Statistik II für Betriebswirte Vorlesung 3

Größe: px
Ab Seite anzeigen:

Download "Statistik II für Betriebswirte Vorlesung 3"

Transkript

1 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013

2 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg ) Ein Börsenanalyst möchte testen, ob nach einem Aktiensplit (2-für-1) die Erträge steigen. Er verfügt über eine Stichprobe von 10 Aktien, bei denen eine solche Aufteilung vorgenommen wurde. Dabei kennt er die prozentualen Returns der Aktien jeweils im Monat vor (x i ) und im Monat nach (y i ) dem Aktiensplit. Daten: x i y i y i x i R i Wert der Testgröße des Wilcoxon-Vorzeichen-Rangtests: t = w 10 + = = 50.5 Kritischer Bereich (α = 0.05): w 10; = 10, w 10; = w 10; = = 45, K = {t R : 45 t 55} Testergebnis: t K, H 0 wird abgelehnt, Erträge steigen signifikant PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 1

3 Wilcoxon-Rangsummentest Wilcoxon-Rangsummentest dient zum Vergleich zweier unabhängiger Stichproben hinsichtlich ihrer zentralen Tendenz (ihrer Lage) kann im Fall von Grundgesamtheiten an Stelle des doppelten t-tests verwendet werden Wilcoxon-Rangsummentest wird unter anderem auch als Rangtest nach Wilcoxon bezeichnet, er ist äquivalent zum U-Test von Mann-Whitney gegeben: 2 unabhängige Stichproben X 1,..., X n1 mit stetiger Verteilungsfunktion F X und Y 1,..., Y n2 mit stetiger Verteilungsfunktion F Y, wobei F Y (t) = F X (t + a) mit einer reellen Zahl a vorausgesetzt wird (dann gilt auch µ X = EX = EY + a = µ Y + a falls Erwartungswerte existieren). kann als zweiseitiger oder als einseitiger Test ausgeführt werden PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 2

4 Wilcoxon-Rangsummentest Fortsetzung H 0 : a = 0, H A : a 0 (bzw. H 0 : µ X = µ Y, H A : µ X µ Y ). In der gemeinsamen Stichprobe (beide Stichproben zusammen) werden die Ränge bestimmt. Bildet man die Summe der Ränge in der ersten Stichprobe, erhält man die Testgröße T = R 1. Kritischer Bereich (kleine n 1, n 2 ): K = {t : t w n1,n 2 ;α/2} {t : t w n1,n 2 ;1 α/2}; die Quantile w n1,n 2 ;α/2 und w n1,n 2 ;1 α/2 kann man in Tabellen finden, dabei gilt w n1,n 2 ;1 α = n 1 (n 1 + n 2 1) w n1,n 2 ;α. Für (Faustregel: n 1 4, n 2 4, n 1 + n 2 20) ist T = R n 1(n 1 + n 2 + 1) 1 12 n 1n 2 (n 1 + n 2 + 1) näherungsweise standardnormalverteilt, so dass man zur Bestimmung des kritischen Bereichs die entsprechenden Quantile der Standardnormalverteilung nutzen kann. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 3

5 Beispiel: Abiturnoten und Studienrichtungen Mit Hilfe einer Untersuchung sollte geprüft werden, ob sich Studenten verschiedener Studienrichtungen (Psychologie X und Medizin Y ) hinsichtlich ihrer Leistungsvoraussetzungen für ein Studium, erhoben mit der Durchschnittsnote ihres Abiturs, unterscheiden. Hypothesen: H 0 : a = 0, (d.h. F X = F Y ), H A : a 0. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 4

6 Daten und Rangplätze im Beispiel Abiturnoten und Studienrichtungen Daten und Rangplätze Psychologiestudenten: n 1 = 21 x i r i x i r i x i r i Daten und Rangplätze Medizinstudenten: n 2 = 21 y i r i y i r i y i r i PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 5

7 Test im Beispiel Abiturnoten und Studienrichtungen Summe Rangzahlen Psychologiestudenten: R 1 = 434. Summe Rangzahlen Medizinstudenten: R 2 = 469. Test für große Stichproben: Wert der Testgröße: t = Kritischer Bereich (α = 0.01, zweiseitiger Test) K = {t R : t > z = 2.567}. = Testergebnis: t K, H 0 wird nicht abgelehnt, Leistungsvoraussetzungen unterscheiden sich nicht signifikant. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 6

8 Bindungen Bei Vorzeichen- oder auf Rängen basierten Tests kann es trotz der Stetigkeitsannahme der entsprechenden Verteilungen vorkommen, dass in der Stichprobe Werte vorkommen. Man spricht dann von auftretenden Bindungen (engl. ties ). Der Testaufbau sieht Bindungen eigentlich nicht vor (die Wahrscheinlichkeit dafür ist ), deshalb muss man die Tests geeignet modifizieren. Bei rangbasierten Tests mittelt man beim Auftreten von Bindungen einfach die Rangzahlen. Besonders kritisch sind Bindungen bei Vorzeichentests, wenn im Einstichprobenproblem einige Werte gleich dem Median sind bzw. im Zweistichprobenproblem einige Differenzen gleich Null sind. Bei bestimmten Tests, wie z.b. dem Wilcoxon-Rangsummentest oder dem Kruskal-Wallis-Test (er wird später behandelt) muss die Testgröße beim Vorliegen von Bindungen in der Stichprobe entsprechend angepasst werden (siehe Literatur). PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 7

9 Mögliche Vorgehensweisen beim Auftreten von Bindungen bei Vorzeichentests oft kann man Bindungen Messgenauigkeit erhöht, indem man die Beobachtungen mit Bindung werden nicht berücksichtigt ( geringerer Stichprobenumfang) Beobachtungen mit Bindung werden zu gleichen Teilen beiden Gruppen (+ bzw., etc.) zugeordnet, bei ungerader Anzahl der Bindungen wird eine Beobachtung nicht berücksichtigt die Beobachtungen mit Bindung werden zufällig mit einer Wahrscheinlichkeit von einer der beiden Gruppen zugeordnet Nulldifferenzen erhalten das Vorzeichen PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 8

10 Verteilungstests eine weitere Klasse von Tests beschäftigt sich mit der Prüfung, ob die Werte der Stichprobe aus einer Grundgesamtheit mit einer speziellen hypothetischen Verteilungsfunktion stammen ausführlicher wird hier der χ 2 -Anpassungstest behandelt kurz vorgestellt werden auch der Kolmogorow-Smirnow-Test (auch Kolmogorow-Anpassungstest) und der Shapiro-Wilk-Test weitere Tests, die zum Teil für bestimmte Typen von Verteilungsfunktionen entwickelt wurden, kann man in der Literatur finden PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 9

11 Der χ 2 -Anpassungstest Test, ob vorliegende Stichprobe aus einer Grundgesamtheit mit einer hypothetischen Verteilungsfunktion F 0 entstammt. Prinzipielles Vorgehen: der Stichprobe mit der hypothetischen Verteilung falls die Abweichungen zu groß sind, dann erfolgt eine Nullhypothese der Der Test ist ein asymptotischer Test, d.h. man rechnet mit der asymptotischen Verteilung (für n ) der Testgröße unter H 0. Hypothesen: H 0 : F (x) = F 0 (x), x R, F 0 ist eine Verteilungsfunktion, ( ) x µ z.b. F 0 (x) = Φ falls X N (µ, σ 2 ); σ H A : F (x) F 0 (x) für mindestens ein x R. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 10

12 Definition der Testgröße T Einteilung der gesamten Merkmalsachse in k Klassen A 1 = (, a 1 ), A 2 = [a 1, a 2 ),..., A k = [a k 1, ). Bestimmung der absoluten Klassenhäufigkeiten H 1, H 2,..., H k (Anzahl der Stichprobenwerte in der jeweiligen Klasse). Bestimmung der theoretischen Wahrscheinlichkeiten für die Klassenzugehörigkeiten unter der Annahme der Gültigkeit von H 0, p 1 = P H0 (A 1 ) = P H0 (X < a 1 ) = F 0 (a 1 ), p 2 = P H0 (A 2 ) = P H0 (a 1 X < a 2 ) = F 0 (a 2 ) F 0 (a 1 ),... p k = P H0 (A k ) = P H0 (a k 1 X) = 1 F 0 (a k 1 ) Testgröße: T = k (H j np j ) 2 j=1 diese Größe ist unter H 0 np j ( χ 2 Abstandsfunktion ), asymptotisch χ 2 k 1 -verteilt PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 11

13 Kritischer Bereich und Bemerkungen Kritischer Bereich: K = {t R : t > χ 2 k 1;1 α }. Bemerkungen: Der Stichprobenumfang n sollte nicht zu klein sein. Die Anzahl und die Größe der Klassen A j sollte so sein, dass np j = np H0 (X A j ) > 1 für alle j = 1,..., k gilt (und zusätzlich np j 5 für mindestens 80% der Klassen; ggf. Klassen zusammenfassen oder gesamte Klasseneinteilung ändern). Bei diskreten Verteilungen und nicht zu kleinen Einzelwahrscheinlichkeiten sollte pro Merkmalswert gewählt werden. Klasse Modifikation: Unbekannte Parameter in der Verteilungsfunktion F 0 können durch (Maximum-Likelihood-)Schätzungen ersetzt werden. Sind m Parameter zu schätzen, so ist anstelle χ 2 k 1 die -Verteilung zu benutzen. χ 2 k m 1 PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 12

14 Beispiel: Test auf gerechten Würfel Anhand einer Stichprobe von n = 90 Würfelergebnissen soll mit α = 0.05 getestet werden, ob der Würfel gerecht ist, d.h. ob für die Augenzahl X gilt: H 0 : p i = P (X = i) = 1 6, i = 1,..., 6. Daten: Augenzahl H j np j Wert der Testgröße: t = = = Kritischer Bereich: K = (χ 2 5;0.95, ) = (11.07, ). Testergebnis: t K, H 0 wird nicht abgelehnt, die Abweichungen der beobachteten Häufigkeiten von den theoretischen sind nicht signifikant. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 13

15 Beispiel: technisches Nennmaß X... Abweichung vom Nennmaß; X N (µ, σ 2 ) wird getestet. ( ) x µ H 0 : F (x) = Φ, x R; σ ( ) x µ H A : F (x) Φ für mindestens ein x R σ α = 0.05 n = 150 Messungen, ˆµ = x = 40.48, ˆσ = s = 5.71, m = 2 Schätzparameter, sei k = 8 (Anzahl der Klassen); z j = a j x, j = 1,..., k s PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 14

16 Daten und Test im Beispiel technisches Nennmaß a j H j z j Φ(z j ) p j np j k (H j np j ) 2 t = = 3.25, K = (χ ;0.95 = 11.1, ), np j=1 j t K, H 0 wird nicht abgelehnt. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 15

17 Der Kolmogorow-Smirnow-Test Der Kolmogorow-Smirnow-Test (Kolmogorow-Anpassungstest) basiert auf der empirischen Verteilungsfunktion ˆF n zur Stichprobe (vom Umfang n): Anzahl Stichprobenwerte < x ˆF n (x) :=, x R. n Voraussetzung: Die hypothetische Verteilungsfunktion F 0 ist stetig und enthält unbekannten Parameter. Hypothesen: H 0 : F (x) = F 0 (x), x R; H A : F (x) F 0 (x) für mindestens ein x R. Testgröße: T = sup ˆF n (x) F 0 (x). x R Der Test wird günstigerweise mit einem Computerprogramm durchgeführt. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 16

18 Bemerkungen zum Kolmogorow-Smirnow-Test Der Kolmogorow-Smirnow-Test (kurz auch K-S-Test ) ist im Gegensatz zum χ 2 -Anpassungstest auch für kleine Stichproben anwendbar und das Testergebnis hängt nicht von einer Klasseneinteilung ab. Man kann Tests mit dem K-S-Test durchführen. Es gibt Verallgemeinerungen des K-S-Tests, bei denen statt festgelegter Parameterwerte der hypothetischen Verteilung F 0 geeignete Schätzwerte eingesetzt werden (z.b. der Lilliefors-Test im Fall von Normalverteilungen). Man kann mit einer Version des K-S-Testes auch prüfen, ob zwei Stichproben aus einer Grundgesamtheit stammen, also übereinstimmende Verteilungen zugrundeliegen. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 17

19 Der Shapiro-Wilk-Test zur Normalverteilungsprüfung Der Shapiro-Wilk-Test prüft ausschließlich, ob bei einer Stichprobe eine Normalverteilung vorliegt. Dieser Test besitzt eine kleinen Stichprobenumfängen., insbesondere auch im Fall von Grundlage des Tests sind bestimmte Eigenschaften der Ordnungsstatistiken einer Stichprobe aus einer normalverteilten Grundgesamtheit. Der Test ist sehr rechenintensiv und sollte mit Statistik-Software durchgeführt werden. PD Dr. Frank Heyde (TUBAF) Statistik II für Betriebswirte Vorlesung 3 18

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 Statistik II für Betriebswirte Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 2. November 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Statistik I für Betriebswirte Vorlesung 11

Statistik I für Betriebswirte Vorlesung 11 Statistik I für Betriebswirte Vorlesung 11 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 22. Juni 2012 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 Statistik II für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 30. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 3 Version:

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Die Optimalität von Randomisationstests

Die Optimalität von Randomisationstests Die Optimalität von Randomisationstests Diplomarbeit Elena Regourd Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Düsseldorf im Dezember 2001 Betreuung: Prof. Dr. A. Janssen Inhaltsverzeichnis

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 Statistik II für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 26. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Prüfung eines Datenbestandes

Prüfung eines Datenbestandes Prüfung eines Datenbestandes auf Abweichungen einzelner Zahlen vom erwarteten mathematisch-statistischen Verhalten, die nicht mit einem Zufall erklärbar sind (Prüfung auf Manipulationen des Datenbestandes)

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

Statistik II. Statistik II, SS 2001, Seite 1 von 5

Statistik II. Statistik II, SS 2001, Seite 1 von 5 Statistik II, SS 2001, Seite 1 von 5 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Die Beschreibung bezieht sich auf die Version Dreamweaver 4.0. In der Version MX ist die Sitedefinition leicht geändert worden.

Die Beschreibung bezieht sich auf die Version Dreamweaver 4.0. In der Version MX ist die Sitedefinition leicht geändert worden. In einer Website haben Seiten oft das gleiche Layout. Speziell beim Einsatz von Tabellen, in denen die Navigation auf der linken oder rechten Seite, oben oder unten eingesetzt wird. Diese Anteile der Website

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

my.ohm Content Services Autorenansicht Rechte

my.ohm Content Services Autorenansicht Rechte my.ohm Content Services Autorenansicht Rechte Felizitas Heinebrodt Technische Hochschule Nürnberg Rechenzentrum Kesslerplatz 12, 90489 Nürnberg Version 2 August 2015 DokID: cs-rechte-autor Vers. 2, 18.08.2015,

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Auswertung zur. Hauptklausur Unternehmensbesteuerung. vom 24.02.10. und Ergebnisse der Kundenbefragung

Auswertung zur. Hauptklausur Unternehmensbesteuerung. vom 24.02.10. und Ergebnisse der Kundenbefragung Auswertung zur Hauptklausur Unternehmensbesteuerung vom 24.02.10 Vergleich: Skriptteufel-Absolventen vs. alle Teilnehmer und Ergebnisse der Kundenbefragung In diesem Dokument vergleichen wir die Klausurergebnisse

Mehr

Orderarten im Wertpapierhandel

Orderarten im Wertpapierhandel Orderarten im Wertpapierhandel Varianten bei einer Wertpapierkauforder 1. Billigst Sie möchten Ihre Order so schnell wie möglich durchführen. Damit kaufen Sie das Wertpapier zum nächstmöglichen Kurs. Kurs

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München

Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München Gemischte Modelle Fabian Scheipl, Sonja Greven Institut für Statistik Ludwig-Maximilians-Universität München SoSe 2011 Inhalt Amsterdam-Daten: LMM Amsterdam-Daten: GLMM Blutdruck-Daten Amsterdam-Daten:

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Lösungshinweise zur Einsendearbeit 2 SS 2011

Lösungshinweise zur Einsendearbeit 2 SS 2011 Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

Studieren- Erklärungen und Tipps

Studieren- Erklärungen und Tipps Studieren- Erklärungen und Tipps Es gibt Berufe, die man nicht lernen kann, sondern für die man ein Studium machen muss. Das ist zum Beispiel so wenn man Arzt oder Lehrer werden möchte. Hat ihr Kind das

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Dieses erste Kreisdiagramm, bezieht sich auf das gesamte Testergebnis der kompletten 182 getesteten Personen. Ergebnis

Dieses erste Kreisdiagramm, bezieht sich auf das gesamte Testergebnis der kompletten 182 getesteten Personen. Ergebnis Datenanalyse Auswertung Der Kern unseres Projektes liegt ganz klar bei der Fragestellung, ob es möglich ist, Biere von und geschmacklich auseinander halten zu können. Anhand der folgenden Grafiken, sollte

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Häufig wiederkehrende Fragen zur mündlichen Ergänzungsprüfung im Einzelnen:

Häufig wiederkehrende Fragen zur mündlichen Ergänzungsprüfung im Einzelnen: Mündliche Ergänzungsprüfung bei gewerblich-technischen und kaufmännischen Ausbildungsordnungen bis zum 31.12.2006 und für alle Ausbildungsordnungen ab 01.01.2007 Am 13. Dezember 2006 verabschiedete der

Mehr

Task: Nmap Skripte ausführen

Task: Nmap Skripte ausführen Task: Nmap Skripte ausführen Inhalt Einfache Netzwerkscans mit NSE Ausführen des Scans Anpassung der Parameter Einleitung Copyright 2009-2015 Greenbone Networks GmbH Herkunft und aktuellste Version dieses

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

WINDOWS 10 Upgrade. Beispiel: Desktop-Ausschnitt von vorhandenem WIN 8.1 (rechte Ecke der Taskleiste)

WINDOWS 10 Upgrade. Beispiel: Desktop-Ausschnitt von vorhandenem WIN 8.1 (rechte Ecke der Taskleiste) Angebot von Microsoft über ein kostenloses Online-Upgrade auf Windows 10 für vorhandene Windows-Systeme der Versionen 7(SP1) und 8.1 (nicht für 8.0!!) Beispiel: Desktop-Ausschnitt von vorhandenem WIN 8.1

Mehr

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Zunächst einmal: Keine Angst, die Beschreibung des Verfahrens sieht komplizierter

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

Test 2: Universitäts- oder Fachhochschulstudium? 24 Auswertung: Universitäts- oder Fachhochschulstudium? 27

Test 2: Universitäts- oder Fachhochschulstudium? 24 Auswertung: Universitäts- oder Fachhochschulstudium? 27 Inhalt Einleitung 7 Erläuterungen zu den Tests 9 Test 1: Berufliche Ausbildung oder Studium? 10 Ausbildungsmöglichkeiten nach dem Abitur oder der Fachhochschulreife 10 Auswertung: Berufliche Ausbildung

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr