Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Übungsblatt 1- Lösung

Größe: px
Ab Seite anzeigen:

Download "Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Übungsblatt 1- Lösung"

Transkript

1 Technische Universität München Physik Department Pablo Cova Fariña Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Übungsblatt 1- Aufgabe 1: (a) Gegeben seien die Matrizen Matrixmultiplikation - zum Wachwerden A = B = Berechnen Sie alle möglichen Produkte! (b) Berechnen Sie: D = ( ) E = C = (a) Die möglichen Produkte der angegebenen Matrizen lauten: A 2 = AE = CD = AB = BC = DC = ( 57) (b) Bitte wenden...

2 Aufgabe 2: Neues Jahr neues Glück! Gegeben sei die Matrix A = Berechne A 2018! A 2 = = = I 3 A 3 = A; A 4 = I 3 ;...A 2018 = I 3 Aufgabe 3: Nilpotente Matrix Für eine quadratische Matrix M C n n definiert man das Matrixexponential als: Ermitteln Sie exp(m) für die Matrix: exp(m) = 1 k! M k M = Hinweis: Für eine beliebige Matrix M K n n gilt M 0 = I n. Weiterhin ist die angegebene Matrix M nilpotent d.h. M n = 0 für ein n N. Einfach losmultiplizieren! exp(m) = M 0 = M 2 = M 1 = M 3 = =

3 Aufgabe 4: Gegeben sei die Matrix Rang einer Matrix A = k k Finde den Rang von A abhängig vom Parameter k. Wir bringen A auf Zeilenstufenform. k 1 3 II - k I 0 1 3k 3 k k 1 7 k III II k 3 k II III - I 0 1 3k 3 k k 3 k III - (1 3k) II k 2 Die ersten zwei Zeilen der Matrix sind ungleich einer Nullzeilen unabhängig von der Wahl von k. Die dritte Zeile wird zur Nullzeite für k = ± 3. Zusammenfassend: rg(a) = 2 für k = ± 3 rg(a) = 3 sonst Aufgabe 5: LGS 1 Lösen Sie folgende lineare Gleichungssysteme: (a) x 2 + 2x 3 + 3x 4 = 0 x 1 + 2x 2 + 3x 3 + 4x 4 = 0 2x 1 + 3x 2 + 4x 3 + 5x 4 = 0 3x 1 + 4x 2 + 5x 3 + 6x 4 = 0 (b) 6x 1 + 6x 2 + 2x 3 2x 4 = 2 9x 1 + 8x 2 + 3x 3 2x 4 = 3 3x 1 + 2x 2 + x 3 = 1 15x x 2 + 5x 3 4x 4 = 5 Bitte wenden...

4 (a) I II III + II IV + 2 II III - 2 I IV - 3 I I - 2 II Wir haben zwei Gleichungen für vier Unbekannten. Wir brauchen also zwei freie Parameter. Legen wir x 4 = λ und x 3 = µ fest so finden wir x 2 = 2µ 3λ und x 1 = µ + 2λ. Die smenge lautet: (b) III - II IV - 2 II L = I III µ + 2λ 2µ 3λ µ λ mit I - II λ µ R II - 2 I III - 3 I IV - 5 I Wir haben zwei Gleichungen für vier Unbekannten. Wir brauchen also zwei freie Parameter. Legen wir x 1 = λ und x 2 = µ fest so finden wir x 4 = µ und x 3 = 1+3λ 2µ. Die smenge lautet: L = λ µ 1 + 3λ 2µ µ mit λ µ R

5 Aufgabe 6: LGS 2 Gegeben sei das lineare Gleichungssystem: x 1 + x 2 + ax 3 4 = 0 x 1 + x 2 + x = 0 x 1 ax 2 + x 3 1 = 0 wobei a R. (a) Lösen Sie das LGS und geben Sie an für welche Werte von a das System: (i) unlösbar ist. (ii) lösbar ist. (b) Interpretieren Sie die Fälle geometrisch. Wir stellen zunächst die erweiterte Koeffizientenmatrix auf und wenden dann den Gauss- Algorithmus an. 1 1 a a 1 1 Wir stellen fest: Z1 Z2 Z1 Z a 4 1 a 1 1 Typ III a a 1 5 (i) Falls a = 1 oder a = 1 ist das System nicht lösbar. (ii) Sonst ist das System eindeutig lösbar a a (b) Falls Fall (i) auftritt haben wir zwei parallele Ebenen die dritte Ebene schneidet beide. Bei a = 1 sind die ersten zwei Ebenen parallel zueinander bei a = 1 sind es die zweite und die dritte Ebene. Falls Fall (ii) auftritt schneiden sich die drei Ebenen in einem Punkt. Aufgabe 7: Gruppen - leicht Erfinden Sie 1-2 Mengen mit Verknüpfung die eine Gruppe darstellen und 1-2 Mengen mit Verknüpfung die keine Gruppe darstellen weil eines der Axiome verletzt ist. Wenn Sie Hilfe brauchen dürfen sich von Ihrem Vorlesungs-Skript inspirieren lassen; wenn Sie eine Herausforderung brauchen dann versuchen Sie es ohne. Tauschen Sie die Beispiele mit der Person die neben Ihnen sitzt und versuchen Sie deren Beispiele zu lösen und die Gruppen zu identifizieren bzw. herauszufinden an welchem Axiom es scheitert. Bei Unklarheiten können Sie gerne die Tutoren fragen. Bitte wenden...

6 Aufgabe 8: Gruppen - leicht Zeigen Sie dass (Z +) eine Untergruppe von (Q +) ist. : (UG1) 0 Z d.h. das neutrale Element von Q liegt auch in Z. (UG2) x y Z : x + y Z: (UG3) x Z: x Z Aufgabe 9: Gruppen - mittel aber viel Schreibaufwand (a) Bestimmen Sie für alle Elemente der symmetrischen Gruppe S 3 ihr Inverses. (b) Ist die S 3 abelsch (d.h. kommutativ)? Was gilt allgemein für die S n n 3? (c) Bestimmen Sie alle Untergruppen der S 3. Tipp: Zeichnen Sie ein gleichseitiges Dreieck und nummerieren Sie die Ecken. Überlegen Sie sich eine geometrische Interpretation für die S 3. (d) Zeigen Sie: Die Kardinalität (= Mächtigkeit) der S n ist n!. : Zuerst überlegen wir uns welche Elemente überhaupt in der S 3 liegen: ( ) ( ) ( ) ( ) ( ) ( ) sind jeweils ihre ei- Dies sind alle Elemente der S 3. Das wissen wir da S 3 = 3! = 6. ( ) ( ) ( ) ( ) (a) Die Elemente genen Inversen. Die Elemente ( 1 2 ) und ( ) sind zueinander invers (b) Sie ist nicht abelsch: (123) (12) = (13) (23) = (12) (123). Da in allen symmetrischen Gruppen S n n 3 auch die Elemente der S 3 liegen (sie entstehen wenn man die Zahlen größer als 4 nicht permutiert) sind also alle anderen symmetrischen Gruppen für n 3 auch nicht abelsch. (c) Die Untergruppen ( ) ( sind: ) U 1 = { } ( ) ( ) U 2 = { } ( ) ( ) U 3 = { } ( ) ( ) U 4 = { ( ) U 5 = { } U 6 = S 3 ( 1 2 ) Die Untergruppen U 1 bis U 5 sind echte Untergruppen. U 1 U 2 U 3 sind die Untergruppen die durch Vertauschung zweier Ecken des Dreiecks bzw. Spiegelung an einer Mittelsenkrechten }

7 entstehen. U 4 entsteht durch Rotation des gleichseitigen Dreiecks. U 5 ist die Identität. U 6 ist die ganze Gruppe (und insbesondere keine echte Untergruppe). Geometrisch kann man die S 3 als Gruppe aller Deckabbildungen eines gleichseitigen Dreiecks interpretieren. (d) Wenn wir n Zahlen permutieren haben wir für die erste Position n Möglichkeiten für die zweite n und so weiter also gibt es n! Möglichkeiten die Menge A = { n} auf sich selbst abzubilden. Aufgabe 10: Gruppen - mittel Sei G eine Gruppe mit neutralem Element e. Zeigen Sie: a 2 = e a G G ist abelsch. (Direkter Beweis): Zuerst schreiben wir die rechte Seite um: a 2 = e a 1 = a a G. Seien nun a b G c := ab. Dann gilt: e = c 2 = (ab) 2 = abab = aba 1 b 1 ab = ba G abelsch. Hinweis: In einer früheren Version stand statt dem letzten ein im Beweis. Es wurde also fälschlicherweise geschlussfolgert dass in allen abelschen Gruppen a 2 = e gilt. Das ist natürlich falsch wie man zum Beispiel an der abelschen Gruppe {R\{0} } sieht. Dort gilt z.b. 2 2 = 4 1. Aufgabe 11: Vektorräume - mittel Entscheiden Sie ob die folgenden Mengen Untervektorräume zu den angegebenen Vektorräumen sind. (a) W = {(x 1 x 2 x 3 ) R 3 : x 1 = x 2 = 2x 3 } R 3 (b) W = {(x 1 x 2 ) R 2 : x x 4 2 = 0} R 2 (c) W = {(µ + λ λ 2 ) R 2 : µ λ R} R 2 (d) W = {(x 1 x 2 ) R 2 : x 1 x 2 } R 2 : Wir müssen die UVR-Axiome überprüfen. (a) (b) UVR 1: Erfüllt da (0 0 0) W W UVR 2: Erfüllt: Seien v w W d.h. v = (v 1 v v 1) w = (w 1 w w 1). v + w = (v 1 + w 1 v 2 + w (v 1 + w 1 )) UVR 3: Erfüllt: Sei v W d.h. v = (v 1 v v 1) λ R. Es gilt: λv = (λv 1 λv 2 λ 1 2 v 1) W W ist also ein UVR von R 3. Durch Hinsehen erkennt man dass W = {(0 0)} d.h. nur der Nullvektor erfüllt die Bedingung. Damit ist W nichtleer und UVR 1 ist erfüllt. Die anderen beiden Axiome folgen auch direkt da (0 0) + (0 0) = (0 0) W und λ(0 0) = (0 0) W. W ist also ein UVR von R 2. Bitte wenden...

8 (c) UVR 1: Erfüllt da z.b. (1 0) W W. UVR 2: Erfüllt. Betrachte die Addition zweier Elemente aus W: (µ 1 + λ 1 λ 2 1) + (µ 2 + λ 2 λ 2 2) = (µ 1 + µ 2 + λ 1 + λ 2 λ λ 2 2). Offensichtlich gibt es ein λ 3 R sodass λ 2 3 = λ λ 2 2. Setze µ 3 := µ 1 + µ 2 + λ 1 + λ 2 λ 3 R. Dann gilt: (µ 1 + λ 1 λ 2 1) + (µ 2 + λ 2 λ 2 2) = (µ 3 + λ 3 λ 2 3) W UVR 3: Nicht erfüllt. Wähle z.b. λ = 1 α = 1 µ = 0: α(µ + λ λ) = 1(1 1) = ( 1 1) / W da λ 2 0 λ R. Es gibt also kein λ das die gewünschte Bedingung erfüllt. W ist also kein UVR von R 2. (d) UVR 1: Erfüllt da z.b. (1 0) W W. UVR 2: Erfüllt denn es gilt für zwei Vektoren v v W : v + v = (x 1 + x 1 x 2 + x 2) wobei x 1 + x 1 x 2 + x 2 v + v W. UVR 3: Nicht erfüllt. Wähle z.b. α = 1. Dann gilt: αv = ( x 1 x 2 ) wobei x 1 x 2 αv / W. W ist also kein UVR von R 2.

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 2017/2018 Lineare Algebra Skript zum Ferienkurs Tag 1-21.3.2018 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper für seine Unterstützung bei der

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 006/07 en Blatt 3.0.006 Einführung in die Matrizenrechnung Zentralübungsaufgaben

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Lösung Test 2 (Nachprüfung)

Lösung Test 2 (Nachprüfung) MLAE Mathematik: Lineare Algebra für ngenieure Herbstsemester Dr Christoph Kirsch ZHAW Winterthur Aufgabe : Lösung Test (Nachprüfung a Wir verwenden den Gauss-Jordan-Algorithmus, um die erweiterte Koeffizientenmatrix

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Lineare Gleichungssysteme (LGS) 2 1.1 Grundlagen..................................................

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

FK03 Mathematik I: Übungsblatt 13 Lösungen

FK03 Mathematik I: Übungsblatt 13 Lösungen FK0 Mathematik I: Übungsblatt Lösungen Verständnisfragen. Wann nennt man die Vektoren v,..., v n R n linear unabhängig? Die Vektoren v,..., v n R n heißen linear unabhängig, falls die folgende Gleichung

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Humboldt-Universität zu Berlin.0.08. Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik A. Filler Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Bitte lösen

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 0..08 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Kapitel 8. Elemente der Matrizenrechnung. 8.1 Rechenregeln

Kapitel 8. Elemente der Matrizenrechnung. 8.1 Rechenregeln Kapitel 8 Elemente der Matrizenrechnung Die Untersuchung linearer Abbildungen, so die Moral des letzten Kapitels, ist Matrizenlehre: was man mit Matrizen alles so machen kann, und welche Eigenschaften

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 2. Aufgabe 2.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 2. Aufgabe 2.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr. V. Gradinaru D. Devaud A. Hiltebrand Herbstsemester 04 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Multiple Choice: Online abzugeben. Ev. sind mehrere

Mehr

4 Der Gauß Algorithmus

4 Der Gauß Algorithmus 4 Der Gauß Algorithmus Rechenverfahren zur Lösung homogener linearer Gleichungssysteme Wir betrachten ein GLS (1) a 11 x 1 + a 1 x + + a 1n x n = a 1 x 1 + a x + + a n x n = a m1 x 1 + a m x + + a mn x

Mehr

Ferienkurs Mathematik für Physiker I Blatt 3 ( )

Ferienkurs Mathematik für Physiker I Blatt 3 ( ) Ferienkurs Mathematik für Physiker I WS 6/7 Ferienkurs Mathematik für Physiker I Blatt 3 (9.3.7) Aufgabe : Matrizenrechung 3 (a) Ermitteln Sie für die Matrix A = 3 4 den Ausdruck A + A + A + 6 A3. 3 4

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik

Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik Prof. Dr. R. Tumulka, Dr. S. Eichmann Mathematisches Institut, Universität Tübingen Sommersemester 2017 2.6.2017 Lineare Algebra 1 Vorbereitungsaufgaben zur Ersten Teilklausur Studiengang: B.Sc. Mathematik,

Mehr

1 Matrizen und Vektoren

1 Matrizen und Vektoren Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Matrizen und Vektoren Definition 1.1 (Matrizen) Ein rechteckiges Zahlenschema aus m mal n Elementen eines Körpers

Mehr

Lineare Algebra Übungen Hausaufgaben für 8. Nov. mit Lösungen/Ergebnissen

Lineare Algebra Übungen Hausaufgaben für 8. Nov. mit Lösungen/Ergebnissen Lineare Algebra Übungen Hausaufgaben für 8. Nov. mit Lösungen/Ergebnissen Definition. Der Kern (auf Englisch kernel) einer Matrix / einer linearen Abbildung ist die Menge aller Vektoren, die auf den Nullvektor

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14052018 (Teil 1) 7 Mai 2018 Steven Köhler mathe@stevenkoehlerde mathestevenkoehlerde 2 c 2018 Steven Köhler 7 Mai 2018 Matrizen

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun Stefan K. 1.Übungsblatt Algebra I Aufgabe 1 1. zu zeigen: (g 1 ) 1 = g g G, G Gruppe Beweis: Aus dem Gruppenaxiom für das Linksinverse zu g haben wir und für das Linksinverse zu g 1 Unter Verwendung des

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) =

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) = Lösungen Lineare Algebra für Physiker, Serie 2 Abgabe am 25.10.2007 1. Es seien A K m n, B,C K n p und D K p q gegeben. 9 P (a) Beweisen Sie das Distributivgesetz A(B + C ) = A B + AC. (b) Beweisen Sie

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MLAE Mathematik: Lineare Algebra für Ingenieure Herbstsemester Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung Aufgabe : a Mit dem Distributivgesetz multiplizieren wir aus: und lösen nach

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Technische Universität München Christoph Niehoff Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 009/00 Die beiden Hauptthemen von diesem Teil des Ferienkurses sind Lineare Gleichungssysteme

Mehr

Kapitel 9: Lineare Gleichungssysteme

Kapitel 9: Lineare Gleichungssysteme Kapitel 9: Lineare Gleichungssysteme Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 9: Lineare Gleichungssysteme 1 / 15 Gliederung 1 Grundbegriffe

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg. Übungsaufgaben 12. Übung: Woche vom 16. 1.-20. 1. 2017 (Lin.Alg. I): Heft Ü 3: 2.1.11; 2.1.8; 2.1.17; 2.2.1; 2.2.3; 1.1.1; 1.1.4; Hinweis 1: 3. Test (Integration, analyt. Geom.) ist seit 9.1. freigeschalten

Mehr

Von einem Parallelogramm ABCD sind die Punkte A =(1, 5), C =(13, 4) und D =(5, 7) bekannt. Berechne den Punkt B.

Von einem Parallelogramm ABCD sind die Punkte A =(1, 5), C =(13, 4) und D =(5, 7) bekannt. Berechne den Punkt B. Lineare Algebra WS2/22 Übungsblatt Übung. Von einem Parallelogramm ABD sind die Punkte A =(, 5), =(3, 4) und D =(5, 7) bekannt. Berechne den Punkt B. Übung 2. Stelle rechnerisch fest, ob das Viereck A

Mehr

Übungen zum Vorkurs Mathematik

Übungen zum Vorkurs Mathematik Übungen zum Vorkurs Mathematik Blatt 1 W.S.2009/2010 - Ernst Bönecke Aufgaben zur Aussagenlogik 1.) Seien A, B, C Aussagen. Beweisen Sie mit Hilfe von Wahrheitstafeln, dass folgende Aussagen stets wahr

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Aufgabe 1 (a) Vorgehen wie im Beispiel auf Seite 151 des Skripts. Für die Anzahl möglicher Linearkombinationen

Aufgabe 1 (a) Vorgehen wie im Beispiel auf Seite 151 des Skripts. Für die Anzahl möglicher Linearkombinationen Mathe I für Naturwissenschaften Dr. Christine Zehrt 14.12.17 Hinweise und Ergebnisse zur Übung 13 Uni Basel Lösungshinweise Aufgabe 1 (a Vorgehen wie im Beispiel auf Seite 151 des Skripts. Für die Anzahl

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik =

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik = H 6. Die Matrizen A, B, C und D seien gegeben durch 5 A =, B =, C = 4 5 4, D =. 5 7 5 4 4 Berechnen Sie (sofern möglich) alle Matrizenprodukte X Y mit X, Y {A, B, C, D}. Zu zwei Matrizen A R m n und B

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Höhere Mathematik 1. Lösungshinweise zu den Hausaufgaben: 3. Gruppenübung zur Vorlesung. Wintersemester 2016/17

Höhere Mathematik 1. Lösungshinweise zu den Hausaufgaben: 3. Gruppenübung zur Vorlesung. Wintersemester 2016/17 T. Conde, J. Meinel, D. Seus, S. Thelin, R. Tielen, A. Wünsch. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester 6/7 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 7. Lineare

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Rechnen mit Matrizen 2 1.1 Matrixmultiplikation............................................

Mehr

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2 Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr