Distanzen und Ähnlichkeitsmaÿe

Größe: px
Ab Seite anzeigen:

Download "Distanzen und Ähnlichkeitsmaÿe"

Transkript

1 Distanzen und Ähnlichkeitsmaÿe Michael Siebers Kognitive Systeme Universität Bamberg 25. Mai 2011 M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

2 Agenda 1 Distanzen 2 Ähnlichkeitsmaÿe 3 Nominale Attribute M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

3 Motivation Wo werden Distanzen und Ähnlichkeitsmaÿe verwendet? M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

4 Motivation Wo werden Distanzen und Ähnlichkeitsmaÿe verwendet? Clusteringverfahren M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

5 Motivation Wo werden Distanzen und Ähnlichkeitsmaÿe verwendet? Clusteringverfahren Lernverfahren (z. B. k-nearest neighbors) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

6 Inhalt 1 Distanzen 2 Ähnlichkeitsmaÿe 3 Nominale Attribute M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

7 Distanzen informell Die Distanz zwischen zwei Objekten stellt intuitiv ihren Abstand voneinander dar. M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

8 Distanzen informell Die Distanz zwischen zwei Objekten stellt intuitiv ihren Abstand voneinander dar. Ein Objekt kann hierbei alles mögliche sein: M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

9 Distanzen informell Die Distanz zwischen zwei Objekten stellt intuitiv ihren Abstand voneinander dar. Ein Objekt kann hierbei alles mögliche sein: eine Zahl M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

10 Distanzen informell Die Distanz zwischen zwei Objekten stellt intuitiv ihren Abstand voneinander dar. Ein Objekt kann hierbei alles mögliche sein: eine Zahl ein Baum M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

11 Distanzen informell Die Distanz zwischen zwei Objekten stellt intuitiv ihren Abstand voneinander dar. Ein Objekt kann hierbei alles mögliche sein: eine Zahl ein Baum eine Funktion M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

12 Distanzen informell Die Distanz zwischen zwei Objekten stellt intuitiv ihren Abstand voneinander dar. Ein Objekt kann hierbei alles mögliche sein: eine Zahl ein Baum eine Funktion eine Menge von Objekten M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

13 Distanzen informell Die Distanz zwischen zwei Objekten stellt intuitiv ihren Abstand voneinander dar. Ein Objekt kann hierbei alles mögliche sein: eine Zahl ein Baum eine Funktion eine Menge von Objekten Normalerweise werden nur Distanzen zwischen gleichartigen Objekten betrachtet. M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

14 Distanzen formal Die Distanz zwischen zwei Objekten x und y wird geschrieben als: d(x, y). M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

15 Distanzen formal Die Distanz zwischen zwei Objekten x und y wird geschrieben als: d(x, y). d: M M R M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

16 Distanzen formal Die Distanz zwischen zwei Objekten x und y wird geschrieben als: d(x, y). d: M M R Damit es sich tatsächlich um eine Distanz handelt, muss sie für beliebige x, y, z M folgende Bedingungen erfüllen: M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

17 Distanzen formal Die Distanz zwischen zwei Objekten x und y wird geschrieben als: d(x, y). d: M M R Damit es sich tatsächlich um eine Distanz handelt, muss sie für beliebige x, y, z M folgende Bedingungen erfüllen: 1 d(x, y) = 0 x = y (Denitheit) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

18 Distanzen formal Die Distanz zwischen zwei Objekten x und y wird geschrieben als: d(x, y). d: M M R Damit es sich tatsächlich um eine Distanz handelt, muss sie für beliebige x, y, z M folgende Bedingungen erfüllen: 1 d(x, y) = 0 x = y (Denitheit) 2 d(x, y) = d(y, x) (Symmetrie) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

19 Distanzen formal Die Distanz zwischen zwei Objekten x und y wird geschrieben als: d(x, y). d: M M R Damit es sich tatsächlich um eine Distanz handelt, muss sie für beliebige x, y, z M folgende Bedingungen erfüllen: 1 d(x, y) = 0 x = y (Denitheit) 2 d(x, y) = d(y, x) (Symmetrie) 3 d(x, z) d(x, y) + d(y, z) (Dreiecksungleichung) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

20 Distanzen formal Die Distanz zwischen zwei Objekten x und y wird geschrieben als: d(x, y). d: M M R Damit es sich tatsächlich um eine Distanz handelt, muss sie für beliebige x, y, z M folgende Bedingungen erfüllen: 1 d(x, y) = 0 x = y (Denitheit) 2 d(x, y) = d(y, x) (Symmetrie) 3 d(x, z) d(x, y) + d(y, z) (Dreiecksungleichung) Aus 1 und 3 ergibt sich automatisch d(x, y) 0 M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

21 Exkurs: Normen, Metriken Norm Eine Norm ist die Verallgemeinerung der Länge eines Vektors. Die Norm eines Vektors x wird als x notiert. Eine Norm muss für alle Vektoren x, y V und alle a R folgende Bedingungen erfüllen: M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

22 Exkurs: Normen, Metriken Norm Eine Norm ist die Verallgemeinerung der Länge eines Vektors. Die Norm eines Vektors x wird als x notiert. Eine Norm muss für alle Vektoren x, y V und alle a R folgende Bedingungen erfüllen: 1 x = 0 x = 0 (Denitheit) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

23 Exkurs: Normen, Metriken Norm Eine Norm ist die Verallgemeinerung der Länge eines Vektors. Die Norm eines Vektors x wird als x notiert. Eine Norm muss für alle Vektoren x, y V und alle a R folgende Bedingungen erfüllen: 1 x = 0 x = 0 (Denitheit) 2 a x = a x (absolute Homogenität) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

24 Exkurs: Normen, Metriken Norm Eine Norm ist die Verallgemeinerung der Länge eines Vektors. Die Norm eines Vektors x wird als x notiert. Eine Norm muss für alle Vektoren x, y V und alle a R folgende Bedingungen erfüllen: 1 x = 0 x = 0 (Denitheit) 2 a x = a x (absolute Homogenität) 3 x + y x + y (Dreiecksungleichung) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

25 Exkurs: Normen, Metriken Norm Eine Norm ist die Verallgemeinerung der Länge eines Vektors. Die Norm eines Vektors x wird als x notiert. Eine Norm muss für alle Vektoren x, y V und alle a R folgende Bedingungen erfüllen: 1 x = 0 x = 0 (Denitheit) 2 a x = a x (absolute Homogenität) 3 x + y x + y (Dreiecksungleichung) Metrik Eine Metrik ist eine mathematische Funktion,die den Abstand zwischen zwei Elementen einer Menge angibt. M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

26 Normen/Distanzen Jede Norm lässt sich in eine Distanz umformulieren: d(x, y) = x y p-norm x p = ( n i=1 x i p ) 1 p, p 1 M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

27 Normen/Distanzen Jede Norm lässt sich in eine Distanz umformulieren: d(x, y) = x y p-norm x p = ( n i=1 x i p ) 1 p, p 1 Manhattan-Norm x 1 = n i=1 x i M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

28 Normen/Distanzen Jede Norm lässt sich in eine Distanz umformulieren: d(x, y) = x y p-norm x p = ( n i=1 x i p ) 1 p, p 1 Manhattan-Norm x 1 = n i=1 x i Euklidische-Norm x 2 = n i=1 x i 2 M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

29 Normen/Distanzen Jede Norm lässt sich in eine Distanz umformulieren: d(x, y) = x y p-norm x p = ( n i=1 x i p ) 1 p, p 1 Manhattan-Norm x 1 = n i=1 x i Euklidische-Norm x 2 = n i=1 x i 2 Chebyshev-Norm x = max ( x i ) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

30 Inhalt 1 Distanzen 2 Ähnlichkeitsmaÿe 3 Nominale Attribute M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

31 Ähnlichkeitsmaÿe informell Die Ähnlichkeit zwischen zwei Objekten stellt ihre Nähe oder Gleichheit zueinander dar. M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

32 Ähnlichkeitsmaÿe informell Die Ähnlichkeit zwischen zwei Objekten stellt ihre Nähe oder Gleichheit zueinander dar. Ein Objekt kann hierbei alles mögliche sein wie bei Distanzen. M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

33 Ähnlichkeitsmaÿe informell Die Ähnlichkeit zwischen zwei Objekten stellt ihre Nähe oder Gleichheit zueinander dar. Ein Objekt kann hierbei alles mögliche sein wie bei Distanzen. Es gibt eine höchste Ähnlichkeit die Identität. M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

34 Ähnlichkeitsmaÿe informell Die Ähnlichkeit zwischen zwei Objekten stellt ihre Nähe oder Gleichheit zueinander dar. Ein Objekt kann hierbei alles mögliche sein wie bei Distanzen. Es gibt eine höchste Ähnlichkeit die Identität. Ähnlichkeiten machen nur zwischen gleichartigen Objekten Sinn. M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

35 Ähnlichkeitsmaÿe formell Die Ähnlichkeit zwischen zwei Objekten x und y wird als s(x, y) notiert. Eine Ähnlichkeit muss für alle x, y, z folgende Bedingungen erfüllen: 1 s(x, y) = s(y, x) (Symmetrie) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

36 Ähnlichkeitsmaÿe formell Die Ähnlichkeit zwischen zwei Objekten x und y wird als s(x, y) notiert. Eine Ähnlichkeit muss für alle x, y, z folgende Bedingungen erfüllen: 1 s(x, y) = s(y, x) (Symmetrie) 2 s(i, j) s(i, i) M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

37 Ähnlichkeitsmaÿe formell Die Ähnlichkeit zwischen zwei Objekten x und y wird als s(x, y) notiert. Eine Ähnlichkeit muss für alle x, y, z folgende Bedingungen erfüllen: 1 s(x, y) = s(y, x) (Symmetrie) 2 s(i, j) s(i, i) 3 s(i, j) 0 M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

38 Ähnlichkeitsmaÿe formell Die Ähnlichkeit zwischen zwei Objekten x und y wird als s(x, y) notiert. Eine Ähnlichkeit muss für alle x, y, z folgende Bedingungen erfüllen: 1 s(x, y) = s(y, x) (Symmetrie) 2 s(i, j) s(i, i) 3 s(i, j) 0 4 s(i, i) = 1 M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

39 Inhalt 1 Distanzen 2 Ähnlichkeitsmaÿe 3 Nominale Attribute M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

40 Nominale Attribute Nominale Distanz d(x, y) = n i=0 δ(x i, y i ), wobei δ(a, b) = { 0 a = b 1 andernfalls M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

41 Others Jaccard Für binäre Attribute, Anteil gemeinsammer positiver Attribute M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

42 Others Jaccard Für binäre Attribute, Anteil gemeinsammer positiver Attribute Cosinus-Ähnlichkeit Winkel zwischen zwei Attribut-Vektoren M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

43 Others Jaccard Für binäre Attribute, Anteil gemeinsammer positiver Attribute Cosinus-Ähnlichkeit Winkel zwischen zwei Attribut-Vektoren Dice-Ähnlichkeit Ähnlich Jaccard M. Siebers (KogSys) Distanzen und Ähnlichkeitsmaÿe 25. Mai / 14

Einleitung Grundlagen Einordnung. Normen. Thomas Gerstner. Institut für Mathematik Goethe-Universität Frankfurt am Main

Einleitung Grundlagen Einordnung. Normen. Thomas Gerstner. Institut für Mathematik Goethe-Universität Frankfurt am Main Institut für Mathematik Goethe-Universität Frankfurt am Main Einführungsvortrag Proseminar 25. Januar 2013 Outline 1 Einleitung Motivation Anwendungsbereiche 2 3 Wichtige Outline Einleitung Motivation

Mehr

Analysis 2 UE VI) 121, 129, 133, 134, 140, 143

Analysis 2 UE VI) 121, 129, 133, 134, 140, 143 27.04.2009 Analysis 2 UE VI) 2, 29, 33, 34, 40, 43 2) Sei M j = {(x, y) R 2 j x + y < j} (j N)}. Bestimmen Sie das Innere, den Rand und die abgeschlossene Hülle der Menge T (bezüglich der euklidischen

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

Ähnlichkeits- und Distanzmaße

Ähnlichkeits- und Distanzmaße Einheit 1 Ähnlichkeits- und Distanzmaße IFAS JKU Linz c 2015 Multivariate Verfahren 1 0 / 41 Problemstellung Ziel: Bestimmung von Ähnlichkeit zwischen n Objekten, an denen p Merkmale erhoben wurden. Die

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 32 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines

Mehr

Reelles Skalarprodukt

Reelles Skalarprodukt Reelles Skalarprodukt Ein Skalarprodukt auf einem reellen Vektorraum V ist eine Abbildung, : V V R mit folgenden Eigenschaften: Positivität: v, v > 0 für v 0 Symmetrie: Linearität: u, v = v, u λu + ϱv,

Mehr

Einführung in die Ähnlichkeitsmessung

Einführung in die Ähnlichkeitsmessung Einführung in die Ähnlichkeitsmessung Reading Club SS 2008 Similarity Stefanie Sieber stefanie.sieber@uni-bamberg.de Lehrstuhl für Medieninformatik Otto-Friedrich-Universität Bamberg Agenda Worum geht

Mehr

Übungen zu Multimedia-Datenbanken Aufgabenblatt 4 - Musterlösungen

Übungen zu Multimedia-Datenbanken Aufgabenblatt 4 - Musterlösungen Übungen zu Multimedia-Datenbanken Aufgabenblatt 4 - Musterlösungen Übung: Dipl.-Inf. Tina Walber Vorlesung: Dr.-Ing. Marcin Grzegorzek Fachbereich Informatik, Universität Koblenz Landau Ausgabe: 31.0.2010

Mehr

Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand)

Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand) Kapitel 6 Metrik, Norm und Skalarproduktl Aus Ihrer täglichen Praxis sind Ihnen die Begriffe Abstand und Länge, möglicherweise gar Winkel wohlvertraut. 6.1 Metrik (Abstand) Definition Metrik : Sei M eine

Mehr

V. Metriken. Gliederung. I. Motivation. Lesen mathematischer Symbole. Wissenschaftliche Argumentation. Matrizenrechnung. Seite 67

V. Metriken. Gliederung. I. Motivation. Lesen mathematischer Symbole. Wissenschaftliche Argumentation. Matrizenrechnung. Seite 67 Gliederung I. Motivation II. III. Lesen mathematischer Symbole Wissenschaftliche Argumentation IV. Matrizenrechnung V. Metriken Seite 67 Problemstellung: Gegeben seien 2 Punkte im Raum. Wie groß ist die

Mehr

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14 Lineare Algebra Hauptbestandteil der Vorlesung Mathematik Literatur: Teschl/Teschl, Band, Kap. 9-4 Inhalt Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare

Mehr

1.2 Abstände und Winkel

1.2 Abstände und Winkel 5 1.2 Abstände und Winkel Im Folgenden werde zunächst der n-dimensionale affine Standardraum A n = (R n, R n, τ) zugrunde gelegt und in der Regel auch A n = R n gesetzt. Im Vektorraum R n stehen das (euklidische)

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Sommersemester 4 Klausur zur Mathematik I (Modul: Lineare Algebra I) 6.8.4 Sie haben 6 Minuten Zeit zum Bearbeiten

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

Erich Schubert, Arthur Zimek KDD Übung

Erich Schubert, Arthur Zimek KDD Übung Hausaufgabe Distanzfunktionen Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-04-25 KDD Übung Distanzfunktionen Reflexiv: Distanz zu sich selbst ist 0 x = y d(x, y) = 0 Symmetrisch:

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Clustering 2010/06/11 Sebastian Koch 1

Clustering 2010/06/11 Sebastian Koch 1 Clustering 2010/06/11 1 Motivation Quelle: http://www.ha-w.de/media/schulung01.jpg 2010/06/11 2 Was ist Clustering Idee: Gruppierung von Objekten so, dass: Innerhalb einer Gruppe sollen die Objekte möglichst

Mehr

Entscheidungen bei der Durchführung einer Cluster-Analyse

Entscheidungen bei der Durchführung einer Cluster-Analyse 7712Clusterverfahren Entscheidungen bei der Durchführung einer Cluster-Analyse nach: Eckes, Thomas, und Helmut Roßbach, 1980: Clusteranalysen; Stuttgart:Kohlhammer A. Auswahl der Merkmale Festlegung des

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Metrische Räume und stetige Abbildungen. Inhaltsverzeichnis

Metrische Räume und stetige Abbildungen. Inhaltsverzeichnis Metrische Räume und stetige Abbildungen Vortrag zum Seminar zur Analysis, 19. 04. 2010 René Koch, Stefan Lotterstedt In der Vorlesung Analysis I haben wir uns mit der Stetigkeit von reellen (komplexen)

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 12 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 12.1 3D-Koordinatensystem Weit

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 31 Vektorräume mit Skalarprodukt Im R n kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Verallgemeinerte Dreiecksungleichungen Michael Kapovich

Verallgemeinerte Dreiecksungleichungen Michael Kapovich Verallgemeinerte Dreiecksungleichungen Michael Kapovich Wir alle wissen, dass eine gerade Linie die kürzeste Verbindung von einem Punkt zu einem anderen Punkt ist. Dieses Wissen scheint in den Jahrmillionen

Mehr

Ähnlichkeits- und Distanzmaße

Ähnlichkeits- und Distanzmaße Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8-1 - Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8 -

Mehr

6 Distanzfunktionen (2) 6 Distanzfunktionen. 6.1 Eigenschaften und Klassifikationen. Einführung

6 Distanzfunktionen (2) 6 Distanzfunktionen. 6.1 Eigenschaften und Klassifikationen. Einführung 6 en 6 en (2) 1. Eigenschaften und Klassifikation 2. en auf Punkten Minkowski L m Gewichtete Minkowski L m w Quadratische d q Quadratische Pseudo Dynamical Partial Semi Pseudo Chi Quadrat Semi Pseudo Kullback

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

6 Distanzfunktionen. Quadratische Pseudo. 1. Eigenschaften und Klassifikation

6 Distanzfunktionen. Quadratische Pseudo. 1. Eigenschaften und Klassifikation 6 Distanzfunktionen 1. Eigenschaften und Klassifikation 2. Distanzfunktionen auf Punkten Minkowski Distanzfunktion L m Gewichtete Minkowski Distanzfunktion L m w Quadratische Distanzfunktion d q Quadratische

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

1 Metrische Räume. In diesem Abschnitt wollen wir den Begriff des metrischen Raumes einführen und an einigen Beispielen illustrieren.

1 Metrische Räume. In diesem Abschnitt wollen wir den Begriff des metrischen Raumes einführen und an einigen Beispielen illustrieren. 1 Metrische Räume 1 Metrische Räume In diesem Abschnitt wollen wir den Begriff des metrischen Raumes einführen und an einigen Beispielen illustrieren. Definition und Beispiele (1.1) Definition (Metrischer

Mehr

Kontrollfragen und Aufgaben zur 3. Konsultation

Kontrollfragen und Aufgaben zur 3. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 3. Konsultation Termin: Ort: Determinante

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 2. 3D-Koordinatensystem Weit

Mehr

30 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

30 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 30 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 2. Wir beginnen wieder mit x 0. Sei m die kleinste natürliche Zahl mit m > x. Eine solche Zahl existiert, da N wohlgeordnet ist. Dann ist m 1 x < m, da m 1 < m.

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Vorkurs Mathematik Intensiv. Vektoren, Skalarprodukte und Geraden in der Ebene Musterlösung

Vorkurs Mathematik Intensiv. Vektoren, Skalarprodukte und Geraden in der Ebene Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Vektoren, Skalarprodukte und Geraden in der Ebene Musterlösung Skalarprodukt, Kreuzprodukt, Norm Seien x, y R mit x

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Anton Malevich Einführung in die Kodierungstheorie Skript zu einer im Februar 2013 gehaltenen Kurzvorlesung Fakultät für Mechanik und Mathematik Belorussische Staatliche Universität Institut für Algebra

Mehr

Diskriminanzanalyse mit binären Daten

Diskriminanzanalyse mit binären Daten 6. Konferenz für SAS-Anwender in Forschung und Entwicklung 28. Februar 1. März 2002 Universität Dortmund Diskriminanzanalyse mit binären Daten Bernd Jäger 1, Michael Wodny 1, Karl-Ernst Biebler 1, Paul

Mehr

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k Skalarprodukte Tutorium 7 Bemerkung. Für jeden komplexen Vektorraum V mit dim V und jede komplexe Bilinearform P auf V findet man einen Vektor v mit P (v, v) =. Es gibt also keine positiv definite Bilinearformen

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

1. Funktionen und Stetigkeit

1. Funktionen und Stetigkeit 1. Funktionen und Stetigkeit Um Funktionen mit mehreren Variablen auf ihr Grenzwertverhalten, wie Stetigkeit und Differenzierbarkeit, untersuchen zu können, ist es sinnvoll, sie auf kleinen Umgebungen,

Mehr

Das Universum als RaumZeit

Das Universum als RaumZeit Das Universum als RaumZeit Max Camenzind Würzburg - 2017 Das ist eine der ältesten Aufnahmen von Andromeda "nebula, photographiert am Yerkes Observatorium um 1900. Für unsere modernen Augen ist dies wirklich

Mehr

1. Metrik, Norm und das Skalarprodukt

1. Metrik, Norm und das Skalarprodukt www.mathematik-netz.de Coyright, Page 1 of 6 Metrische, normierte und toologische Räume 1. Metrik, Norm und das Skalarrodukt Tologische Eigenschaften sielen insbesondere in der Analysis eine wichtige Rolle.

Mehr

Gradient eines Skalarfeldes

Gradient eines Skalarfeldes Gradient eines Skalarfeldes 1-E Gradient eines Skalarfeldes Definition 1: Unter dem Gradient eines differenzierbaren Skalarfeldes Φ (x, y) versteht man den aus den partiellen Ableitungen 1. Ordnung von

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

achsenparallele Stauchung und Streckung durch Gewichte :

achsenparallele Stauchung und Streckung durch Gewichte : Gewichtete Minkowski-Distanzfunktion achsenparallele Stauchung und Streckung durch Gewichte : Forderung: staab@uni-koblenz.de 1 Einheitskreis Translationsinvarianz keine Skalierungsinvarianz keine Rotationsinvarianz

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 5 Lineare Algebra 21. November 2008 Prof. Dr. H.-R. Metz

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 5 Lineare Algebra 21. November 2008 Prof. Dr. H.-R. Metz FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 5 Lineare Algebra 21. November 2008 Prof. Dr. H.-R. Metz Aufgabe 1 Die Menge der n-dimensionalen Vektoren IR n wird zu einem metrischen Raum, wenn

Mehr

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen In diesem Kapitel werden nur endlich dimensionale

Mehr

T = {t 1,..., t n } sei die Menge der Terme. D = {d 1,..., d m } sei die Menge der Dokumente.

T = {t 1,..., t n } sei die Menge der Terme. D = {d 1,..., d m } sei die Menge der Dokumente. Vektorraummodell T = {t 1,..., t n } sei die Menge der Terme. D = {d 1,..., d m } sei die Menge der Dokumente. Dokumente und Anfragen werden als Vektoren in einem Vektorraum aufgefaßt. Der Vektorraum wird

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Numerik I. Aufgaben und Lösungen

Numerik I. Aufgaben und Lösungen Universität zu Köln SS 2009 Mathematisches Institut Prof Dr C Tischendorf Dr M Selva, mselva@mathuni-koelnde Numerik I Musterlösung Übungsblatt 4, Kondition (5 Punkte) Aufgaben Lösungen (4 Punkte) Zeigen

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Topologie metrischer Räume

Topologie metrischer Räume Technische Universität München Christoph Niehoff Ferienkurs Analysis für Physiker Vorlesung Montag SS 11 In diesem Teil des Ferienkurses beschäftigen wir uns mit drei Themengebieten. Zuerst wird die Topologie

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Metrische Räume. Kapitel Begriff des metrischen Raumes

Metrische Räume. Kapitel Begriff des metrischen Raumes Kapitel 8 Metrische Räume 8.1 Begriff des metrischen Raumes Bemerkung 8.1 Motivation. In diesem Abschnitt wird der Begriff des Abstandes zwischen reellen Zahlen verallgemeinert. Das ist notwendig, um Analysis

Mehr

Hauptsatz der Zahlentheorie.

Hauptsatz der Zahlentheorie. Hauptsatz der Zahlentheorie. Satz: Jede natürliche Zahl n N läßt sich als Produkt von Primzahlpotenzen schreiben, n = p r 1 1 p r 2 2... p r k k, wobei p j Primzahl und r j N 0 für 1 j k. Beweis: durch

Mehr

Höhere Mathematik III für Physiker Analysis 2

Höhere Mathematik III für Physiker Analysis 2 Ralitsa Bozhanova Jonas Kindervater Ferienkurs im Anschluss an das Wintersemester 2008 Höhere Mathematik III für Physiker Analysis 2 16. bis 20. Februar 2009 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Der

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Lineare Regression Zweck: Vorhersage x Dimensionsreduktion x x Klassifizierung x x Hauptkomponentenanalyse Korrespondenzanalyse Clusteranalyse Diskriminanzanalyse Eigenschaften:

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 20.12.13 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Lernende Vektorquantisierung

Lernende Vektorquantisierung Lernende Vektorquantisierung (engl. Learning Vector Quantization) Rudolf Kruse Neuronale Netze 5 Motivation Bisher: festes Lernen, jetzt freies Lernen, d.h. es existieren keine festgelegten Klassenlabels

Mehr

Die Hamming-Distanz definiert eine Metrik.

Die Hamming-Distanz definiert eine Metrik. Die Hamming-Distanz definiert eine Metrik. Satz Metrik Hamming-Distanz Die Hamming-Distanz ist eine Metrik auf {0, 1} n, d.h. für alle x, y, z {0, 1} n gilt: 1 Positivität: d(x, y) 0, Gleichheit gdw x

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 02.07.2015 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Z Zusätze. Z.1 Konvergenz in metrischen Räumen

Z Zusätze. Z.1 Konvergenz in metrischen Räumen 251 Z Zusätze Z.1 Konvergenz in metrischen Räumen Z.1.1 Konvergenz von Zahlenfolgen. Wir hatten in 1.4.1 definiert: Eine Folge (a n ) n N reeller Zahlen heißt konvergent gegen den Grenzwert a, wenn es

Mehr

Notation und Einführung

Notation und Einführung Skriptteil zur Vorlesung: Proinformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 30.Juli 2009 Notation und Einführung Der folgende Abschnitt gibt eine kurze Einführung in die Codierungstheorie.

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

1 C. Ee 1 D B C. ; : : : ; Ee n D ; Ee 2 D B C : : A 2Rn A : v 1 v 2. Ev D B. A D v 1Ee 1 C v 2 Ee 2 C C v n Ee n : (30.3) v n

1 C. Ee 1 D B C. ; : : : ; Ee n D ; Ee 2 D B C : : A 2Rn A : v 1 v 2. Ev D B. A D v 1Ee 1 C v 2 Ee 2 C C v n Ee n : (30.3) v n Abschnitt 3 Lineare Unabhängigkeit, Basis, Dimension R Plato 77 Die beiden Vektoren und 2 sind hingegen linear unabhängig, ebenso die beiden Vektoren und 3 sowie auch die beiden Vektoren 2 und 3 (Übungsaufgabe)

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr