Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie

Größe: px
Ab Seite anzeigen:

Download "Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie"

Transkript

1 Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Noch ein Beispiel aus Vorl. 1, Seite 10) Zuerst zeigen wir, dass jede Affinität bijektiv ist. Nach Lemma 13 LAAG I genügt es zu zeigen, dass es zu jeder Affinität F(x) = Ax + b eine inverse Abbildung gibt. Wir konstruieren die inverse Abbildung: Wir setzen G(x) = A 1 x A 1 b. Dann gilt: G F(x) = A 1 (Ax + b) A 1 b = A 1 Ax + A 1 b A 1 b = x. F G(x) = A(A 1 x A 1 b) + b = AA 1 x AA 1 b + b = x. Also ist jede Affinität bijektiv. Ausserdem sehen wir, dass die Umkerabbildung G auch eine Affinität ist.

2 Wir betrachten die Menge S K n := {aller Bijektionen g : K n K n }. Nach Wicht. Bsp. aus Vorl. 1 (Seite 15) ist (S K n, ) eine Gruppe (wobei die Verkettung ist). Wie oben gezeigt gilt Aff (Kn ) S K n. Nach Satz 2 genügt es zu zeigen, dass Aff (K n ) eine Untergruppe ist, also dass (i) F Aff (K n ) gilt: F 1 Aff (K n ) Das haben wir bereits oben gezeigt. (ii) F,G Aff (K n ) gilt: F G Aff (K n ). Sei A,B GL n (K) und a,b K n. Dann gilt für F(x) = Ax + a und G(x) = Bx + b: F G(x) = F(G(x)) = A(Bx + b) + a = wie behauptet. AB }{{} GL n(k) Nebenergebnis. Jede Affinität ist eine Bijektion. x + Ab + a }{{} K n Aff (K n )

3 Punkte in der allgemeinen Lage affines Analogon der linearen Unabhängigkeit Def. Die Punkte a 0,...,a k K n bzw. die endliche (k+1-elementige) Menge {a 0,...,a k } K n heißt in der allgemeinen Lage, wenn die affine Hülle Aff (a 0,...,a k ) k dimensional ist. Bemerkung: Da der Vektorraum zu Aff (a 0,...,a k ) gleich span ( (a 1 a 0 ),(a 2 a 0 ),...,(a 3 a 0 ) ) ist, sind die Punkte a 0,...,a k K n genau dann in der allgemeinen Lage, wenn die Vektoren (a 1 a 0 ),(a 2 a 0 ),...,(a 3 a 0 ) linear unabhängig sind. Diese drei Punkte sind NICHT in der allg. Lage Diese drei Punkte sind in der allg. Lage Def. Fortsetzung Eine (n + 1) elementige Menge in der allgemeinen Lage heißt eine affine Basis.

4 Lemma 11. Seien K n, K m zwei affine Räume der Dimensionen n und m. Die Punkte a 0,...,a n K n seien eine affine Basis in K n. b 0,...,b n K m seien beliebige Punkte. Dann existiert genau eine affine Abbildung F : K n K m s.d. F(a i ) = b i. Ferner gilt: Ist m = n und b 0,...,b n eine affine Basis, so ist diese Abbildung eine Affinität. Anwendung in D2: Seien (A,B,C) die Ecken eines nichtausgearteten Dreiecks in der Ebene R 2. Dann gilt für beliebige Punkte A,B,C der Ebene: Es gibt genau eine affine Abbildung, mit A A, B B, C C. Ferner gilt: Sind die Punkte A,B,C auch die Ecken eines nichtausgearteten Dreiecks, so ist die Abbildung eine Affinität: B Es gibt (genau eine) Affinität, die A-->A, B-->B, C-->C C B A C A Analogon in Linearer Algebra Lemma 15 Vorl. 9 LAAG I (V,+, ) sei ein n dimensionaler Vektorraum; (U,+, ) sei ein Vektorraum beliebiger Dimension. (v 1,...,v n ) sei ein Basis-Tupel in V und (u 1,...,u n ) sei ein n Tupel der Vektoren aus U. Dann gilt: Es existiert genau eine lineare Abbildung f : V U so dass f (v i ) = u i für alle i = 1,...,n. Ist (u 1,...,u n ) auch eine Basis, so ist die Abbildugn ein

5 Beweis von Lemma 11. Nach Definition ist das Tupel (a 1 a 0,a 2 a 0,a 3 a 0,...,a n a 0 ) eine Basis in K n, weil es aus n linear unabhängigen Vektoren besteht. Wir betrachten das Tupel (b 1 b 0,b 2 b 0,b 3 b 0,...,b n b 0 ) (von Vektoren in K m ). Nach eben wiederholtem Lemma 15 aus LAAG I gibt es (genau eine) lineare Abbildung f, so dass f (a i a 0 ) = f (b i b 0 ). Wir betrachten die affine Abbildung F : K n K m, F(x) := b 0 + f (x a 0 ) ( = b 0 f (a 0 ) + f (x) ). Wir zeigen, dass F die gewünschte Eigenschaft F(a i ) = b i hat: Wir rechnen es aus: Für i = 0 ist F(a 0 ) = b 0 + f (a 0 a 0 ) = b 0 + f ( 0) = b 0. Für i = 1,...,n gilt: F(a i ) = b 0 + f (a i a 0 ) Konstr. von f = b 0 + b i b 0 = b i. Ferner gilt: Ist (b 0,...,b n ) eine affine Basis, also sind b 1 b 0,...,b n b 0 linear unabhängig, so ist f nach Lemma 15 LAAG I ein Isomorphismus; folglich ist F eine Affinität. Existenz von F (und die Zusatzaussage) ist damit (konstruktiv) bewiesen; wir müssen jetzt die Eindeutigkeit zeigen.

6 Eindeutigkeit von F mit F(a i ) = b i Seien F,F : K n K m affine Abbildungen mit der Eigenschaft F(a i ) = F (a i ) = b i. Die Abbildungen F und F seien wie folgt gegeben: F(x) = c + f (x) und F (x) = c + f (x) wobei c,c K m. Wir haben: b i b 0 = F(a i ) F(a 0 ) = c + f (a i ) c f (a i ) Linearität = f (a i a 0 ). Analog gilt: b i b 0 = f (a i a 0 ). Nach Lemma 15 LAAG I ist dann f f. Dann gilt: b 0 = c + f (a 0 ) und b 0 = c + f (a 0 ); wir ziehen eine Gleichung von der Anderen ab und bekommen: c c = 0. Daraus folgt F (x) = F(x) wie wir es wollen.

7 Affine Eigenschaften (K = R, falls nicht explizit erwähnt.) Def. Sei M eine Teilmenge eines affinen Raums K n. Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : K n K n die Bildmenge {F(a)wobei a M} auch diese Eigenschaft hat. Bezeichnung Wiederholung Die Bildmenge einer Menge M unter der Abbildung F werden wir mit Bild F (M) := {F(a) wobei a M} bezeichnen. Bsp. Eigenschaft Unterraum zu sein ist eine affine Eigenschaft. Tatsächlich: Man betrachte einen affinen Unterraum U = {a 0 + v v V U } K n. Ist F ein Affinität, so ist F(x) = Ax + b für ein A GL n (K n ) und b K n. Dann gilt: Bild F (U) := {A(a 0 + v) + b v V U } = {Aa 0 + b + Av v V }{{} U } = a {a + u u Bild A (V U )}. Da, nach Satz 12(i) LAAG I, Bild A (V U ) ein Untervektorraum von K n ist, ist Bild F (U) ein affiner Unterraum. Wir bemerken, dass dim(bild A (V U )) (und deswegen auch dim(bild F (U))) gleich dim(u), weil A GL n (K) ist.

8 Bsp. Eigenschaften Gerade, Ebene, oder Hyperebene zu sein sind affine Eigenschaften. Tatsächlich ist nach Definition Gerade Unterraum der Dimension 1 Ebene Unterraum der Dimension 2 Hyperebene Unterraum der Dimension n 1 Da die Isomorphismen die Dimension des Untervektorraums erhalten, ist Bild einer Geraden, Ebene oder Hyperebene jeweils eine Gerade, Ebene oder Hyperebene.

9 Bsp. Eigenschaft aus 3 Punkten zu bestehen ist eine affine Eigenschaft. Def. Seien a 0, a 1 R n. Die Strecke mit Endpunkten a 0, a 1 ist die Menge {a 0 + λ(a 1 a 0 ) wobei 0 λ 1 }. (ist sinnvoll nur wenn K = R ist) a 0 a 1 Bsp. Eigenschaft eine Strecke zu sein ist auch eine affine Eigenschaft. Tatsächlich: Für jeden Punkt einer Strecke {a 0 + λ(a 1 a 0 ) wobei 0 λ 1 } gilt F(a 0 + λ(a 1 a 0 )) Def. = F(a 0 ) + λf (a 1 a 0 ) }{{}. λ(f(a 1 ) F(a 0 )) nach Def. Dann ist die Bildmenge {F(a 0 ) + λ(f(a 1 ) F(a 0 )) wobei 0 λ 1 } auch eine Strecke.

10 Def. Sei (a,b,c) ein Tripel von Punkten in K n. 1. Die Punkte a,b,c heißen kollinear, falls sie auf einer Geraden liegen. 2. Ist (a,b,c) ein kollineares Punktetripel und a b, so heißt der durch die Gleichung c a = λ(b a) eindeutig bestimmte Skalar λ das Teilverhältnis des kollinearen Punktetripels (a,b,c), bezeichnet durch TV(a,b,c). Bsp. c heißt der Mittelpunkt der Strecke (a,b), wenn TV(a,b,c) = 1 2 gilt (hat Sinn falls 1 2 = 2 1 wohldefiniert ist, also falls ist.) Das ist äquivalent zu c = a (b a). a c b TV(a,b,c)=1/2 c a b TV(a,b,c)=-1

11 ( ) ( ) ( ) Bsp. In R 2 sind a =, b = und c = kollinear. Wegen ( ) 1 ( ) c a = = (b a) = 1 3 gilt TV(a,b,c) = c=(1,1) a=(0,1) b=(3,1) Geometr. Bedeutung: Wir betrachten TV(a,b,c)=-2 den affinen Raum R 2. Dann gilt: TV(a,b,c) = Länge(a,c) Länge(a,b). Vorzeichen von TV(a,b,c) ist +, wenn c und b von einer Seite von a liegen, und, wenn a zwichen b und c liegt. Ferner gilt: Liegt c auf der Strecke a, b, so ist 0 TV(a, b, c) 1. Liegt a auf der Strecke b,c, so ist TV(a,b,c) 0. Liegt b auf der Strecke a,c, so ist TV(a,b,c) 1.

12 Mnemonische Regel/alte Bezeichnung für TV(a, b, c) Früher hat man TV(a,b,c) wie folgt bezeichnet: ac ab. Wir wollen hier ab als ab ist der Vektor s.d. a + ab = b; also ist ab=b-a b a und ac als c a verstehen, siehe das Bild: 0 ( ) Die Formel ac = c a hat nur dann Sinn, wenn c a und b a ab b a proportional sind, also wenn a,b,c auf einer Gerade liegen (also, kollinear sind), und b a ist. b a

13 Das Teilverhältnis ist eine affine Eigenschaft. Lemma 12. Sind (a,b,c) kollinear und F eine Affinität, so sind auch (F(a), F(b), F(c)) kollinear; ferner gilt: TV(a,b,c) = TV(F(a),F(b),F(c)). Beweis. Liegen a, b, c auf einer Geraden G, so liegen F(a), F(b), F(c) auf der Bildmenge Bild F (G). Da Bild F (G) wieder eine Gerade ist, sind F(a),F(b),F(c) kollinear. Nach Definition ist c a = TV(a,b,c)(b a). Nach Definition ist F(c) F(a) = f (c a) und F(b) F(a) = f (b a). Also, F(c) F(a) = TV(a,b,c)(F(b) F(a)), also TV(F(a),F(b),F(c)) = TV(a,b,c) Folgerung: Punkt c ist der Mittelpunkt der Strecke (a,b) Punkt c teilt die Strecke (a,b) im Verhältnis 2 : 1 affine Eigenschaft affine Eigenschaft

14 Flächeninhalt einer Menge Flächeninhalt der zweiten Menge (K = R) ist eine affine Eigenschaft In der Vorl. 12 LAAG I, Seiten haben wir verstanden, dass eine lineare Abbildung f A : R 2 R 2 (wobei R 2 mit der üblichen Schulgeometrischen Ebene identifiziert ist) den Flächeninhalt einer jeden Figur mit dem Faktor det(a) multipliziert. Wir wissen, dass jede Affinität von R 2 die Form F(x) = F(a) + f A (x a) hat. Da die Translation (Parallelverschiebung) offensichtlich den Flächeninhalt erhält, multipliziert die affine Abbildung den Flächeninhalt einer jeden Figur mit dem Faktor det(a). Deswegen erhalten die Affinitäten von R 2 Flächeninhalt einer Menge Flächeninhalt der zweiten Menge. Selbstverständlich ist das Phänomen mehrdimensional : In Dim(3) und in Dim(n) ist Volum(Bild F (Menge)) = det(f )(Volum(Menge)) und deswegen Volum(Bild F (Menge 1 )) Volum(Bild F (Menge 2 )) = det(f ) Volum(Menge 1) det(f ) Volum(Menge 2 ) = Volum(Menge 1) Volum(Menge 2 )

15 Wiederholung Eine Eigenschaft einer Teilmenge M R n heißt affin, wenn für jede Affinität F : R n R n die Bildmenge {F(a) wobei a M} auch diese Eigenschaft hat. Punkt zu sein affin Gerade (zu sein) affin Strecke affin Dreieck affin parallele Gerade affin Winkel (in D2 oder D3) zwischen zwei Geraden ist 90 nicht affin Länge einer Strecke (in D2 oder D3) ist gleich 5 nicht affin Punkt c ist die Mittelpunkt affin der Stecke (a,b) Punkt c teilt die Stecke (a,b) in Verhältnis 2 : 1 affin Flächeninhalt (in D2 oder Volumen in D3) nicht affin Flächeninhalt einer Menge Flächeninhalt der zweiten Menge = 5 affin

16 Anwendung in der (Schul)geometrie Wir sagen, dass eine geometrische Aufgabe affin ist, falls nur affine Eigenschaften gegeben sind. Um eine affine Aufgabe zu lösen, können Sie zuerst eine passende Affinität anwenden. Wenn Sie dies klug genug tun, vereinfacht dies die Aufgabe. BspAufgabe. Beweisen Sie, dass sich die Seitenhalbierenden eines Dreiecks (a) in einem Punkt schneiden (b), dass der Schnittpunkt sie im Verhältnis 2 : 1 teilt, (c), dass die 6 Dreiecke, in die die Seitenhalbierenden das Dreieck teilen, gleichen Flächeninhalt haben. Bemerkung Hausaufgabe 4 ist die Verallgemeinerung von (a) und (c) für 3-dim Fall. c b a a c b

17 Man betrachte eine Affinität, die die Ecken des Dreiecks ABC in die Ecken eines regelmäßigen Dreiecks überführt. (Existiert nach Lemma 11, weil A,B,C und A,B,C affine Basen in R 2 sind.) Die Abbildung führt die Seiten in Seiten über. Die Abbildung führt die Mittelpunkte der Seiten in die Mittelpunkte der Seiten über. Die Abbildung führt die Seitenhalbierenden in die Seitenhalbierenden über. Da sich in dem regelmäßigen Dreieck, die Seitenhalbierenden in einem Punkt schneiden, schneiden sich die Seitenhalbierenden des ursprünglichen Dreiecks auch in einem Punkt. (a) ist bewiesen. F(c) c F(b ) F(a ) b m a F m a c b F(a) F(c ) F(b)

18 F(c) c F(b ) F(a ) b m a F m a c b F(a) F(c ) F(b) Da in einem regelmäßigen Dreieck alle 6 Dreiecke, in die die TV(a,b,c)=-2 Seitenhalbierenden das Dreieck teilen, gleich sind, sind ihre Flächeninhalte auch gleich, also Flächeninhalt eines kleinen Dreieck Flächeninhalt eines anderen kleinen Dreiecks = 1. ( ) Da dies eine affine Eigenschaft ist, gilt ( ) auch für das ursprüngliche Dreieck. (c) ist bewiesen.

19 Man betrachte ein kleines Dreieck. Da der Winkel F(c)F(a)F(a ) gleich 30 o ist, ist (m,f(b )) = sin(30 o ) (m,f(a)) = 1 2 (m,f(a)). Da (F(b),m ) = (m,f(a)), teilt der Punkt m die Seitenhalbierende (F(b),F(b )) im Verhältnis 2 : 1. Da Affinitäten die Teilverhältnisse erhalten, teilt m die Seitenhalbierende (b,b ) im Verhältnis 2 : 1. (b) ist bewiesen. F(c) c F(b ) F(a ) b m a F 30 o m a c b F(a) F(c ) F(b) TV(a,b,c)=-2

Affine Eigenschaften ( stets K = R)

Affine Eigenschaften ( stets K = R) Affine Eigenschaften ( stets K = R) Def. 15 Sei M eine Teilmenge eines affinen Raums A über V (über K). Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : A A 1 die Bildmenge {F(a)wobei

Mehr

Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden?

Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden? Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden? Weil bei einigen Aufgaben die Problemstellung einfacher wird, wenn wir Inversionen anwenden, die Aufgabenstellung

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f(v) = u} (Andere Bezeichnung: f(v) wird in Analysis-Vorlesung

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

Plan für Heute/Morgen

Plan für Heute/Morgen Plan für Heute/Morgen Kongruenzsätze: aus der Schule wissen wir die SSS, SWS, und SSW Kongruenzsätze für Dreiecke: Wir wollen diese Sätze im Rahmen unseres Modells (wenn Punkte die 2 Tupel von reellen

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 06.12.2013 Alexander Lytchak 1 / 16 Wiederholung Ist V ein Vektorraum, so heißen Abbildungen T v : V V der Form w w

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr

10. Affine und euklidische Geometrie.

10. Affine und euklidische Geometrie. 10. Affine und euklidische Geometrie. In der analytischen Geometrie beschreibt man nach Wahl eines Koordinatensystems Punkte durch n-tupel von Zahlen (n = 2 für die Ebene, n = 3 für den 3-dimensionalen

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

Elementare Geometrie Vorlesung 16

Elementare Geometrie Vorlesung 16 Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist

Mehr

Fundamentalsatz der reellen affinen Geometrie

Fundamentalsatz der reellen affinen Geometrie Fundamentalsatz der reellen affinen Geometrie Satz 12 (Fundamentalsatz der affinen Geometrie über R) Wir betrachten den (n 2) dimensionalen reellen affinen Raum R n. Sei F : R n R n eine Bijektion, welche

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie Sommersemester 2009 Franz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 13, 6020

Mehr

Wie kann man die Normalform (bzgl. Affinen Transformationen) bestimmen, ohne die affine Abbildung bzw. Isometrie zu finden?

Wie kann man die Normalform (bzgl. Affinen Transformationen) bestimmen, ohne die affine Abbildung bzw. Isometrie zu finden? Wie kann man die Normalform (bzgl. Affinen Transformationen) bestimmen, ohne die affine Abbildung bzw. Isometrie zu finden? Antwort in Dim 2: Sei Q eine Quadrik in R 2 gegeben durch a 11... a 1n x 1 x

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Elementare Geometrie Vorlesung 11

Elementare Geometrie Vorlesung 11 Elementare Geometrie Vorlesung 11 Thomas Zink 29.5.2017 1.Verhältnisse Es sei g eine Gerade. Es seien A, B, C, D g vier Punkte, so dass A B und C D. Wir definieren: AB CD = AB CD, wenn die Strahlen AB

Mehr

SWS-Kongruenzsatz. A B = d(a,b) = A B und A C = d(a,c) ) = A C. Dann ist das Winkelmaß BAC = arccos

SWS-Kongruenzsatz. A B = d(a,b) = A B und A C = d(a,c) ) = A C. Dann ist das Winkelmaß BAC = arccos SWS-Kongruenzsatz. SWS-Kongruenzsatz. Es seien A,B,C und A,B,C Punkte des R 2, s.d. weder A,B,C noch A,B,C auf einer Geraden liegen. Dann gilt: es gibt eine Isometrie I, mit A A, B B, C C, genau dann wenn

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Wiederholung und Plan:

Wiederholung und Plan: Wiederholung und Plan: Ziel: alle linearen f : V U zu beschreiben, wobei V,U Vektorräume sind, sd dim(v) = n

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Affine

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.34 018/04/19 14:11:43 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene Wir beschäftigen uns gerade mit Aussagen über ebene Geraden und haben einige

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

Elementare Geometrie Wiederholung 3

Elementare Geometrie Wiederholung 3 Elementare Geometrie Wiederholung 3 Thomas Zink 10.7.2017 1.Schwerpunkt und Teilverhältnis, V13, Es seien A, B, C, D Punkte, die auf einer Geraden liegen, und so dass A B und C D. AB = λ CD λ = AB CD.

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.4 2017/04/13 14:48:29 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir hatten einen affinen Teilraum A des R d als eine Teilmenge der Form A = a + U definiert,

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden?

Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden? Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden? Weil bei einigen Aufgaben die Problemstellung einfacher wird, wenn wir Inversionen anwenden, die Aufgabenstellung

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke Konvexe Mengen Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke xy = {x + t xy 0 t 1} = {(1 t)x + ty 0 t 1} enthält. konvex nicht konvex Lemma

Mehr

Vorlesung Winter 2009/2010 Elementare Geometrie

Vorlesung Winter 2009/2010 Elementare Geometrie Vorlesung Winter 2009/2010 Elementare Geometrie 1 Homothetien Es sei Z E ein Punkt der Ebene. Es sei λ 0 eine reelle Zahl. Die zentrale Homothetie mit dem Zentrum Z und dem Streckungsfaktor λ ist folgende

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Musterlösungen Klausur Geometrie

Musterlösungen Klausur Geometrie Musterlösungen Klausur Geometrie Aufgabe 1 (Total: 8 Punkte). Seien A, B, C die Eckpunkte eines nichtentarteten Dreiecks in der euklidischen Ebene. Seien D, E, F derart gewählt, dass folgende Teilverhältnisse

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Wie werden die Vorlesungen/Übungen organisiert?

Wie werden die Vorlesungen/Übungen organisiert? Wie werden die Vorlesungen/Übungen organisiert? Mein Name: Prof. Vladimir Matveev Sprechstunden: nach jeder Vorlesung bzw. in der Pause Homepage der Vorlesung: http: //users.minet.uni-jena.de/ matveev/lehre/la10/

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 3/4) Aufgabenblatt (9. Januar

Mehr

2 Spiegelungen. d(f(p), f(q)) = d(p, q) für alle p, q R n

2 Spiegelungen. d(f(p), f(q)) = d(p, q) für alle p, q R n 2 Siegelungen Definition: f : R n R n heißt Bewegung (Isometrie), wenn f Abstände erhält, dh wenn d(f(), f(q)) = d(, q) für alle, q R n Kaitel IV, Satz 32: f ist genau dann eine Bewegung, wenn es eine

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

02. Vektorräume und Untervektorräume

02. Vektorräume und Untervektorräume 02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine nichtleere Teilmenge

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.39 2018/05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen

Mehr

3 Die Strukturtheorie der Vektorräume

3 Die Strukturtheorie der Vektorräume Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 3 Die Strukturtheorie der Vektorräume Sei V ein K-Vektorraum Sei v 1,...v r V endlich viele vorgegebene Vektoren. Definition: 1. Jeder Vektor

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Abschnitt: Diagonalisierung von Endomorphismen

Abschnitt: Diagonalisierung von Endomorphismen Abschnitt: Diagonalisierung von Endomorphismen Wiederholung: Endomorphismus von V ist eine lineare Abbildung von V nach V. Frage: f sei ein Endomorphismus. In welcher Basis ist die darstellende Matrix

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

Hüllen und Kombinationen

Hüllen und Kombinationen Hüllen und Kombinationen 2 Die zulässigen Bereiche in der Linearen Optimierung sind Lösungen von linearen Ungleichungssystemen. Deswegen müssen wir die Werkzeuge der linearen Algebra um Elemente erweitern,

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Christoph Vogelsang Matr.Nr. 66547 Nils Martin Stahl Matr.Nr. 664 Seminar: Geometrie Dozent: Epkenhans Wintersemester 005/006 Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Ausarbeitung der

Mehr

Lineare Algebra I - Prüfung Winter 2019

Lineare Algebra I - Prüfung Winter 2019 Lineare Algebra I - Prüfung Winter 209. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Geometrie. Ingo Blechschmidt. 4. März 2007

Geometrie. Ingo Blechschmidt. 4. März 2007 Geometrie Ingo Blechschmidt 4. März 2007 Inhaltsverzeichnis 1 Geometrie 2 1.1 Geraden.......................... 2 1.1.1 Ursprungsgeraden in der x 1 x 2 -Ebene.... 2 1.1.2 Ursprungsgeraden im Raum..........

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Wiederholung. Lemma 16 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O, s.d. O 1 AO diagonal ist.

Wiederholung. Lemma 16 Ist A symmetrisch, so gibt eine eine orthogonale Matrix O, s.d. O 1 AO diagonal ist. Wiederholung Lemma 6 Ist A smmetrisch, so gibt eine eine orthogonale Matrix O, sd O AO diagonal ist Wiederholung Lemma 6 Ist A smmetrisch, so gibt eine eine orthogonale Matrix O, sd O AO diagonal ist (Smmetrische

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Lineare Algebra II Lösungen der Aufgaben 42 und 43

Lineare Algebra II Lösungen der Aufgaben 42 und 43 D Blottière SS 7 P Schützdeller Universität Paderborn Lineare Algebra II Lösungen der Aufgaben 4 und 43 Aufgabe 4 : Bemerkungen : Es sei V ein n-dimensionaler Vektorraum über einem Körper K und β : V V

Mehr

4.3 Affine Punkträume

4.3 Affine Punkträume 4.3. AFFINE PUNKTRÄUME 185 4.3 Affine Punkträume Es wird jetzt der Übergang von der linearen Algebra zur analytischen Geometrie beschrieben. 4.3.1 Definition (affiner Punktraum) Sei V ein K-Vektorraum,

Mehr

Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit.

Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit. Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit. Agnieszka Wenska 2008-02-19 1 Wir wissen bereits: Was projektive Räume und Unterräume sind Wie man die

Mehr

3.3 Der Seitenverband

3.3 Der Seitenverband Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau 217 3.3 Der Seitenverband Wir setzen die Untersuchung der Relation ist Seite von auf der Menge aller konvexen Polytope in einem gegebenen

Mehr

Mengenlehre: Mächtigkeit (Ordnung) einer Menge

Mengenlehre: Mächtigkeit (Ordnung) einer Menge Mengenlehre: Mächtigkeit (Ordnung) einer Menge Def. Seien A, B Mengen. Wir sagen, dass A höchstens gleichmächtig zu B ist, falls es eine injektive Abbildung f : A B gibt. Schreibweise: A B. Wir sagen,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

2 Affine und projektive Ebenen

2 Affine und projektive Ebenen $Id: ebenen.tex,v 1.3 2018/11/06 12:51:04 hk Exp $ 2 Affine und projektive Ebenen Nachdem wir in der letzten Sitzung affine Ebenen definiert und ein wenig untersucht haben kommen wir nun zu den sogenannten

Mehr