Regression IV: Anpassung mit nichtlinearen Funktionen. Teil B: Nicht linearisierbare Modelle. -Fortsetzung-

Größe: px
Ab Seite anzeigen:

Download "Regression IV: Anpassung mit nichtlinearen Funktionen. Teil B: Nicht linearisierbare Modelle. -Fortsetzung-"

Transkript

1 Regression IV: Anpassung mit nichtlinearen Funktionen Teil B: Nicht linearisierbare Modelle -Fortsetzung- T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-1

2 Anpassung nach der Methode der kleinsten Quadrate Forderung: Die Unsicherheiten auf unseren Daten seien normalverteilt Die Wahrscheinlichkeit unseren Datensatz bei N Messpunkten genau so zu beobachten ist dann allgemein gegeben durch:,,, 1 2 exp 1 2 Die beste Anpassung liegt dann vor, wenn die Wahrscheinlichkeit maximal wird. Das ist der Fall, wenn der Exponent 1 minimal wird. Hier passen wir die Notation an. Wir suchen den Vektor p mit Komponenten a 1,, a m der diese Gleichung erfüllt. In der Numerik ist dies ein klassisches Optimierungsproblem, wobei man in der Literatur vorrangig Vektornotation nutzt. T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-2

3 Anpassung nach der Methode der kleinsten Quadrate Kleine Erinnerung an die Definition der euklidischen Norm für Vektor r: Damit: 1 ; 1 Dabei ist W die Wichtungsmatrix, aktuell diagonal mit Einträgen. Wir werden sehen, dass wir hier noch weitere Information erhalten / einfügen können. Zunächst wollen wir verschiedene numerische Verfahren konzeptionell betrachten. T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-3

4 Rückblick: Rastersuche 1.) Wähle Anfangsparameter a j und bestimme 2 für diese 2.) Ändere a j um +/- a j so dass 2 kleiner wird 3.) Wiederhole 2 bis 2 nicht mehr kleiner wird 4.) Bestimme aus den letzten drei a j das Minimum in parabolischer Näherung 5.) Optimiere den nächsten Parameter 6.) Iteriere 1.) 5.) bis zur gewünschten Genauigkeit T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-4

5 Rückblick: Rastersuche T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-5

6 Gradientenverfahren Den steilsten Abstieg finden wir durch: mit der Jacobi-Matrix: Ausgehend vom Startpunkt ist der Vektor, der die Parameter entlang des Gradienten verschiebt somit: mit der Schrittweite. T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-6

7 Gradientenverfahren usw. T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-7

8 Gauß-Newton Verfahren Prinzipielle Idee: Betrachte (kleine) Störung um den Idealparametersatz und minimiere diese. Konzeptionell ist dies sehr ähnlich der Störungsrechnung in der Quantenmechanik: Damit: Um uns in Richtung des idealen Parametersatzes zu schieben, muss gelten: Ausgehend vom Startpunkt ist der Vektor, der die Parameter entlang des Gradienten verschiebt somit: ß T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-8

9 Levenberg-Marquardt Verfahren Wünschenswerte Verbesserung im Gauß-Newton Verfahren wäre eine einstellbare Schrittweite. Levenberg modifizierte den Algorithmus daher in folgender Form: Der Parameter reguliert nun die Schrittweite, I ist die Einheitsmatrix. Je nach Wahl lassen sich somit die Vorzüge des Gradientenverfahren und des Gauß-Newton Verfahren verbinden. Für sehr große ergibt sich: Für sehr kleine ergibt sich: ß T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-9

10 Levenberg-Marquardt Verfahren Marquardt ergänzte dann noch eine Gewichtung nach der Krümmung: diag Damit erreicht man eine stärkere Bewegung auf den Parametern a 1,, a m bei denen der Gradient schwächer ist. Dieses Verfahren ist der de-facto Standard. Es hat sich schlicht als praktikabelster Kompromiss durchgesetzt. Es ist nicht notwendigerweise das effizienteste Verfahren (sogar sehr selten) und wie alle numerischen Verfahren findet es nur lokale Minima. Auch ist die Konvergenz nicht garantiert. Aber es ist leicht zu implementieren und funktioniert für sehr viele unterschiedliche Probleme robust. T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-10

11 Beispiel: Neutronenaktivierungsanalyse Annahme: Biexponentieller Zerfall exp exp T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-11

12 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-12

13 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-13

14 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-14

15 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-15

16 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-16

17 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-17

18 Fit gut? T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-18

19 Fit gut? T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-19

20 Residuenanalyse T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-20

21 Fit gut? Katastrophal schlecht! T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-21

22 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-22

23 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-23

24 Rechtsklick auf Graph T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-24

25 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-25

26 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-26

27 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-27

28 Reguläres Residuum of Sheet1 B Residuenanalyse kaum verändert Unabhängige Variable Das zeigt die Grenzen der Residuenanalyse. Hier muss die Analytik genutzt werden 2 red = 1,22 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-28

29 2 red = 1,22 T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-29

30 Linienformanalyse Ein sehr verbreitetes Problem ist die Anpassung von Linienformen in der Spektroskopie. Die Form der Linie gibt Aufschluss über die zu Grunde liegenden Prozesse. Beispiel: Lebenszeitverbreiterung einer Spektrallinie Lortenzform: 1 2 Quelle: : Halbwertsbreite T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-30

31 Häufige Komplikation: Spektraler Untergrund Linienformanalyse 200 Beispielspektrum 150 Zählereignisse ,0 0,5 1,0 1,5 2,0 2,5 3,0 E (GeV) Wie geht man nun am besten vor? T. Kießling: Auswertung von Messungen und Fehlerrechnung - Linienformanpassung Vorlesung 09-31

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Globale Newton Verfahren

Globale Newton Verfahren Betrachten: System von n nichtlinearen Gleichungen: F : D R n, F C 1 D Gesucht: x D, sodass F x =0. Vorher: Bedingungen für Startwert wie z.b. x x 0 2 / garantieren die Konvergenz des lokalen Newton-Verfahrens

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Nichtlineare Regression mit dem ClassPad II. HTW Dresden. Fakultät Informatik/Mathematik. Prof. Dr. Ludwig Paditz Page 1

Nichtlineare Regression mit dem ClassPad II. HTW Dresden. Fakultät Informatik/Mathematik. Prof. Dr. Ludwig Paditz Page 1 HTW Dresden Fakultät Informatik/Mathematik Prof. Dr. Ludwig Paditz Page 1 Nichtlineare, speziell arctan-regression mit dem ClassPad II (quasilineare Regression, Levenberg-Marquardt-Algorithmus) Nichtlineare

Mehr

3. Lineare Ausgleichsrechnung

3. Lineare Ausgleichsrechnung 3 Lineare Ausgleichsrechnung 1 Ausgleichsrechnung (1) Definition 31 (Ausgleichsproblem) Gegeben sind n Wertepaare (x i,y i ), i = 1,,n mit x i x j für i j Gesucht ist eine stetige Funktion f, die in einem

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 11.12.2008 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Einführung Verfahren für

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line

Mehr

Statistische Methoden

Statistische Methoden Modeling of Data / Maximum Likelyhood methods Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität zu Kiel 22.05.2006 Datenmodellierung Messung vs Modell Optimierungsproblem:

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Das Gradientenverfahren

Das Gradientenverfahren Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 = Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls

Mehr

Optimale Steuerung 1

Optimale Steuerung 1 Optimale Steuerung 1 Kapitel 6: Nichtlineare Optimierung unbeschränkter Probleme Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Beispiel: Parameteranpassung für Phasengleichgewicht

Mehr

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Wir betrachten das System f() = 0 von n skalaren Gleichungen f i ( 1,..., n ) = 0, i = 1,..., n. Gesucht: Nullstelle von f() = 0. Es sei (0) eine

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

12. Potentialflächen und Optimierung

12. Potentialflächen und Optimierung Dr. Jens Döbler Computeranwendung in der Chemie Informatik für Chemiker(innen) 12. Potentialflächen und Optimierung Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL12 Folie

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Ecken (mit selber Steigung) an die entsprechenden Polynome links und rechts davon anschließt. (1) P i (x i+1 ) = y i+1. (2) P i i) = P i 1 i) (3)

Ecken (mit selber Steigung) an die entsprechenden Polynome links und rechts davon anschließt. (1) P i (x i+1 ) = y i+1. (2) P i i) = P i 1 i) (3) Kapitel 6: Modellierung von Daten: Interpolation und Regression Interpolation Gegeben: N Datenpunkte (x i, y i ), i = 1,...,N Gesucht: vernünftige Interpolation dazwischen. Im Gegensatz zum (linearen oder

Mehr

2x + y = 19 4x + 4y = 13 4x y = 17

2x + y = 19 4x + 4y = 13 4x y = 17 170 00 Übungen zu Numerische Methoden I Sechste Übungseinheit 1., 1. und 16. Mai 2012 Inhalt der sechsten Übungseinheit: Überbestimmte lineare Systeme Isolinien-Diagramme Lineare Datenmodelle Überbestimmte

Mehr

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 8

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 8 D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye Serie 8 Abgabedatum: Di. 22.05 / Mi. 23.05, in den Übungsgruppen, oder im HG J 68. Koordinatoren: Kjetil Olsen Lye, HG G 56.1 kjetil.lye@sam.math.ethz.ch

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Wiederholung: Iterative Verfahren

Wiederholung: Iterative Verfahren Wiederholung: Iterative Verfahren Vorlesung Inverse Probleme 22.12.2011 Inhalt Landweber-Iteration Nichtlineare Probleme Konjugierte Gradientenmethoden Landweber-Iteration T Tx = T y äquivalente Fixpunktgleichung

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Analysis II. Vorlesung 47

Analysis II. Vorlesung 47 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Zu einer reellwertigen Funktion Vorlesung 47 interessieren wir uns wie schon bei einem eindimensionalen Definitionsbereich für die Extrema, also Maxima

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09 ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Problem lokaler Minima

Problem lokaler Minima Optimierung Optimierung Häufige Aufgabe bei Parameterschätzung: Minimierung der negativen log-likelihood-funktion F(a) oder der Summe der quadratischen Abweichungen S(a) und Berechnung der Unsicherheit

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

KAPITEL 10 DIE INNERE-PUNKTE-METHODE

KAPITEL 10 DIE INNERE-PUNKTE-METHODE KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach

Mehr

3.2 Maximum-Likelihood-Schätzung

3.2 Maximum-Likelihood-Schätzung 291 Die Maximum-Likelihood-Schätzung ist die populärste Methode zur Konstruktion von Punktschätzern bei rein parametrischen Problemstellungen. 292 3.2.1 Schätzkonzept Maximum-Likelihood-Prinzip: Finde

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

PVK Probeprüfung FS 2017

PVK Probeprüfung FS 2017 PVK Probeprüfung FS 07 Lucas Böttcher Numerische Methoden ETH Zürich June 3, 07. Radioaktiver Zerfall Gegeben sind zwei radioaktive Substanzen, welche mit den Raten λ = 0.5 und λ = 0. zerfallen: A λ B

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung:

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung: Inhaltsverzeichnis 1 Einleitung... 1 1.1 Modellbildung,mathematische Formulierung............... 1 1.2 Nichtlineare Programme................................. 2 1.3 Einteilung von nichtlinearen Programmen...

Mehr

Klausur Mathematik II

Klausur Mathematik II Technische Universität Dresden. Juli 8 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. M. Herrich Klausur Mathematik II Modul Dierentialgleichungen und Dierentialrechnung für Funktionen mehrerer

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

5.1 Iterative Lösung linearer Gleichungssysteme

5.1 Iterative Lösung linearer Gleichungssysteme 5.1 Iterative Lösung linearer Gleichungssysteme à Gegeben: A Œ Ñ n,n regulär, b Œ Ñ n Gesucht: x èè Œ Ñ n : Ax èè = b bzw. Iterationsverfahren: x H0L Œ Ñ n, x Hm+1L := GHx HmL L, m=0,1,..., mit x HmL ô

Mehr

5.3.5 Abstiegs & Gradientenverfahren

5.3.5 Abstiegs & Gradientenverfahren 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Das Doppelstern-Modell Vorgehen beim Bestimmen der Modellparameter und ihrer Fehler

Das Doppelstern-Modell Vorgehen beim Bestimmen der Modellparameter und ihrer Fehler Das Doppelstern-Modell Vorgehen beim Bestimmen der Modellparameter und ihrer Fehler Udo Backhaus 29. November 2013 1 Hintergrund Das Doppelstern-Modell [1] beschreibt die Helligkeit y(t) zweier sich gegenseitig

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen (1) Zur Erinnerung: Gesucht ist die Lösung eines linearen Gleichungssystems a 0,0 x 0 +a 0,1 x 1 + a 0,n 1 x n 1 = b 0 a 1,0 x 0 +a 1,1 x 1 +

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 49 Zu einer reellwertigen Funktion Extrema auf einer offenen Menge G R n interessieren wir uns, wie schon bei einem eindimensionalen

Mehr

Kontinuierliche Optimierung

Kontinuierliche Optimierung Kontinuierliche Optimierung Markus Herrich Wintersemester 2018/19 ii Inhaltsverzeichnis 2 Optimalitäts- und Regularitätsbedingungen 1 2.1 Einleitung und Wiederholung.................... 1 2.2 Optimalitätsbedingungen

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik SS 999 Augabe 6 Punkte Das Integral I ln d soll numerisch bis au eine Genauigkeit von mindestens - approimiert werden. a Wie groß muss die Anzahl N der Teilintervalle sein damit mit

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Fortgeschrittene Ökonometrie: Maximum Likelihood

Fortgeschrittene Ökonometrie: Maximum Likelihood Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,

Mehr

6. Numerische Lösung des. Nullstellenproblems

6. Numerische Lösung des. Nullstellenproblems 6. Numerische Lösung des Nullstellenproblems 1 Problemstellung Zwischenwertsatz: Sei f : [a,b] R stetig und c R mit f(a) c f(b) oder f(b) c f(a). Dann gibt es ein x [a,b] mit f(x) = c. Frage: Wie lässt

Mehr

Mathematik II. Vorlesung 46. Der Gradient

Mathematik II. Vorlesung 46. Der Gradient Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 46 Der Gradient Lemma 46.1. Es sei K ein Körper und V ein K-Vektorraum, der mit einer Bilinearform, versehen sei. Dann gelten folgende Aussagen

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen und Wiederholung (1) Die Grundlagen decken sich mit dem Stoff, der einen Teil des Kapitels 2 - Numerik ausmacht und bereits in Mathematik behandelt

Mehr

b Linear: h xi; θ = x T i θ. Yi = h x (1) a Regression: Das allgemeine Modell lautet 2.1 Das Modell 2 Nichtlineare Regression

b Linear: h xi; θ = x T i θ. Yi = h x (1) a Regression: Das allgemeine Modell lautet 2.1 Das Modell 2 Nichtlineare Regression 2 Nichtlineare Regression 2.1 Das Modell a Regression: Das allgemeine Modell lautet Yi = h x (1) i, x (2) i,..., x (m) i ; θ1, θ2,..., θp + Ei = h xi; θ + Ei Ei N 0, σ 2, unabhängig. b Linear: h xi; θ

Mehr

PCG Verfahren. B ist symmetrisch positiv definit. Eine Matrix-Vektor-Multiplikation mit B hat geringen Aufwand

PCG Verfahren. B ist symmetrisch positiv definit. Eine Matrix-Vektor-Multiplikation mit B hat geringen Aufwand PCG Verfahren Zur Verbesserung des Konvergenzverhaltens des CG-Verfahrens, wird in der Praxis oft ein geeigneter Vorkonditionierer konstruiert. Vorraussetzungen an einen Vorkonditionierer B sind: B ist

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Freie Nichtlineare Optimierung Orakel, lineares/quadratisches Modell Optimalitätsbedingungen Das Newton-Verfahren Line-Search-Verfahren Inhaltsübersicht für heute: Freie Nichtlineare

Mehr

Aufgabe 1 (7 Punkte) Prüfung Optimierung dynamischer Systeme ( 6) = lim p. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (7 Punkte) Prüfung Optimierung dynamischer Systeme ( 6) = lim p. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik Optimierung Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 7 Aufgabe (7 Punkte) Die Ableitung der Funktion f ( p) p 5sin p soll mithilfe des Vorwärtsdifferenzenverfahrens

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10 Kapitel 1: Rechnen mit Zahlen...1 1.1 Rechnen mit reellen Zahlen...2 1.2 Berechnen von Summen und Produkten...3 1.3 Primfaktorzerlegung...4 1.4 Größter gemeinsamer Teiler...4 1.5 Kleinstes gemeinsames

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 Teil I Statische Optimierung 2 Allgemeine Problemstellung der statischen

Mehr

Kurvenanpassung mit dem SOLVER

Kurvenanpassung mit dem SOLVER 1 Iterative Verfahren (SOLVER) Bei einem iterativen Verfahren wird eine Lösung durch schrittweise Annäherung gefunden. Der Vorteil liegt in der Verwendung einfacher Rechenoperationen und darin, dass der

Mehr

Über- und unterbestimmte

Über- und unterbestimmte Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Klausur. Physik auf dem Computer SS JP Dr. Axel Arnold Dr. Olaf Lenz Florian Fahrenberger Dominic Röhm 15. August 2012

Klausur. Physik auf dem Computer SS JP Dr. Axel Arnold Dr. Olaf Lenz Florian Fahrenberger Dominic Röhm 15. August 2012 Universität Stuttgart Institut für Computerphysik Klausur Physik auf dem Computer SS 2012 JP Dr. Axel Arnold Dr. Olaf Lenz Florian Fahrenberger Dominic Röhm 15. August 2012 Name Vorname Matrikelnummer

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion.

2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion. 2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion. 2.1 Allgemeine Behandlung Definition der χ 2 -Funktion. Hier definieren wir

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

Euklidische Distanzmatrizen. Andrei Grecu

Euklidische Distanzmatrizen. Andrei Grecu Euklidische Distanzmatrizen Andrei Grecu Übersicht Motivation Definition und Problemstellung Algo 1: Semidefinite Programmierung Algo 2: Multidimensional Scaling Algo 3: Spring Embedder Algo 4: Genetischer

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr