf: b = 1 n (y i mx i ) ) (x i y i mx i ) + 2b Setze b in m (m, b) = 0 ein und löse nach m auf: 0 = 2 y i x i mxi 2 1 (y j mx j ) x i n n 0 = y i x i mx 2 i m m = 1 n x 2 i 1 n mx 2 i j=1 n x iy i 1 n n x 2 i 1 n mx i x j = j=1 n 1 n j=1 j=1 x i y j + 1 n x i y i 1 n x i x j = x i y i 1 n j=1 j=1 mx i x j x i y j j=1 n j=1 x iy j n n j=1 x = Cov(X, Y ) ix j Var(X ) x i y j Zusammenfassung Gegeben sind Datenpunkte (x 1, y 1 ),..., (x n, y n ) in R. Wir suchen Parameter (m, b) R 2, sodass die Funktion fm,b : R R, x mx + b die Datenpunkte optimal erklärt. Es gibt genau ein bestes Paar (m, b) und wir können eine Formel angeben.

4 Maschinelles Lernen 1 Gegeben sind Datenpunkte (x i, y i ) von einer hypothetischen, randomisierten Funktion f (d.h. f (x i ) = y i ). Wir wollen anhand der Datenpunkte automatisiert eine Funktion f lernen, die f möglichst nahe kommt. Wie gut eine Funktion f ist, kann gemessen werden: ϕ f = 1 n ( y i f (x i )) 2. Welche Funktion ist besser? Die Gerade ist besser! ϕ grün = 0 ϕ rot = 0.17 Die Struktur der Datenpunkte wird besser erfasst. Die grüne Kurve legt zu viel Gewicht auf einzelne Datenpunkte. Einzelne Datenpunkte unterliegen Messungenauigkeiten. Bei weiteren Messpunkten wird die rote Kurve (vermutlich) viel besser sein, als die grüne. Algorithmen neigen dazu, Datenpunkte auswendig zu lernen!

5 Gegenmaßnahmen Bewertung von gelernten Funktionen Nimm einen Teil der Messdaten beiseite und nenne die Menge der weggelegten Daten Testmenge. Lerne die Funktionen mithilfe der verbleibenden Datenpunkte. Prüfe die Genauigkeit der gelernten Funktionen mit Hilfe der Testmenge. Validierung Die Prüfung erfolgt also an neuen Daten, die vorher nicht auswendig gelernt werden konnten! Wenn die gelernte Funktion auf den Trainingsdaten gut ist, aber auf den Testdaten schlecht liegt vor. Man sollte ein anderes Verfahren zum Lernen benutzen! Wenn die gelernte Funktion auf Trainingsdaten und auf Testdaten gut ist, spiegelt die gelernte Funktion vermutlich die grundlegende Struktur gut wieder. 10.3

6 Nearest Neighbours Gegeben: Punkte x 1,..., x k in R m mit Werten y i R. Eine Metrik d : R m R m R. Gesucht: Prognose des Wertes für einen Punkt y R m. Algorithmus 1 Sortiere die Punkte x 1,..., x k nach d(x i, y). 2 Wähle die n nächsten Punkte aus. 3 Bilde den Mittelwert aus den zugeordneten Werten. Was tun, wenn zwei Punkte gleich weit entfernt sind?

7 ohne Formel? 10.4 Schritt 1 m = 0 b = 2.05 m (m, b) = b (m, b) = 50 ϕ(m, b) = 8.56 Schritt 2 m = 0.36 b = 2.09 m (m, b) = b (m, b) = ϕ(m, b) = 5.84

8 Schritt 3 m = 0.49 b = 2.12 m (m, b) = b (m, b) = ϕ(m, b) = 4.13 Schritt 9 m = 0.89 b = 2.18 m (m, b) = b (m, b) = 7 ϕ(m, b) = 1.31 Schritt 100 m = 1.14 b = 1.66 m (m, b) = 1.52 b (m, b) = 5.35 ϕ(m, b) = 0.80 Schritt 1000 m = 1.67 b = 0.19 m (m, b) = 0.15 b (m, b) = 0.51 ϕ(m, b) = 0.15

9 Gegeben: Punkte in (x i1, x i2 ) in R 2 zusammen mit Werten y i. Gesucht: Eine (affine) Funktion f : R 2 R welche diese Punkte erklärt: ( ) x1 fa1,a 2,b = a x 1 x 1 + a 2 x 2 + b 2 Fehlerfunktion: ϕ(a 1, a 2, b) = 1 n ( ( y i f xi1 a1,a 2,b x i2 )) 2

10 Komplexere Daten Komplexere Daten lineare Regression ein neuronales Netz Quelle: Von Dake, Mysid - Vectorized by Mysid in CorelDraw on an image by Dake., CC BYTh., Jahn

11 ein neuronales Netz σ : R R, x 1 1 e x Wir lernen eine Funktion fm1,b 1,m 2,b 2,α 1,α 2,γ :R R, x α 1 σ(m 1 x + b 1 ) + α 2 σ(m 2 x + b 2 ) + γ Finde dazu ein lokales Minimum von ϕ(m 1, b 1, m 2, b 2, α 1, α 2, γ) = 1 ( y i n f m1,b 1,m 2,b 2,α 1,α 2,γ(x i ) ) 2 Es kann mehrere lokale Minima geben. Wir finden vermutlich nicht das globale Minimum! Schritt 0 Zum berechnen des Gradienten von ϕ(m 1, b 1, m 2, b 2, α 1, α 2, γ) = 1 n erinnern wir uns, dass ϕ(... ) = 1 n ( y i f ) 2 m1,b 1,m 2,b 2,α 1,α 2,γ(x i ) (y i α 1 σ(m 1 x + t 1 ) α 2 σ(m 2 x + t 2 )) 2 und an die Kettenregel.

12 Schritt 100 Schritt 200 Schritt 300 Schritt 1000

13 b 11 b 21 x 1 a 111 x a 112 a 121 σ a 211 a 221 σ x 2 x 2 a 113 a 122 σ a 212 a 222 σ x 3 a 123 x b 21 b σ 0.6 σ

14 Eigenschaften von σ s 1 (x 1, x 2, x 3 ) = a 111 x 1 + a 112 x 2 + a 113 x 3 + b 11 s 2 (x 1, x 2, x 3 ) = a 121 x 1 + a 122 x 2 + a 123 x 3 + b 12 h 1 (x 1, x 2, x 3 ) = σ(s 1 (x 1, x 2, x 3 )) h 2 (x 1, x 2, x 3 ) = σ(s 2 (x 1, x 2, x 3 )) y 1 (x 1, x 2, x 3 ) = a 211 h 1 (x 1, x 2, x 3 ) + a 212 h 2 (x 1, x 2, x 3 ) + b 21 y 2 (x 1, x 2, x 3 ) = a 221 h 1 (x 1, x 2, x 3 ) + a 222 h 2 (x 1, x 2, x 3 ) + b 22 ϕ(x 1, x 2, x 3, z 1, z 2 ) = (z 1 y 1 (x 1, x 2, x 3 )) 2 +(z 2 y 2 (x 1, x 2, x 3 )) 2 σ : R [0, 1], x 1 1+e x lim x σ(x) = 1, lim x σ(x) = 0 σ (x) = σ(x)(1 σ(x)) Wie bekommen wir ϕ? Erinnerung Kettenregel Kettenregel und ein Neuron b Was ist die Ableitung von g f? Andere Schreibweise: (g f ) (x) = g (f (x)) f (x). (g f ) (x) = (g f ) f x f x (x) x 1. x n a 1 σ a n g a i (x 1,..., x n ) = g f f a i (x 1,..., x n ) f (x 1,..., x n ) = n a ix i + b g(x 1,..., x n ) = σ(f (x 1,..., x n )) = σ (f (x 1,..., x n )) x i = σ(f (x 1,..., x n ))(1 σ(f (x 1,..., x n )))x i

15 Backpropagation 1 Berechne vorwärts den aktuellen Wert des Netzes und den Fehler. 2 Berechne rückwärts die Gradienten der Fehlerfunktion. Gradient Descent Algorithmus 1 Berechne für jedes Trainingsdatum den Fehler und den Gradienten. 2 Berechne den durchschnittlichen Gradienten. 3 Passe die Gewichte in Richtung des durchschnittlichen Gradienten an. 4 Gehe zu (1). Problem Meist haben wir sehr viele Trainingsdaten und die Berechnung des durchschnittlichen Gradienten ist nicht mehr möglich (bzw. gewünscht). Full batch learning Der Gradient wird anhand aller Trainingsdaten berechnet. Mini batch learning / Stochastic gradient descent Für jeden Anpassungsschritt werden einige Trainingsbeispiele zufällig ausgewählt und über diese der durchschnittliche Gradient gebildet. Online learning Der Gradient wird jeweils nur für ein einziges Trainingsbeispiel berechnet.

16 Initialisierung Zu Beginn müssen die Gewicht zufällig gewählt werden! Ansonsten entwickeln die einzelnen Neuronen keine Individualität Ein guter Tag für Tennis? Tag Aussicht Luftfeuchte Wind Tennis? 1 sonnig hoch schwach nein 2 sonnig hoch stark nein 3 bewölkt hoch schwach ja 4 regnerisch hoch schwach ja 5 regenrisch normal schwach ja 6 regenrisch normal stark nein 7 regnerisch normal stark ja 8 sonnig hoch schwach nein 9 sonnig normal schwach ja 10 regnerisch normal schwach ja 11 sonnig normal stark ja 12 bewölkt hoch stark ja 13 bewölkt normal stark ja 14 regnerisch hoch stark nein 15 regnerisch hoch schwach??? Problem Können wir P(Tennis = ja Auss. = regn., Luftf. = hoch, Wind = schwach) berechnen? Naive Annahme Die Zufallsvariablen Aussicht, Luftfeuchte und Wind sind stochastisch unabhängig.

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Ein Schwellenwertelement (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mitneingängenx,...,x n und einem

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Statistische Methoden

Statistische Methoden Modeling of Data / Maximum Likelyhood methods Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität zu Kiel 22.05.2006 Datenmodellierung Messung vs Modell Optimierungsproblem:

Mehr

RL und Funktionsapproximation

RL und Funktionsapproximation RL und Funktionsapproximation Bisher sind haben wir die Funktionen V oder Q als Tabellen gespeichert. Im Allgemeinen sind die Zustandsräume und die Zahl der möglichen Aktionen sehr groß. Deshalb besteht

Mehr

Bayessches Lernen Aufgaben

Bayessches Lernen Aufgaben Bayessches Lernen Aufgaben martin.loesch@kit.edu (0721) 608 45944 Aufgabe 1: Autodiebstahl-Beispiel Wie würde man ein NB-Klassifikator für folgenden Datensatz aufstellen? # Color Type Origin Stolen? 1

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Objekt Attributwerte Klassifizierung X Y

Objekt Attributwerte Klassifizierung X Y AUFGABE : Entscheidungsbäume Betrachten Sie das folgende Klassifizierungsproblem: bjekt Attributwerte Klassifizierung X Y A 3 B 2 3 + C 2 D 3 3 + E 2 2 + F 3 G H 4 3 + I 3 2 J 4 K 2 L 4 2 ) Bestimmen Sie

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de Vorbesprechung 5. Aufgabe 22. Juni 2017 Human Language Technology

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Regressionsrechnung: Die Methode der kleinsten Quadrate

Regressionsrechnung: Die Methode der kleinsten Quadrate Universität Basel Wirtschaftswissenschaftliches Zentrum Regressionsrechnung: Die Methode der kleinsten Quadrate Dr. Thomas Zehrt Inhalt: 1. Einstimmung 2. Problemstellung 3. Die Methode der kleinsten Quadrate

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

KOMPETENZHEFT ZU STAMMFUNKTIONEN

KOMPETENZHEFT ZU STAMMFUNKTIONEN KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2

Mehr

Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt

Maschinelles Lernen: Symbolische Ansätze. Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt Maschinelles Lernen: Symbolische Ansätze Wintersemester 2013/2014 Musterlösung für das 7. Übungsblatt 1 Aufgabe 1 Nearest Neighbour Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51

Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Mathematik W30 Mag. Rainer Sickinger LMM, BR v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Einführung Heute nehmen wir uns die Normalverteilung vor. Bis jetzt konnte unsere Zufallsvariable (das X in

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten Ch. Wendel Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume

INTELLIGENTE DATENANALYSE IN MATLAB. Überwachtes Lernen: Entscheidungsbäume INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Messbare Vektorräume

Messbare Vektorräume Messbare Vektorräume Hans-Jörg Starkloff TU Bergakademie Freiberg Westsächsische Hochschule Zwickau Dezember 2010 / Januar 2011 Hans-Jörg Starkloff Messbare Vektorräume 1 1. Definition Geg. X linearer

Mehr

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression 1 Einführung Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression Datenauswertung In einem naturwissenschaftlichen Experiment werden Sie meist

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Berechnung von Extrema

Berechnung von Extrema KAPITEL 2 Berechnung von Extrema 1. Partielle Ableitungen Definition 2.1 (partielle Ableitung). Sei U R n offen und e j der j-te Einheitsvektor. Eine Funktion f : U R ist in x u partiell differenzierbar

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR Im Allgemeinen wird sich das Verhalten einer ZR über die Zeit ändern, z.b. Trend, saisonales Verhalten, sich verändernde Variabilität. Eine ZR wird als stationär bezeichnet, wenn sich ihr Verhalten über

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade Vorlesung 8b Kovarianz, Korrelation und Regressionsgerade 1 1. Die Kovarianz und ihre Eigenschaften 2 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und

Mehr

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Rückblick Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Ridge Regression vermeidet Überanpassung, indem einfachere Modelle mit

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Einführung in die Theoretische Informatik Tutorium IX

Einführung in die Theoretische Informatik Tutorium IX Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Überwachtes Lernen: Entscheidungsbäume Literatur Stuart Russell und Peter Norvig: Artificial i Intelligence. Andrew W. Moore: http://www.autonlab.org/tutorials. 2 Überblick

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 7. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 7. Übungsblatt 1 Aufgabe 1a) Auffüllen von Attributen

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Pearson- Korrelationskoeffizienten höherer Grade

Pearson- Korrelationskoeffizienten höherer Grade Pearson- Korrelationskoeffizienten höherer Grade Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 13. März 2014 Letzte Revision: 16. März 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Der Lineare Korrelationskoeffizient

Mehr

Lernen mit Queries. Hans Kleine Büning Institut für Informatik, Universität Paderborn Paderborn (Germany),

Lernen mit Queries. Hans Kleine Büning Institut für Informatik, Universität Paderborn Paderborn (Germany), Lernen mit Queries Hans Kleine Büning Institut für Informatik, Universität Paderborn 33095 Paderborn (Germany), E-mail: kbcsl @upb.de November 2007 1 Einführung In diesem Abschnitt beschreiben wir kurz,

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Kurvenanpassung mit dem SOLVER

Kurvenanpassung mit dem SOLVER 1 Iterative Verfahren (SOLVER) Bei einem iterativen Verfahren wird eine Lösung durch schrittweise Annäherung gefunden. Der Vorteil liegt in der Verwendung einfacher Rechenoperationen und darin, dass der

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr