Algorithmische Methoden zur Netzwerkanalyse Vorlesung 10, Henning Meyerhenke

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Methoden zur Netzwerkanalyse Vorlesung 10, Henning Meyerhenke"

Transkript

1 Algorithmische Methoden zur Netzwerkanalyse Vorlesung 10, Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum Methoden in der Helmholtz-Gemeinschaft zur Netzwerkanalyse

2 Zufallsgraphen Einführung Zweck: Erzeugung großer Graphen Test von Algorithmen, Systemen Mathematische Analyse Vorhersage von Eigenschaften, Entwicklungen Zwei der gängigen Modelle (schlicht, ungerichtet, statisch): G(n, m): n Knoten, m Kanten zwischen Knotenpaaren zufällig gezogen (unabhängig und gleichverteilt) Andere Sichtweise: Man zieht einen Graphen zufällig und gleichverteilt aus der Menge von Graphen mit n Knoten und m Kanten 2 Henning Meyerhenke:

3 Zufallsgraphen Einführung Zweck: Erzeugung großer Graphen Test von Algorithmen, Systemen Mathematische Analyse Vorhersage von Eigenschaften, Entwicklungen Zwei der gängigen Modelle (schlicht, ungerichtet, statisch): G(n, m): n Knoten, m Kanten zwischen Knotenpaaren zufällig gezogen (unabhängig und gleichverteilt) Andere Sichtweise: Man zieht einen Graphen zufällig und gleichverteilt aus der Menge von Graphen mit n Knoten und m Kanten G(n, p): n Knoten, zwischen Knotenpaar existiert Kante mit Wkt. p Meist leichter zu analysieren Häufig als Erdös-Rényi-Zufallsgraphen bezeichnet 2 Henning Meyerhenke:

4 Grundlegendes E[m] = ( n 2 ) p Durchschnittsgrad: 2m/n = (n 1)p Jeder Graph G tritt mit Wkt. P(G) = p m (1 p) (n 2 ) m auf Viele Eigenschaften eng um Mittelwert konzentriert 3 Henning Meyerhenke:

5 Grundlegendes E[m] = ( n 2 ) p Durchschnittsgrad: 2m/n = (n 1)p Jeder Graph G tritt mit Wkt. P(G) = p m (1 p) (n 2 ) m auf Viele Eigenschaften eng um Mittelwert konzentriert Gradverteilung: Wkt. zu bestimmten k anderen Knoten verbunden zu sein und zu den anderen n 1 k nicht: p k (1 p) n 1 k Die k anderen Knoten, zu denen eine Verbindung besteht, können auf ( n 1 ) Arten gewählt werden k 3 Henning Meyerhenke:

6 Grundlegendes E[m] = ( n 2 ) p Durchschnittsgrad: 2m/n = (n 1)p Jeder Graph G tritt mit Wkt. P(G) = p m (1 p) (n 2 ) m auf Viele Eigenschaften eng um Mittelwert konzentriert Gradverteilung: Wkt. zu bestimmten k anderen Knoten verbunden zu sein und zu den anderen n 1 k nicht: p k (1 p) n 1 k Die k anderen Knoten, zu denen eine Verbindung besteht, können auf ( n 1 ) Arten gewählt werden k Wkt., dass ein Knoten zu genau k anderen adjazent ist: p k = ( n 1 k )pk (1 p) n 1 k Binomialverteilung! 3 Henning Meyerhenke:

7 Gradverteilung Bei realen Netzwerken ist der Durchschnittsgrad c häufig konstant in n Dann wird hier allerdings p = c/(n 1) sehr klein bei großem n 4 Henning Meyerhenke:

8 Gradverteilung Bei realen Netzwerken ist der Durchschnittsgrad c häufig konstant in n Dann wird hier allerdings p = c/(n 1) sehr klein bei großem n Bei n wird die Gradverteilung poissonsch: ln((1 p) n 1 k ) = (n 1 k) ln(1 c n 1 ) c (n 1 k) n 1 c (1 p) n 1 k = e c für n Außerdem bei n : ( n 1 k ) = (n 1)! p k (n 1)k k! p k e c = (n 1)k k! ( c n 1 (n 1 k)!k! (n 1)k k! ) k e c = e c ck k! 4 Henning Meyerhenke:

9 Cluster-Koeffizient Cluster-Koeffizient C:... 5 Henning Meyerhenke:

10 Cluster-Koeffizient Cluster-Koeffizient C:... Wkt., dass zwei Nachbarn eines Knotens auch selbst zueinander benachbart sind Da zwischen jedem Knotenpaar eine Kante mit Wkt. p = c/(n 1) ex.: C = c/(n 1). Großer Unterschied zu realen Netzwerken! 5 Henning Meyerhenke:

11 Zusammenhangskomponenten p = 0: n ZHKs der Größe 1 p = 1: 1 ZHK der Größe n Qualitativer Unterschied: Konstant vs linear abhängig von n Oft wichtig, dass man eine sehr große Komponente hat 6 Henning Meyerhenke:

12 Zusammenhangskomponenten p = 0: n ZHKs der Größe 1 p = 1: 1 ZHK der Größe n Qualitativer Unterschied: Konstant vs linear abhängig von n Oft wichtig, dass man eine sehr große Komponente hat Fundamentales Ergebnis zu G(n, p): Phasenübergang des Zusammenhangs Theorem (Erdös-Rényi) Die Funktion t(n) = ln n/n ist eine Grenzfunktion für den Zusammenhang von G(n, p) bei p = t(n). 6 Henning Meyerhenke:

13 Beweisidee zur Grenzfunktion bei ZHK Die Grenze gilt nicht nur für den Zusammenhang, sondern auch für Existenz isolierter Knoten Start durch Abschätzung der Wkt. für einen isolierten Knoten Bei p = ln n/n strebt diese Wkt. gegen 1/n Bei kleinerem p wird diese Wkt. kleiner, bei größerem p größer Bei größerem p gibt es keine ZHK mit weniger als n/2 Knoten Literaturhinweis Matthew O. Jackson: Social and Economic Networks. Princeton University Press, Kapitel Henning Meyerhenke:

14 Beweis der Grenzfunktion bei ZHK Beweis. Wir zeigen zunächst: Falls p/t(n) 0, dann geht die Wkt. für die Existenz isolierter Knoten gegen 1. Wkt., dass ein gegebener Knoten isoliert ist: (1 p) n 1 (1 p) n für p 0 Wegen p/n 0: (1 p) n e pn, denn lim n (1 a n )n = e a Wkt., dass ein gegebener Knoten isoliert ist, strebt gegen e pn 8 Henning Meyerhenke:

15 Beweis der Grenzfunktion bei ZHK Beweis. Wir zeigen zunächst: Falls p/t(n) 0, dann geht die Wkt. für die Existenz isolierter Knoten gegen 1. Wkt., dass ein gegebener Knoten isoliert ist: (1 p) n 1 (1 p) n für p 0 Wegen p/n 0: (1 p) n e pn, denn lim n (1 a n )n = e a Wkt., dass ein gegebener Knoten isoliert ist, strebt gegen e pn Wir schreiben nun p := p(n) = f (n) < ln n. Dann wird aus e pn : ln n f (n) n, wobei f (n) und e f (n) Die erwartete Anzahl isolierter Knoten ist dann e f (n) n 8 Henning Meyerhenke:

16 Fortsetzung Beweis Fortsetzung. Dass die Zahl isolierter Knoten divergiert, beweist noch nicht, dass P(es gibt einen isolierten Knoten) 1 Chebyshev-Ungleichung (CU): Sei X eine Zufallsvariable mit Mittelwert µ und Standardabweichung σ. Dann gilt für jedes r > 0: P( X µ > rσ) < 1/r 2 9 Henning Meyerhenke:

17 Fortsetzung Beweis Fortsetzung. Dass die Zahl isolierter Knoten divergiert, beweist noch nicht, dass P(es gibt einen isolierten Knoten) 1 Chebyshev-Ungleichung (CU): Sei X eine Zufallsvariable mit Mittelwert µ und Standardabweichung σ. Dann gilt für jedes r > 0: P( X µ > rσ) < 1/r 2 Sei X die Zahl der isolierten Knoten. Wissen: E[X ] = n(1 p) n 1 Beh. gilt (wg. CU), wenn Varianz von X, E[X 2 ] E[X ] 2, höchstens 2µ = 2E[X ] ist. Insbesondere gilt dann: P(X < µ r 2µ) < 1/r 2. 9 Henning Meyerhenke:

18 Fortsetzung Beweis Fortsetzung. P(X < µ r 2µ) < 1/r 2 impliziert wegen µ, dass die Wkt. für ein beliebig großes X gegen 1 geht Brauchen nun obere Schranke für die Varianz 10 Henning Meyerhenke:

19 Fortsetzung Beweis Fortsetzung. P(X < µ r 2µ) < 1/r 2 impliziert wegen µ, dass die Wkt. für ein beliebig großes X gegen 1 geht Brauchen nun obere Schranke für die Varianz E[X (X 1)] ist erwartete Anzahl geordneter Paare isolierter Knoten E[X (X 1)] = n(n 1)(1 p) n 2 (1 p) n 2 (1 p) = n(n 1)(1 p) 2n 3, denn: Beide Knoten eines Paares sind nicht zu den übrigen n 2 Knoten verbunden Zwischen den Knoten des Paares verläuft auch keine Kante 10 Henning Meyerhenke:

20 Fortsetzung Beweis Fortsetzung. E[X 2 ] E[X ] 2 = n(n 1)(1 p) 2n 3 + E[X ] E[X ] 2 = n(n 1)(1 p) 2n 3 + E[X ] n 2 (1 p) 2n 2 E[X ] + pn 2 (1 p) 2n 3 = E[X ](1 + pn(1 p) n 2 ) E[X ](1 + (ln n f (n))e ln n+f (n) (1 p) 2 ) 2E[X ]. Damit ist Teil 1 gezeigt: Wenn p(n)/ ln n n isolierte Knoten. 0, dann hat G mit hoher Wkt. 11 Henning Meyerhenke:

21 Fortsetzung Beweis Jetzt Teil 2: Wenn p(n)/ ln n n, dann hat G mit hoher Wkt. keine isolierten Knoten (und nur eine große ZHK). Fortsetzung. ln n+f (n) Sei nun p(n) = n, wobei f (n), aber f (n)/n 0. Ähnlich wie zuvor schließen wir: E[X ] e f (n) 0 Wkt., dass X mindestens 1 ist, muss dann auch gegen 0 streben 12 Henning Meyerhenke:

22 Fortsetzung Beweis Jetzt Teil 2: Wenn p(n)/ ln n n, dann hat G mit hoher Wkt. keine isolierten Knoten (und nur eine große ZHK). Fortsetzung. ln n+f (n) Sei nun p(n) = n, wobei f (n), aber f (n)/n 0. Ähnlich wie zuvor schließen wir: E[X ] e f (n) 0 Wkt., dass X mindestens 1 ist, muss dann auch gegen 0 streben Wir zeigen nun noch, dass die Wkt. von Komponenten mit Größe 2 bis n 2 gegen 0 strebt X k : Zufallsvariable, die Anzahl der ZHKs mit Größe k angibt Es genügt zu zeigen, dass E[ n/2 k=2 X k ] 0 12 Henning Meyerhenke:

23 Fortsetzung Beweis Fortsetzung. n/2 E[ X k ] k=2 = n/2 k=2 n k=2 n k=2 n k=2 13 Henning Meyerhenke: ( ) n (1 p) k(n k) (Sei nun n := n 3/4.) k ( ) n (1 p) k(n k) n/2 ( ) n + k (1 p) k(n k) k ( en ) k e knp e k 2p + k k=n+1 n/2 k=n+1 e k(1 f (n)) k k e 2k 2 ln n/n + 3e f (n) + n n3/4 /5 0 ( en k n/2 k=n+1 ) k e knp/2 ( en ) k e knp/2 k

24 Übersicht Tabelle: Einfluss von p bzw. np auf die erwartete Zahl und Größe der ZHK eines Graphen aus G(n, p) np < 1 fast nie ZHK, die größer als O(log n) ist np = 1 fast immer eine ZHK, die größer als O(log n) ist np c > 1 fast immer eine eindeutige riesige ZHK, keine andere ZHK enthält mehr als O(log n) Knoten mhw np > (1 + ε) ln n fast immer zusammenhängend (ε > 0) 14 Henning Meyerhenke:

25 Fazit Gradverteilung ist binomial bzw. poissonsch Deutliche Abweichung von den meisten realen Netzwerken So gut wie keine Community-Struktur Deutliche Abweichung von den meisten realen Netzwerken Bei passendem p eine riesige ZHK Mathematisch gut analysiert 15 Henning Meyerhenke:

26 Fazit Gradverteilung ist binomial bzw. poissonsch Deutliche Abweichung von den meisten realen Netzwerken So gut wie keine Community-Struktur Deutliche Abweichung von den meisten realen Netzwerken Bei passendem p eine riesige ZHK Mathematisch gut analysiert Insgesamt (zu) unrealistisch! 15 Henning Meyerhenke:

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, 07.12.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Graphentheorie. Zufallsgraphen. Zufallsgraphen. Zufallsgraphen. Rainer Schrader. 23. Januar 2008

Graphentheorie. Zufallsgraphen. Zufallsgraphen. Zufallsgraphen. Rainer Schrader. 23. Januar 2008 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 3. Januar 008 1 / 45 / 45 Gliederung man könnte vermuten, dass ein Graph mit großer chromatischer Zahl einen dichten Teilgraphen enthalten

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmen 2. Kapitel: Randomisierte Algorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie

Algorithmen 2. Kapitel: Randomisierte Algorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie Algorithmen 2 Algorithmen 2 Kapitel: Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2017/2018 1 / 58 Einleitung Überblick Einleitung

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Prof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, 18.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION)

SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) Vorlesung 12 AUSDÜNNUNG VON GRAPHEN SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) 387 Wiederholung: Approximative Schnitterhaltung Ziel: Approximationsalgorithmus: A(S(G)) Ziele bei Eingabe eines dichten

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67

9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 9. November 2011 ZHK in dynamischen Graphen Zentralitäten H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 ZHK in dynamischen Graphen Ungerichteter schlichter dynamischer Graph Dynamisch:

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, 25.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

3. Übung zur Vorlesung Planare Graphen

3. Übung zur Vorlesung Planare Graphen 3. Übung zur Vorlesung Planare Graphen Übung 20. Mai 14 Andreas Gemsa INSTITUTE OF THEORETICAL INFORMATICS PROF. DR. DOROTHEA WAGNER KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Vorlesung 5a. Varianz und Kovarianz

Vorlesung 5a. Varianz und Kovarianz Vorlesung 5a Varianz und Kovarianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Vorlesung 5a. Die Varianz

Vorlesung 5a. Die Varianz Vorlesung 5a Die Varianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Perkolation Christina Sander

Perkolation Christina Sander Perkolation Christina Sander 28.6.2010 Seite 2 Perkolation 28.6.2010 Christina Sander Inhalt Motivation Definitionen Kritischer Wert Boolsches Modell Anhang Seite 3 Perkolation 28.6.2010 Christina Sander

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische

Mehr

68 Abschätzungen für Abweichungen vom Erwartungswert

68 Abschätzungen für Abweichungen vom Erwartungswert 68 Abschätzungen für Abweichungen vom Erwartungswert 68.1 Motivation Mit der Varianz bzw. Standardabweichungen kennen wir bereits ein Maß für die Fluktuation einer Zufallsvariablen um ihren Erwartungswert.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

2. Übung Algorithmen I

2. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Vorlesung 15 ABSCHLUSS UND ZUSAMMENFASSUNG

Vorlesung 15 ABSCHLUSS UND ZUSAMMENFASSUNG Vorlesung 15 ABSCHLUSS UND ZUSAMMENFASSUNG 431 Wiederholung! Größen im Zusammenhang mit Fluss:! Energie des Flusses! Duale Energie: Lagrange-Potential! Dualitätslücke! Zyklusaktualisierung in Form von

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an.

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an. 2.5 Suchen Eine Menge S will nach einem Element durchsucht werden. Die Menge S ist statisch und S = n. S ist Teilmenge eines Universums auf dem eine lineare Ordnung definiert ist und soll so gespeichert

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 9. Vorlesung 26.06.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Inhalte Kurze Geschichte der

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Komplexitätstheorie Nico Döttling 8. Januar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Einführung in das Seminar Algorithmentechnik

Einführung in das Seminar Algorithmentechnik Einführung in das Seminar Algorithmentechnik 10. Mai 2012 Henning Meyerhenke, Roland Glantz 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Roland undglantz: nationales Einführung Forschungszentrum

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E.

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Knotenfärbung Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Die chromatische Zahl χ(g) eines Graphen G ist die minimale

Mehr

6. Vorlesung. Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell. Kompression des Web-Graphen

6. Vorlesung. Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell. Kompression des Web-Graphen 6. Vorlesung Web Struktur I Power Laws Modell der bevorzugten Verbindung Small World-Phänomen und -Netze Watts-Strogatz Modell Kompression des Web-Graphen Seite 146 Beobachtete Phänomene Wenige Multi-Milliardäre,

Mehr

Korollar 116 (Grenzwertsatz von de Moivre)

Korollar 116 (Grenzwertsatz von de Moivre) Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Vorlesung 13b. Relative Entropie

Vorlesung 13b. Relative Entropie Vorlesung 13b Relative Entropie 1 S sei eine abzählbare Menge (ein Alphabet ). 2 S sei eine abzählbare Menge (ein Alphabet ). Die Elemente von S nennen wir Buchstaben. S sei eine abzählbare Menge (ein

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 25. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 25.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 23. November 2017 INSTITUT FÜR THEORETISCHE 0 23.11.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade Vorlesung 8b Kovarianz, Korrelation und Regressionsgerade 1 1. Die Kovarianz und ihre Eigenschaften 2 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 43 Überblick Überblick Ein randomisierter Algorithmus

Mehr

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 8.11.2016 Kapital 2. Konvergenz 1. Grenzwerte von Folgen Definition 1.1 (Folge) Eine Folge reeller Zahlen ist eine Abbildung N R, n a n. a n heißt das n-te Glied der Folge, die Folge

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Vorlesung 14 FORTSETZUNG: LÖSER FÜR LAPLACE-GLEICHUNGSSYSTEME

Vorlesung 14 FORTSETZUNG: LÖSER FÜR LAPLACE-GLEICHUNGSSYSTEME Vorlesung 4 FORTSETZUNG: LÖSER FÜR LAPLACE-GLEICHUNGSSYSTEME 49 Wdh.: Bedingung an optimalen Fluss! Wdh.: Stromfluss f ij zwischen Knoten i und j: (v i v j )w ij! Also: f ij / w ij = v i - v j bzw. f opt

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

ÜBUNGSKLAUSUR Studienhalbjahr: 2. Semester. Datum: 20. Juli 2016 Bearbeitungszeit: 90 Minuten. Modul: T2INF Dozent: Stephan Schulz

ÜBUNGSKLAUSUR Studienhalbjahr: 2. Semester. Datum: 20. Juli 2016 Bearbeitungszeit: 90 Minuten. Modul: T2INF Dozent: Stephan Schulz Matrikelnummer: Fakultät Studiengang: Jahrgang / Kurs : Technik Angewandte Informatik 01 B/C/K ÜBUNGSKLAUSUR Studienhalbjahr:. Semester Datum: 0. Juli 01 Bearbeitungszeit: 90 Minuten Modul: TINF100.1 Dozent:

Mehr

Algorithmische Graphentheorie (WS2014/15)

Algorithmische Graphentheorie (WS2014/15) Algorithmische Graphentheorie (WS04/5) Kapitel Planare Graphen Walter Unger Lehrstuhl für Informatik :58 Uhr, den 9. April 06 Inhaltsverzeichnis Walter Unger 9.4.06 :58 WS04/5 Z Inhalt I Einleitende Definitionen

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 12. Vorlesung 12.07.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Aufbau Viceroy Knoten in Viceroy

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 01. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 01.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Zählen perfekter Matchings in planaren Graphen

Zählen perfekter Matchings in planaren Graphen Zählen perfekter Matchings in planaren Graphen Kathlén Kohn Institut für Mathematik Universität Paderborn 25. Mai 2012 Inhaltsverzeichnis Motivation Einführung in Graphentheorie Zählen perfekter Matchings

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr