Kantengraphen und Planare Graphen. Seminararbeit

Größe: px
Ab Seite anzeigen:

Download "Kantengraphen und Planare Graphen. Seminararbeit"

Transkript

1 Kantengraphen und Planare Graphen Seminararbeit in Mathematisches Seminar für LAK SS 2018 vorgelegt von Anna Maria Gärtner bei: Baur, Karin, Univ.-Prof. Dr.phil. Graz, 2018

2 Inhaltsverzeichnis 1 Einleitung 3 2 Kantengraphen 4 3 Ebene Graphen 8

3 1 Einleitung Diese Seminararbeit beschäftigt sich mit einem Thema der Graphentheorie, den Kantengraphen und ebenen Graphen, sowie deren Eigenschaften. Sie folgt dem Kapiteln Line Graphs und Planar Graphs des Buches Algebraic Graph Theory von C. Godsil und G. Royle. Im ersten Teil der Arbeit wird auf den Begriff des Kantengraphens eingegangen und dieser mit Hilfe von Beispielen und verschiedenen Sätzen vertieft behandelt. Der zweite Teil beschäftigt sich mit ebenen Graphen. Hier wird zuerst der Begriff des ebenen Graphens definiert und durch Beispiele und dem Satz von Euler behandelt und danach auf einige seiner Eigenschaften eingegangen. Die Graphiken in der Arbeit wurden mithilfe von Geogebra erstellt. 3

4 2 Kantengraphen Definition Der Kantengraph oder auch Line Graph L(x) von X ist ein Graph mit folgenden Eigenschaften: Die Kanten von X sind die Eckpunkte von L(X) Je zwei Eckpunkte von L(X) sind adjazent (benachbart), wenn die dazugehörigen Kanten aus X einen gemeinsamen Eckpunkt haben. Ein Beispiel für einen Graphen und seinen Kantengraphen: Besondere Kantengraphen: Der Stern K 1,n, der in jedem Eckpunkt n benachbarte Seiten hat, hat den gesamten Graphen K n als Kantengraphen Der Weg P n ist ein Graph mit Eckpunkten in [1,..., n], wobei i benachbart zu i+1 ist für 1 i n 1. 4

5 Sein Kantengraph ist der kürzere Weg P n 1 Der Kreis C n ist isomorph zu seinem eigenen Kantengraphen. Da aus der Definition folgt, dass bei Kantengraphen aus jeder Kante von X ein Knoten von L(X) entsteht, ändert sich die Anzahl der Knoten nicht und auch die Adjazenz (Nachbarschaft) bleibt ident. Versucht man nun diesen Graphen zu zeichen, sehen sich die beiden sehr ähnlich und da man für die Zeichnung die Lage der Knoten beliebig wählen kann und es nur wichtig ist welcher Knoten zu welchem anderen Knoten benachbart ist, kann der eine Graph in den anderen verschoben werden. Lemma Ist der Graph X regulär vom Grad k, so ist sein Kantengraph L(X) regulär vom Grad 2k-2. Beweis. Es folgt aus der Definition, dass die Knoten von L(X) die Kanten von X sind. Weiters gilt, dass zwei Knoten von X in L(X) genau dann adjazent sind, wenn sie in X einen gemeinsamen Knoten haben. 5

6 Der Grad d L(X) eines Knotens, der sich aus einer Kante xy des ursprünglichen Graphen ergibt, lässt sich mithilfe einer Formel berechnen: d L(X) (x, y) = (d X (x) 1) + (d X (y) 1) = d X (x) + d X (y) 2 (2.1) Nun nehmen wir an, dass der Graph X k-regulär ist und setzten dies in die obige Gleichung ein: d L(X) (xy) = k + k 2 = 2k 2 = Kantengraph L(X) ist (2k-2)-regulär. Als nächstes wollen wir die Cliquen der Graphen betrachtetn. Unter einer Clique versteht man einen vollständigen Teilgraphen. Jeder Knoten von X bestimmt eine Clique von L(X). Sei nun x ein Knoten von X vom Grad k. Die k Kanten, die von x ausgehen bilden eine k-clique in L(X). Wenn X insgesamt n verschiedene Knoten hat, gibt es somit auch eine Menge von n verschiedenen Cliquen in L(X), wobei jeder Knoten von L(X) in nur zwei verschiedenen Cliquen liegen kann und jede Kante von L(X) in nur einer Clique. Aus dem vorherigen Erläuterungen folgt nun folgender Satz: Satz Ein nichtleerer Graph ist genau dann ein Kantengraph, wenn seine Kantenmenge in eine Menge von Cliquen unterteilt werden kann, mit der Eigenschaft, dass jeder Knoten in höchstens zwei Cliquen liegt. Nehmen wir nun an, dass X keine Cliquen der Größe 3 (Dreiecke) besitzt, folgt daraus, dass jeder Knoten in L(X), der mindestens 2 Nachbarn in der selben Clique besitzt, auch selbst in dieser liegen muss. = Alle Cliquen, die von den Knoten von X bestimmt werden, sind maximal. Aus diesen Überlegungen folgt leicht die Isomorphie zwischen zwei Graphen, wodurch gilt: X = Y L(X) = L(Y ) (2.2) Wichtig ist jedoch, dass ihre Umkehrung nicht gilt. Dies kann man leicht mithilfe eines Gegenbeispiel beweisen. Dafür betrachten wir die Graphen von K 1,3 und K 3. 6

7 Bereits aus der Abbildung geht heraus, dass ihre Kantengraphen isomorph sind und mit dem Graph K 3 übereinstimmen. Sie selbst sind jedoch nicht isomorph. Lemma Angenommen, die Graphen X und Y haben mindestens den Grad 4. (In der Graphentheorie wird statt des Begriffes Grad auch oft die Valenz verwendet.) Dann gilt: X = Y L(X) = L(Y ) (2.3) Beweis. Es sei C eine Clique mit genau c Knoten. Die Anzahl der Knoten sei größer als 3 und somit entsprechen die Knoten von C einer Menge von c Kanten in X, die sich in einem gemeinsamen Punkt treffen. Daraus folgt, dass eine Bijektion zwischen den Knoten von X und den maximalen Cliquen von L(X) existiert. Satz Ein Graph X ist genau dann ein Kantengraph, wenn jeder induzierte Teilgraph von X mit höchstens 6 Knoten ein Kantengraph ist. Durch diesen Satz ist es nun möglich einem Graphen die Eigenschaft Kantengraph sein zu geben, indem man alle möglichen Teilgraphen mit bis zu 6 Knoten überprüft. Nun können wir die Menge der Graphen auf jene einschränken, die folgende Eigenschaften aufweisen: 1. X ist kein Kantengraph. 2. Jeder echte induzierte Teilgraph von X ist ein Kantengraph. Diese Menge ist durch Satz endlich und besteht zudem aus genau neun Graphen. 7

8 3 Ebene Graphen Im vorherigen Kapitel haben wir bereits gesehen, dass Graphen durch Zeichnungen gegeben sein könen, in denen jeder Eckpunkt durch einen Punkt und jede Kante uv durch eine Linie gegeben ist die u und v miteinander verbindet. Nun gehen wir noch einen Schritt weiter. Definition Ein Graph heißt eben, wenn er ohne sich kreuzende Kanten gezeichnet werden kann. Diese Definition ist zwar korrekt, doch sie bedient sich keiner genauen mathematischen Sprache. Um sie zu präzisieren verwenden wir eine ebene Einbettung. Darunter verstehen wir eine Funktion, die jedem Knoten eines Graphen X einen Punkt der Ebene zuordnet und jeder Kante von X eine zusammenhängende Kurve der Ebene, die sich nicht selbst schneiden. Diese Kurve wiederum muss ihre Endpunkte treffen. Eine grundlegende Eigenschaft dieser ebenen Einbettung ist, dass inzidente Kurven wiederum auf inzidente Kurven abbilden. Auch nach der Einbettung dürfen sie sich nur im zugehörigen Knoten treffen.(eine Kante ist zu einem Knoten inzident, wenn sie zu ihm hin oder von ihm wegführt) Somit können wir eine neue Definition formulieren. Definition Ein Graph ist genau dann eben, oder auch planar, wenn er eine ebene Einbettung besitzt. Beispiele für ebene Graphen sind der ebene vollständige Graph K 4 und das Oktaeder. 8

9 An diesen Beispielen ist gut sichtbar, dass die Kanten des Graphens die Ebene in Teile teilen, die wir Flächen nennen. Betrachtet man diese Flächen bei dem abgebildeten Graphen K 4 genauer, erkennt man, das alle Flächen bis auf eine begrenzt sind. Die unbegrenzte Fläche nennt man auch unendliche/äußere Fläche. Die Länge einer Fläche wird durch ihre Anzahl an Kanten definiert. Im Fall des Graphen K 4 gibt es nur Flächen der Länge 3. Als nächstes beschäftigen wir uns mit einem Satz, der vor allem aus der Geometrie bekannt ist, aber auch in der Graphentheorie Anwendung findet. Satz Ein zusammenhängender ebener Graph X habe n Knoten, e Kanten und f Flächen. Dann gilt: n e + f = 2 (3.1) An dieser Stelle möchte ich zum besseren Verständnis der ebenen Graphen ein Beispiel anführen. Beispiel Der Graph K 5 ist nicht planar. Wir wollen mithilfe dem Satz von Euler zeigen, dass diese Aussage wahr ist. Zuerst betrachten wir eine mögliche Einbettung des Graphen. Wir nehmen an, dass K 5 planar ist. Wir wissen, dass n = 5 und e = 10. Dann müsste gelten, dass f = e + 2 n = = 7 9

10 Der Graph müsste also 7 Flächen besitzen um planar zu sein. Wir wissen weiter, dass jede Fläche von mindestens 3 Kanten begrenzt wird und jede Kante an zwei Flächen grenzt. Daraus folgt 3f 2e Aus folgt ein Wiederspruch und wir haben bewiesen, dass K 5 nicht planar ist. Nun möchte ich noch auf einige möchliche Eigenschaften von ebenen Graphen eingehen. Maximale ebene Graphen: Definition Maximal ebene Graphen zeichnen sich dadurch aus, dass, wenn dem Graphen eine Kante zwischen zwei beliebigen nicht adjazenten Knoten hinzufügt wird, er nicht mehr eben ist. Bei dieser Aussage stellt sich natürlich die Frage, wann man dem Graphen noch eine Kante hinzufügen kann. Hierbei hilft es die Einbettung des Graphens zu untersuchen. Allgemein gilt, dass man bei Einbettungen, die eine Fläche haben, deren Länge größer als 3 ist, eine Kante hinzufügen kann und der Graph trotzdem eben bleibt. Daraus kann man schließen, dass maximale ebene Graphen eine Einbettung mit Flächen maximal Länge 3 haben. Das bestätigt auch der Satz von Euler, durch den man erfährt, dass ein Graph mit n Knoten und 2n-6 Kanten auf jeden Fall maximal ist. Solche Graphen nennt man auch ebene Triangulierung. Weiters muss erwähnt werden, dass ein Graph mehr wie nur eine ebene Einbettung haben kann, aber die Länge der Flächen bei allen Einbettungen gleich ist, wie man auch in der nachfolgenden Abbildung erkennen kann. 10

11 Duale Graphen X : Duale Graphen können aus gegebenen Ebenen Graphen gebildet werden, indem jede Fläche von X zu einem Knoten von X wird, den man in dieser Fläche platziert. Jede Kante, die davor zwei Flächen voneinander getrennt hat, wird zu einer Kante, die die zugehörigen Knoten verbindet. Eine Besonderheit von dualen Graphen tritt auf, wenn zwei Flächen von mehr als einer Kante getrennt werden, dann besitzt der duale Graph X multiple Kanten. Das bedeutet, dass im Graphen X zwei Knoten mit mehr als einer Kante verbunden werden. Beispiele für duale Graphen zu ebenen Graphen, die wir bereits angesprochen haben, wären folgende: Der Graph K 4 ist selbstdual, also ist isomorph zu seinem dualen Graphen. Anhand von diesem möchte ich das Konzept nun genauer erklären. In der Graphik des K 4 und seines dualen Graphen erkennt man das Prinzip sehr gut. Um den dualen Graphen zu konstruieren, konstruiert man zuerst den ebenen Graphen und zeichnet dann in jede Fläche einen neuen Eckpunkt. Hierbei muss auch die Ebene selbst durch einen Punkt dargestellt werden. Als nächstes verbindet man jeweils die Eckpunkte, die zu Flächen gehören, die im ebenen Graphen eine gemeinsame Kante haben. Am Ende bringt man den dualen Graphen noch in eine ansehnliche Form und erkennt sofort die Isomorphie. Der duale Graph des Oktaeders ist ein bipartiter kubischer Graph mit acht Knoten, besser bekannt als Würfel. Am Ende des Kapitels möcht ich nun noch eine weitere Möglichkeit der Einbettung ansprechen. Bis hierhin haben wir die Graphen immer in eine Ebene eingebettet. Eine weitere Möglichkeit ist die Einbettung in eine reelle projektive Ebene. Darunter versteht man eine Ebene, die nicht orientiert ist. In einer Zeichnung durch eine strichlierte 11

12 Linie angedeutet, bei der jeder Punkt des Kreise die sich bei eingezeichneten Durchmesser gegenüber liegen identisch sind. Beispielsweise kann der nicht planare Graph K 6 in einer projektiven Ebene eingebettet werden. Da alle Flächen, die durch Kanten gebildet werden Dreiecke sind handelt es sich um eine Triangulierung der projektiven Ebene. 12

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr Graphentheorie Algebraic Graph Theory von Chris Godsil und Gordon Royle Kapitel 1.1 1.3 Seminararbeit von Katharina Mayr 01210559 Universität Graz Insitut für Mathematik und wissenschaftliches Rechnen

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1 Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7

Mehr

Einführung in die Graphentheorie. Monika König

Einführung in die Graphentheorie. Monika König Einführung in die Graphentheorie Monika König 8. 11. 2011 1 Vorwort Diese Seminararbeit basiert auf den Unterkapiteln 1.1-1.3 des Buches Algebraic Graph Theory von Chris Godsil und Gordon Royle (siehe

Mehr

Abbildung 1: Ein Graph mit zugehöriger Adjazenzmatrix

Abbildung 1: Ein Graph mit zugehöriger Adjazenzmatrix 1 Vorbemerkungen Diese Arbeit führt den Leser in die Theorie der Adjazenz- und Inzidenzmatrizen von Graphen ein. Vorausgesetzt werden Grundkentnisse über Graphen, Homomorphismen von Knotenmengen, Bipartitheit,

Mehr

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8

Mehr

Grundbegri e der Graphentheorie: Eckengrad, Wege und Kreise, Zusammenhang

Grundbegri e der Graphentheorie: Eckengrad, Wege und Kreise, Zusammenhang raphen- und Berechenbarkeitstheorie rundbegri e der raphentheorie: Eckengrad, Wege und Kreise, Zusammenhang 0.1 raphen Ein raph ist ein aar = (V, E) disjunkter Mengen mit E [V ]2, wobei [V ]2 die Menge

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Zusammenfassung zu Graphentheorie

Zusammenfassung zu Graphentheorie Sara Adams Zusammenfassung zu Graphentheorie - WS 2004/05 2 Inhaltsverzeichnis Zusammenfassung zu Graphentheorie Sara Adams 2. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Graphentheorie gehalten

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Graphen. Im Rahmen dieser Vorlesung beschränken wir uns auf einfache ungerichtete Graphen, die wie folgt definiert werden können:

Graphen. Im Rahmen dieser Vorlesung beschränken wir uns auf einfache ungerichtete Graphen, die wie folgt definiert werden können: Graphen Wir geben zunächst die allgemeinste Definition für den Begriff Graph an: Definition: Ein Graph ist ein 4-Tupel (V, E,, ), wobei V und E Mengen sind, und : E! V und : E! V totale Abbildungen. Im

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Übungsaufgaben Graphentheorie, Wintersemester 2011/12

Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Frank Göring 25. Januar 2012 Zusammenfassung Übungsaufgaben zur Graphentheorievorlesung. 1 Bis 19.10.2011 1. Wir hatten einen Graphen G als zusammenhängend

Mehr

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014 Der Fünf-Farben-Satz Lukas Schweighofer Feb.2014 1 Contents 1 Vorwort 3 2 Graphentheoretische Grundlagen 4 3 Satz 2 (Eulerscher Polyedersatz) 8 4 Satz 3 9 5 Der Fnf-Farben-Satz 10 5.1 Beweis 1..............................

Mehr

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Seminar: Ausgewählte Kapitel der Informatik bei Prof. Dr. R. Schrader Seminarvortrag von Nils Rosjat Wintersemester 09 / 10 1 Einleitung Dieser

Mehr

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen André Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen 8 Grundbegriffe der Graphentheorie für die Kante, die die beiden Knoten und verbindet. Der linke Graph in Bild. kann

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr

Unendliche Graphen. Daniel Perz 24. Dezember Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind.

Unendliche Graphen. Daniel Perz 24. Dezember Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind. Unendliche Graphen Daniel Perz 24. Dezember 2011 1 Definition Definition 1. Ein Graph G heißt lokal endlich, wenn alle Knotengrade endlich sind. Definition 2. Ein Graph G=(V,E) heißt Strahl, wenn gilt

Mehr

1. Einige Begriffe aus der Graphentheorie

1. Einige Begriffe aus der Graphentheorie . Einige Begriffe aus der Graphentheorie Notation. Sei M eine Menge, n N 0. Dann bezeichnet P n (M) die Menge aller n- elementigen Teilmengen von M, und P(M) die Menge aller Teilmengen von M, d.h. die

Mehr

Eine notwendige und hinreichende Bedingung für einen Graphen mit Durchmesser 5, um 2-Durchmesser-stabil zu sein

Eine notwendige und hinreichende Bedingung für einen Graphen mit Durchmesser 5, um 2-Durchmesser-stabil zu sein Eine notwendige und hinreichende Bedingung für einen Graphen mit Durchmesser 5, um 2-Durchmesser-stabil zu sein Christian Hettkamp 25. Januar 2010 1 Inhaltsverzeichnis 1 Einführung 2 Definitionen, Vorraussetzungen

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

Argumentationen zu ermöglichen, verlangen wir, dass diese Eigenschaft auch für induzierte Teilgraphen

Argumentationen zu ermöglichen, verlangen wir, dass diese Eigenschaft auch für induzierte Teilgraphen Kapitel 9 Perfekte Graphen 9.1 α- und χ-perfektheit Eine Clique in einem Graphen G ist ein induzierter vollstäniger Teilgraph. Die Cliquenzahl ω(g) ist die Kardinalität einer größten in G enthaltene Clique.

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Drei Anwendungen der Eulerschen Polyederformel

Drei Anwendungen der Eulerschen Polyederformel Drei Anwendungen der Eulerschen Polyederformel Seminar aus Reiner Mathematik Viktoria Weißensteiner 04. Dezember 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbereitende Theorie 3 2.1 ebene Graphen..........................

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Vorlesungen vom 5.Januar 2005

Vorlesungen vom 5.Januar 2005 Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

6. Planare Graphen und Färbungen

6. Planare Graphen und Färbungen 6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von

Mehr

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni CHAPTER. GRAPHEN.. B Ä UME.. Bäume Ein schlichter Graph ohne Kreise heisst Wald, ist er noch zusätzlich zusammenhängend so wird er Baum genannt. Bevor wir Bäume genauer beschreiben ein kleines LEMMA...

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

A Berlin, 10. April 2017

A Berlin, 10. April 2017 A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:

Mehr

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert: KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/03 Institut für Informatik Aufgabenblatt 6 Prof. Dr. J. Csirik 18. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Zählen perfekter Matchings in planaren Graphen

Zählen perfekter Matchings in planaren Graphen Zählen perfekter Matchings in planaren Graphen Kathlén Kohn Institut für Mathematik Universität Paderborn 25. Mai 2012 Inhaltsverzeichnis Motivation Einführung in Graphentheorie Zählen perfekter Matchings

Mehr

Distanzprobleme in der Ebene

Distanzprobleme in der Ebene Distanzprobleme in der Ebene (Literatur: deberg et al., Kapitel 7,9) Christian Knauer 1 Motivation: Alle nächsten Nachbarn Gegeben: Eine Menge von Punkten P in der Ebene Berechne: Zu jedem Punkt aus P

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Algorithmen zur Visualisierung von Graphen

Algorithmen zur Visualisierung von Graphen Gitterlayouts fu r planare Graphen I NSTITUT F U R T HEORETISCHE I NFORMATIK L EHRSTUHL A LGORITHMIK I M ARCUS K RUG KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum in der

Mehr

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008 Graphentheorie Rainer Schrader Färbungen Zentrum für Angewandte Informatik Köln 28. Januar 2008 1 / 57 2 / 57 wir wollen versuchen, die Knoten eines Graphen zu färben dabei dürfen keine zwei benachbarten

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S Minimale Formale Grundlagen Graphentheorie Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt Minimale

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

1 Beispiele für Graphen

1 Beispiele für Graphen Beispiele für Graphen 1 Beispiele für Graphen 1. Kreuzungsproblem : 3 Häuser sollen mit einem Wasser-, Gas- und Elektroanschluß verbunden werden, wobei keine Kreuzung entstehen darf. Abbildung 1: Kreuzungsproblem

Mehr

Hamilton-Pfad auf Gittergraphen ist NP vollständig

Hamilton-Pfad auf Gittergraphen ist NP vollständig Hamilton-Pfad auf Gittergraphen ist NP vollständig von Stephanie Wilke 1. Einleitung Ein Hamilton-Pfad in einem ungerichteten Graphen ist ein Pfad, der jeden Knoten genau einmal enthält. Es soll nun gezeigt

Mehr

Algorithmische Graphentheorie (WS2014/15)

Algorithmische Graphentheorie (WS2014/15) Algorithmische Graphentheorie (WS04/5) Kapitel Planare Graphen Walter Unger Lehrstuhl für Informatik :58 Uhr, den 9. April 06 Inhaltsverzeichnis Walter Unger 9.4.06 :58 WS04/5 Z Inhalt I Einleitende Definitionen

Mehr

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat.

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat. Chr.Nelius: Graphentheorie (WS 2018/19) 8 Bipartite Graphen 26 8: Bipartite Graphen In einer Schulklasse mit 24 Schülern s 1,s 2,s 3,...,s 24 wurde eine Mathe Arbeit geschrieben. Um das Ergebnis bildlich

Mehr

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/42 Graphische Darstellung von Zusammenhängen schon an vielen Stellen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Aufbau der Projektiven Geometrie

Aufbau der Projektiven Geometrie Seminararbeit zum Seminar aus Reiner Mathematik Aufbau der Projektiven Geometrie Leonie Knittelfelder Matr. Nr. 1011654 WS 2012/13 Inhaltsverzeichnis 1 Einleitung 3 2 Linearmengen 4 2.1 Satz (1.3.1): Das

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Das Art Gallery Problem

Das Art Gallery Problem Dipl. Math. Timo de Wolff FB 12 Institut für Mathematik Mail: wolff(at)math.uni-frankfurt.de http://www.uni-frankfurt.de/fb/fb12/mathematik/dm/personen/dewolff/index.html Das Art Gallery Problem Mustervorlesung

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008 Grundlagen der Graphentheorie Thomas Kamps 6. Oktober 2008 1 Inhaltsverzeichnis 1 Definition von Graphen 3 2 Unabhängigkeit von Ecken und Kanten 3 3 Teil- und Untergraphen 4 4 Schnitt, Vereinigung und

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Westfälische Wilhelms-Universität Münster. Fachbereich: Mathematik und Informatik. Planare Graphen

Westfälische Wilhelms-Universität Münster. Fachbereich: Mathematik und Informatik. Planare Graphen Westfälische Wilhelms-Universität Münster Fachbereich: Mathematik und Informatik Planare Graphen Kreuzungslemma und Charakterisierung planarer Graphen nach Kuratowski Andrea Vollmer Seminar: Graphentheorie

Mehr

Seminararbeit für das mathematische Seminar für LAK

Seminararbeit für das mathematische Seminar für LAK Seminararbeit für das mathematische Seminar für LAK Konstantin Smoliner 25. April 2018 Inhaltsverzeichnis 1 Einleitung 2 2 Grundvoraussetzungen und wichtige Denitionen 2 3 Permutationsgruppen 3 4 Zählen

Mehr

Graphentheorie. Perfekte Graphen. Perfekte Graphen. Perfekte Graphen. Rainer Schrader. 22. Januar 2008

Graphentheorie. Perfekte Graphen. Perfekte Graphen. Perfekte Graphen. Rainer Schrader. 22. Januar 2008 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 22. Januar 2008 1 / 47 2 / 47 eine Clique in G ist ein induzierter vollständiger Teilgraph Gliederung α- und χ-perfektheit Replikation

Mehr

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Ein Turnierplan mit fünf Runden c d b e a c d b e a c d b e a c d b b c a a d e e Das Diagramm beschreibt

Mehr

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne

Mehr

Die Vermutungen von Hadwiger und

Die Vermutungen von Hadwiger und Die Vermutungen von Hadwiger und Hajós David Müßig Seminar zur Graphentheorie, WS 09/10 Wir alle kennen die Gleichung χ(x) ω(x). Diese Gleichung ist nicht nur einläuchtend, sondern auch mehr oder weniger

Mehr

Graphentheorie. Zufallsgraphen. Zufallsgraphen. Zufallsgraphen. Rainer Schrader. 23. Januar 2008

Graphentheorie. Zufallsgraphen. Zufallsgraphen. Zufallsgraphen. Rainer Schrader. 23. Januar 2008 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 3. Januar 008 1 / 45 / 45 Gliederung man könnte vermuten, dass ein Graph mit großer chromatischer Zahl einen dichten Teilgraphen enthalten

Mehr

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen Folie 1 von 20 Lernmodul 2 Graphen Folie 2 von 20 Graphen Übersicht Motivation Ungerichteter Graph Gerichteter Graph Inzidenz, Adjazenz, Grad Pfad, Zyklus Zusammenhang, Trennende Kante, Trennender Knoten

Mehr

Ein Turnierplan mit fünf Runden

Ein Turnierplan mit fünf Runden Mathematik I für Informatiker Graphen p. 1 Ein Turnierplan mit fünf Runden c b a c b a c b a c b a c b a d e d e d e d e d e Mathematik I für Informatiker Graphen p. 2 Definition: Graph Ein (schlichter)

Mehr

II. Wissenschaftliche Argumentation

II. Wissenschaftliche Argumentation Gliederung I. Motivation II. Wissenschaftliche Argumentation i. Direkter Beweis ii. iii. Indirekter Beweis Beweis durch vollständige Induktion Seite 35 II. Wissenschaftliche Argumentation Ein Beweis ist

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Graphen: Rundwege, Kodierung von Bäumen

Graphen: Rundwege, Kodierung von Bäumen TH Mittelhessen, Wintersemester 2013/2014 Lösungen zu Übungsblatt 11 Fachbereich MNI, Diskrete Mathematik 4./5./6. Februar 2014 Prof. Dr. Hans-Rudolf Metz Graphen: Rundwege, Kodierung von Bäumen Aufgabe

Mehr

Übungen zu Kombinatorik und Graphentheorie

Übungen zu Kombinatorik und Graphentheorie Übungen zu Kombinatorik und Graphentheorie Ilse Fischer, SS 07 (1) (a) In einer Schachtel sind 4 rote, 2 blaue, 5 gelbe und 3 grüne Stifte. Wenn man die Stifte mit geschlossenen Augen zieht, wieviele muss

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria.

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. GRAPHEN MÜSSEN NICHT IMMER FUNKTIONEN DARSTELLEN Ilse Fischer Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. E-mail: Ilse.Fischer@univie.ac.at Zusammenfassung. In der

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

Anwendungen von Graphen

Anwendungen von Graphen Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke elektrische Schaltpläne Entity-Relationship Diagramme Beweisbäume endliche Automaten Syntaxbäume für Programmiersprachen Entscheidungsbäume

Mehr

Elementare Definitionen. Anwendungen von Graphen. Formalisierung von Graphen. Formalisierung von Digraphen. Strassen- und Verkehrsnetze

Elementare Definitionen. Anwendungen von Graphen. Formalisierung von Graphen. Formalisierung von Digraphen. Strassen- und Verkehrsnetze Anwendungen von Graphen Strassen- und Verkehrsnetze Computernetzwerke Elementare Definitionen Ein Graph besteht aus Knoten und Kanten, die die Knoten verbinden. elektrische Schaltpläne Entity-Relationship

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, 01.11.2018 Christian Rieck, Arne Schmidt Einführendes Beispiel

Mehr

Dieser Graph hat 3 Zusammenhangskomponenten

Dieser Graph hat 3 Zusammenhangskomponenten Vl 2, Informatik B, 19. 04. 02 1.1.3 Definitionen und wichtige Graphen Sei im folgenden G =(V;E) ein schlichter ungerichteter Graph. Definition: Der Grad eines Knoten v in einem ungerichteten Graphen ist

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr