Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Größe: px
Ab Seite anzeigen:

Download "Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,"

Transkript

1 Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, Determinanten (Schluß) Das folgende Resultat zeigt, daß die Determinante für jede quadratische Matrix definiert ist und (im Prinzip) ausgerechnet werden kann Satz (Leibniz-Formel): Es sei A = (α ij ) Mat n n (K) Dann gilt: det A = sgn(σ)α σ(1)1 α σ(n)n σ Sym n Die folgenden Aussagen sind wichtige Hilfsmittel zur Berechnung von Determinanten Satz: Es sei A Mat n n (K) Dann gilt: det A = 0 Rang(A) < n Insbesondere gilt also, daß det A 0 genau dann, wenn die Spaltenvektoren von A eine Basis von K n bilden Satz: Es seien A, B Mat n n (K) Dann gilt: det AB = det A det B Satz: Es sei A Mat n n (K) Dann gilt: det A = det A t Satz: Es sei A Mat n n (K) eine Blockmatrix der Form ( ) B C A = 0 (n r) r D wobei B Mat r r (K), C Mat r (n r) (K), D Mat (n r) (n r) (K) Dann gilt: det A = det B det D Wir können diesen Satz per Induktion auf beliebige Matrizen in Blockdiagonalform erweitern: Korollar: Es sei A 1 A 2 A = 0 A t wobei A i Mat ni n i (K) und t i=1 n i = n Dann gilt: det A = t det A i i=1

2 Definition: Es sei A Mat n n (K) und 1, i, j n Dann bezeichne A ij Mat (n 1) (n 1) (K) die Untermatrix von A, die dadurch entsteht, daß die i-te Zeile und die j-te Spalte aus A entfernt werden: α 11 α 1,j 1 α 1,j+1 α 1n α A ij = i 1,1 α i 1,j 1 α i 1,j+1 α i 1,n α i+1,1 α i+1,j 1 α i+1,j+1 α i+1,n α n,1 α n,j 1 α n,j+1 α n,n Weiterhin bezeichnen wir mit A ij := (α kl ), wobei α kl wenn k i, l j α kl = 1 wenn k = i, l = j 0 sonst, bzw α 11 α 1,j 1 0 α 1,j+1 α 1n α i 1,1 α i 1,j 1 0 α i 1,j+1 α i 1,n A ij = α i+1,1 α i+1,j 1 0 α i+1,j+1 α i+1,n α n,1 α n,j 1 0 α n,j+1 α n,n Lemma: Es sei A Mat n n (K) Dann gilt: det A ij = ( 1) i+j det A ij = det(a 1,, a j 1, e i, a j+1,, a n ), wobei a 1,, a n die Spalten von A sind Definition: Es sei A Mat n n (K) Dann setzen wir A # := (α # ij ) Mat n n(k), wobei α # ij := ( 1)i+j det A ji Wir nennen A # die zu A adjungierte Matrix Satz: Es gilt A # A = AA # = det(a)1 n Korollar: Ist A invertierbar, dann gilt: A 1 = 1 det A A# Satz (Laplacescher Entwicklungssatz): Es sei A = (α ij ) Mat n n (K) und 1 j n Dann gilt: n det A = ( 1) i+j α ij det A ij i=1 Man nennt obige Formel auch die Entwicklung nach der j-ten Spalte Via transposition kann man entsprechend auch nach der i-ten Zeile entwickeln Beispiele: 1) Für n = 2 gilt: det A = α 11 α 22 α 12 α 21

3 2) Für n = 3 gilt: det A = α 11 det A 11 α 21 det A 21 + α 31 det A 31 = α 11 α 22 α 33 + α 12 α 23 α 13 + α 13 α 21 α 32 α 11 α 23 α 32 α 12 α 21 α 33 α 13 α 22 α 31 Diese Formel wird auch die Sarrus-Regel genannt Bemerkung: Man mache sich klar, daß zur Berechnung einer Determinante durch die Leibnizformel oder den Entwicklungssatz n! Terme berechnet werden müssen Dies bedeutet, daß diese Formeln für größere n keine praktische Möglichkeit sind, um eine Determinante auszurechnen und daher eher für theoretische Betrachtungen verwendet werden Die entscheidende Eigenschaft, die es erlaubt, Determinanten auszurechnen, ist die Multilinearität Wir haben bereits gesehen, daß eine Möglichkeit darin besteht, die Determinante durch Zeilentransformationen in obere Dreiecksform zu bringen und dann die Diagonalelemente zusammenzumultiplizieren Effiziente Berechnungsmethoden verwenden in der Regel Varianten dieses Verfahrens Korollar (Cramersche Regel): Es sei A GL n (K) und b K n Dann hat das lineare Gleichungssystem Ax = b genau eine Lösung x = (x 1,, x n ) K n, mit für alle 1 i n x i = 1 det A det(a 1,, a i 1, b, a i+1,, a n ) Definition: Zwei Matrizen A, B Mat n n (K) heißen zueinander Konjugiert, bzw ähnlich, wenn es eine Matrix T GL n (K) gibt, so daß gilt B = T AT 1 Sind A und B zueinander konjugiert, dann beobachten wir, daß gilt: det B = det T AT 1 = det T det A det T 1 = det A Definition: Es sei V ein endlich-dimensionaler Vektorraum mit Basis B und f : V V eine lineare Abbildung Dann setzen wir det f := det M B B (f) Ist B eine weitere Basis von V, dann gilt insbesondere, daß MB B zueinander konjugiert sind, da gilt: MB B B (f) = TB MB B (f)tb B, (f) und M B B (f) wobei TB B GL n(k) und T B B Wahl der Basis B ab = (T B B ) 1 Insbesondere hängt somit det f nicht von der 11 Eigenwerte und charakteristisches Polynom Auch in diesem Kapitel sei K stets ein Körper Definition: Es sei V ein endlich-dimensionaler Vektorraum und f : V V eine lineare Abbildung (i) λ K heißt Eigenwert von f, wenn es ein v V \ {0} gibt mit f(v) = λv (ii) Es sei λ K Dann heißt v V \ {0} mit f(v) = λv Eigenvektor zum Eigenwert λ

4 (iii) Wir bezeichnen mit Eig(f, λ) := {v V f(v) = λv} den Eigenraum von f zu λ (iv) Die Menge σ(f) := {λ K Eig(f, λ) {0}} heißt das Spektrum von f Ist A Mat n n (K) gegeben, dann beziehen wir die oben eingeführten Begriffe für die Abbildung φ A : K n K n auch auf A, dh wir sprechen dann von Eigenwert, Eigenraum, Eigenvektor und Spektrum von A Bemerkung: Wir beobachten, daß Eig(f, 0) genau der Kern von f ist Allgemeiner gilt für v V und λ K: f(v) = λv (f λid V )(v) = 0 v Kern(f λid V ) Definition: Es sei V ein endlich-dimensionaler Vektorraum und f : V V eine lineare Abbildung (i) f heißt diagonalisierbar, wenn es eine Basis B von V gibt, so daß MB B (f) eine Diagonalmatrix ist (ii) f heißt trigonalisierbar, wenn es eine Basis B von V gibt, so daß MB B (f) eine obere Dreiecksmatrix ist Ebenso bezeichnen wir eine Matrix A Mat n n (K) als diagonalisierbar (bzw trigonalisierbar), wenn es ein T GL n (K) gibt, so daß T AT 1 eine Diagonalmatrix (bzw eine obere Dreiecksmatrix) ist Abbildung Dann sind folgene Aussagen äquvalent: (i) f ist diagonalisierbar (ii) V besitzt eine Basis von Eigenvektoren von f Definition: Es seien V ein endlich-dimensionaler Vektorraum mit Basis B und f : V V eine lineare Abbildung Dann heißt χ f := det(m B B (f) X1 n ) K[X] das charakteristische Polynom von f Analog bezeichnen wir für A Mat n n (K): das charakteristische Polynom von A Für alle T GL n (K) gilt: χ A := det(a X1 n ) K[X] det(t AT 1 X1 n ) = det(t AT 1 T X1 n T 1 ) = det T (A X1 n )T 1 = det(a X1 n ) Somit hängt insbesondere χ f nicht von der Wahl der Basis B ab Satz: Es sei A Mat n n (K) Die Eigenwerte von A sind genau die Nullstellen von χ A Definition: Die Abbildung Mat n n (K) K, A = (α ij ) n i=1 α ii =: Spur A bezeichnen wir als die Spurabbildung

5 Die Spurabbildung hat folgende Eigenschaften für alle A, B Mat n n (K): (i) Spur(A + B) = Spur A + Spur B (ii) Spur AB = Spur BA (iii) Weiterhin gilt mit T GL n (K): Spur(T AT 1 ) = Spur((AT 1 )T ) = Spur(A) Satz: Es gilt: χ A = ( 1) n X n + a n 1 X n a 0, wobei a n 1 = ( 1) n 1 Spur(A) und a 0 = det A Definition: Es sei V ein Vektorraum und f : V V eine lineare Abbildung Ein Untervektorraum U V heißt f-invariant, wenn gilt f(u) U Lemma: Es seien V ein endlich-dimensionaler Vektorraum, f : V V eine lineare Abbildung und U V ein f-invarianter Untervektorraum Dann gilt: (i) Die Abbildung f V/U : V/U V/U, [v] [f(v)] ist wohldefiniert und linear (ii) Es gilt: χ f = χ f U χ fv /U Abbildung Dann ist f genau dann trigonalisierbar, wenn χ f in Linearfaktoren zerfällt, dh es gibt λ 1,, λ n K, so daß χ f = ( 1) n (X λ 1 ) (X λ n ) Folgender Satz, den wir im Rahmen dieser Vorlesung nicht zeigen können, ist eine der grundlegensten Aussagen überhaupt: Satz (Der Fundamentalsatz der Algebra): Jedes nichtkonstante Polynom in C[X] besitzt eine Nullstelle Als Korollar folgt hieraus, daß jedes nichtkonstante Polynom in C[X] in Linearfaktoren zerfällt Insbesondere ist also jede quadratische Matrix mit komplexen Einträgen trigonalisierbar Definition: Es seien V ein endlich-dimensionaler Vektorraum und f : V V eine lineare Abbildung (i) Eine aufsteigende Kette von Untervektorräumen heißt Fahne in V {0} = V 0 V 1 V 2 V r = V (ii) Gilt dim V = r, dann heißt die Fahne vollständig (dann gilt insbesondere auch dim V i = i für alle 1 i r) (iii) Sind die V i f-invariant, so heißt die Fahne f-invariant Abbildung Dann ist f genau dann trigonalisierbar, wenn es eine vollständige, f- invariante Fahne in V gibt

6 Definition: Es seien A Mat n n (K), λ K Dann gilt χ A = (X λ) k mit k 0 und g(λ) 0 (i) k heißt die algebraische Vielfachheit von λ als Eigenwert von A (ii) dim Eig(f, λ) heißt die geometrische Vielfachheit von λ als Eigenwert von A Analog spricht man auch von der algebraischen bzw geometrischen Vielfachheit einer lineare Abbildung f : V V Lemma: Es seien V ein endlich-dimensionaler Vektorraum und f : V V eine lineare Abbildung Dann ist f genau dann diagonalisierbar, wenn gilt V = Eig(f, λ) λ σ(f) Abbildung Die folgenden Aussagen sind äquivalent: (i) f ist diagonalisierbar (ii) χ f zerfällt in Linearfaktoren und für jeden Eigenwert stimmen algebraische und geometrische Vielfachheit überein Literatur-/Lesevorschläge Jedes beliebige Buch oder sonstige Quelle zur Linearen Algebra

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung - Lineare Algebra I Prof. Dr. Daniel Roggenkamp - 22.Vorlesung - Aus der letzten Vorlesung: Polynome K[t] (p 0, p,, p i K mit p i = 0 i > i 0 für ein i 0 = i 0 p i t i = p 0 + p t + p 2 t 2 + + p i0 t i

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Dreizehnte Woche, 272014 9 Der Gauß-Algorithmus (Ende) estimmung des Inversen einer

Mehr

1 Darstellungsmatrizen

1 Darstellungsmatrizen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Darstellungsmatrizen Vereinbarungen für dieses Kapitel: K Körper V und W endlich-dimensionale K-Vektorräume B = {v

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg. Übungsaufgaben 13. Übung: Woche vom 23. 1.-27. 1. 2017 (Lin.Alg. II): Heft Ü 3: 1.1.3; 1.1.7 (a,b); 1.1.8; 1.1.11; 3.4.3 (b); 1.3.3 (c); 1.2.3 (b,d); Hinweis 1: 3. Test (Integration, analyt. Geom.) ist

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

5 Minimalpolynom und charakteristisches Polynom

5 Minimalpolynom und charakteristisches Polynom 5 Minimalpolynom und charakteristisches Polynom 5.1 Lemma Sei A K n n. Dann ist λ K genau dann ein Eigenwert von A, wenn det(λe n A) = 0. 5.2 Beispiel ( ) 1 4 i) A = R 1 1 2 2 det(λe 2 A) = λ 1 4 1 λ 1

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f).

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f). Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 204 Lineare Algebra Zwölfte Woche, 256204 8 Der Rang einer Linearen Abbildung Auch in diesem Abschnitt

Mehr

3.7 Eigenwerte und Eigenvektoren

3.7 Eigenwerte und Eigenvektoren 3.7. EIGENWERTE UND EIGENVEKTOREN 123 3.7 Eigenwerte und Eigenvektoren Wir wollen jetzt lineare Endomorphismen durch Matrizen besonders übersichtlicher Gestalt (u.a. mit möglichst vielen Nullen) beschreiben,

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

23. Die Jordan sche Normalform

23. Die Jordan sche Normalform Chr.Nelius, Lineare Algebra II (SS 2005) 1 23. Die Jordan sche Normalform Wir suchen für einen trigonalisierbaren Endomorphismus unter seinen dreiecksförmigen Darstellungsmatrizen eine Darstellungsmatrix,

Mehr

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008 Eigenwerttheorie Martin Gubisch Lineare Algebra I WS 27/28 Motivation Gegeben seien ein K-Vektorraum V der Dimension n < und eine K-lineare Abbildung f : V V Wir suchen eine Basis V = v 1,, v n von V,

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

3.4 Trigonalisierung und Jordansche Normalform

3.4 Trigonalisierung und Jordansche Normalform 3.4 Trigonalisierung und Jordansche Normalform Definition 3.4.1. Sei V ein K-Vektorraum, F End K (V ). Ein Unterraum U V heißt F -invariant falls F (U) U. Bemerkung. (1) Falls U V ein F -invarianter Unterraum

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Lösungsskizze zur Wiederholungsserie

Lösungsskizze zur Wiederholungsserie Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation

Mehr

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Aufgabe 1 Sei V ein endlich-dimensionaler K-Vektorraum, und seien f und g Endomorphismen von V mit f g = g f. Zeige: a) Sind f und g diagonalisierbar,

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12..

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12.. Trigonalisierung Sei F : V V linear und dim V = n. Wir beschäftigen uns jetzt mit der Frage, ob es eine Basis B von V gibt, sodass M B (F ) eine Dreiecksmatrix ist. Definition. ) Sei F : V V linear, dim

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

7 Determinanten. f i : Mat n n (K) K. j=1 ( 1)i+j a ij D(A ij )

7 Determinanten. f i : Mat n n (K) K. j=1 ( 1)i+j a ij D(A ij ) 7 Determinanten Im folgenden betrachten wir quadratische Matrizen. Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder Gruppe A Scheinklausur 2. Teil 15.2.2002 Lineare Algebra I WS 2001 Prof. Dr. G. Hiß Name: Matrikelnummer: Kreuzen Sie bei jeder Frage entweder Ja oder Nein oder nichts an. Auswertung der Multiple-Choice-Aufgaben:

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 7 Was die Menschen verbin, ist nicht der Glaube, sondern der Zweifel Peter Ustinow Universelle Eigenschaft der

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren 2 ÄHNLICHKEIT VON MATRIZEN, EIGENWERTE UND EIGENVEKTOREN 1 19. Mai 2000 2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren Motivation. Es seien: V ein K-Vektorraum mit dim V = n < und F End V, Φ,

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 42 Normale Endomorphismen Nach Satz 34.1 besitzt eine Isometrie über C eine Orthonormalbasis aus Eigenvektoren

Mehr

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt:

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt: 7 Determinanten Im folgenden betrachten wir quadratische Matrizen Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Donnerstag WS 2/2 4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform 4 Determinanten 4 Definition

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

Musterlösungen für die Nachklausur in LinAlg vom

Musterlösungen für die Nachklausur in LinAlg vom Musterlösungen für die Nachklausur in LinAlg vom 10.10.16 1. Finden Sie mindestens ) zwei Dreh )Matrizen ) M R 2 2 mit der Eigenschaft 1 0 M = : M = ± 1 1 2 ±1 1 k k 1 k 2. Sei A R 3 3 die Matrix A = 0

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07032016-11032016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Lineare Abbildungen 2 11 Homomorphismus 2 12 Kern

Mehr

Lineare Algebra - Determinanten und Eigenwerte

Lineare Algebra - Determinanten und Eigenwerte Lineare Algebra - Determinanten und Eigenwerte 26 März 2011 1 Determinanten 11 Definition (Determinanten): Sei K ein Körper und N n 0 Dann nennt man eine durch det : M(n n, K) K, a det(a) definierte Abbildung

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

Ferienkurs Lineare Algebra

Ferienkurs Lineare Algebra Ferienkurs Lineare Algebra Wintersemester 9/ Lösungen Eigenwerte und Diagonalsierbarkeit Blatt Diagonalisierbarkeit. Zeigen sie, dass für eine diagonalisierbare Matrix A folgendes gilt: det(a) = wobei

Mehr

3.3 Das charakteristische Polynom

3.3 Das charakteristische Polynom LinAlg II Version 1 2. Mai 2006 c Rudolf Scharlau 209 3.3 Das charakteristische Polynom Wir setzen die im vorigen Abschnitt begonnene Untersuchung von Eigenvektoren und Eigenwerten fort und stellen den

Mehr

Übungen zur Linearen Algebra II, Sommersemester Test, , Gruppe A: Lösung

Übungen zur Linearen Algebra II, Sommersemester Test, , Gruppe A: Lösung Aufgabe. (5 Punkte) Matrix A C 3 3 : Übungen zur Linearen Algebra II, Sommersemester 0. Test, 9.5.0, Gruppe A: Lösung Bestimmen Sie alle Eigenwerte und Eigenräume der folgenden 8 A 9 6 3 9 Lösung: Charakteristisches

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 3-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

1. Hausübung ( )

1. Hausübung ( ) Übungen zur Vorlesung»Lineare Algebra B«(SS ). Hausübung (8.4.) Aufgabe Es seien σ (3, 6, 5,, 4, 8,, 7) und τ (3,,, 4, 6, 5, 8, 7). Berechnen Sie σ τ, τ σ, σ, τ, die Anzahl der Inversionen von σ und τ

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr