Inhaltsverzeichnis. Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: Autor: René Pecher

Größe: px
Ab Seite anzeigen:

Download "Inhaltsverzeichnis. Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: Autor: René Pecher"

Transkript

1 Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: Autor: René Pecher Inhaltsverzeichnis 1 Permutation ohne Wiederholungen mit Wiederholungen Variation ohne Wiederholungen mit Wiederholungen Kombination ohne Wiederholungen mit Wiederholungen Ereignisse 2 5 Geschichte des Wahscheinlichkeits-Begriffs 2 6 Wahrscheinlichkeitsraum Rechenregeln Ω sei diskret Ω sei stetig Unvereinbarkeit Unabhängigkeit bedingte Wahrscheinlichkeit Multiplikationssatz Ereignisbäume 7 8 Zufalls-variablen, Verteilungsfunktion Diskrete Zufalls-variablen Stetige Zufalls-Variablen Symmetrische ZV Verteilungsparameter Erwartungswert E(X) = µ Varianz V (X) = σ Eigenschaften (Rechenregeln) Spezielle Zufalls-Variablen Diskrete Verteilung Stetige Verteilung

2 1 Permutation Ümsortierung der Elemente einer endlichen Menge, d.h. eine eineindeutige Abblidung der Mende auf sich. 1.1 ohne Wiederholungen Anzahl aller Permutationen mit n unterscheidbaren Elementen: n! 1.2 mit Wiederholungen Anzahl aller Permutationen mit n Elementen, n 1 ; n k nicht unterscheidbar: n! n 1! n k! 2 Variation Anordnung (Ziehung) von k der n der Elemente, welche nach der Reihenfolge (der Ziehung) angeordnet werden. 2.1 ohne Wiederholungen Keines der n Elemente darf mehrfach auftauchen. (Ziehung ohne Zurücklegen) Anzahl aller Variationen: n! (n k)! 2.2 mit Wiederholungen Jedes der n Elemente darf mehrfach auftauchen. (vor nächster Ziehung wird Zurücklegt) Anzahl aller Variationen: n k 3 Kombination Auswahl von k der n der Elemente ohne Berücksichtigung der Reihenfolge. 3.1 ohne Wiederholungen Keines der n Elemente darf mehrfach ( auftauchen. (Ziehung ohne Zurücklegen) Anzahl aller Kombinationen: n ) k = n! k! (n k)! 3.2 mit Wiederholungen Jedes der n Elemente darf mehrfach ( auftauchen. (vor nächster Ziehung wird Zurücklegt) Anzahl aller Kombinationen: n+k 1 ) k = (n+k 1)! k! (n k)! 1

3 4 Ereignisse Ω Ω Ω sicheres Ereignis unmögliches Ereignis A, B E(Ω) A B E(Ω) A B E(Ω) A \ B E(Ω) Ω \ A E(Ω) A und B treten gemeinsam ein A oder B ist eingetreten A ist eingetreten B nicht A ist nicht eingetreten E(Ω) muss abgeschlossen sein A B = A und B sind unvereinbar A B E(Ω) A impliziert B A zieht B nach sich Ω \ A = A Komplementäres Ereignis Wahrscheinlichkeit weist jedem Ergebnis eine Zahl, seine Wahrscheinlichkeit zu: P : E(Ω) R mit gewissen Eigenschaften. 5 Geschichte des Wahscheinlichkeits-Begriffs 1. Wahrscheinlichkeit als relative Häufigkeit: A Ω f n (A) = hn(a) n 2. Subjektive Wahrscheinlichkeit n P (A) 3. Laplace-Wahrscheinlichkeit; klassischer W-Begriff: Ω endlich alle Möglichkeiten sind gleich wahrscheinlich Dann: A Ω P (A) = A Ω = Anzahl der fuer A guenstigen Anzahl aller moeglichkeiten 4. Axiomatik der Wahrscheinlichkeits-Theorie 2

4 6 Wahrscheinlichkeitsraum Definition: Ein Wahrscheinlichkeitsraum ist ein Tripel [Ω, E(Ω), P ], wobei Ω die Menge aller möglichen Ausgänge eines Zufallsexperiments, E(Ω) eine Menge von Ereignissen und P : E(Ω) R eine Funktion ist mit 1. P (A) 0 für alle A E(Ω) 2. P (Ω) = 1 3. P (A B) = P (A) + P (B), falls A, B E(Ω) unvereinbar sind E(Ω) ist gleich P (Ω), falls Ω endlich oder abzählbar unendlich (diskret) ist, für überabzählbares Ω (stetig oder kontinuierlich) ist E(Ω) eine Familie von Teilmengen von Ω mit folgenden Eigenschalten: Ω E(Ω) A E(Ω) A = Ω \ A E(Ω) A i E(Ω), i N i=1 A i E(Ω) σ - Algebra Verschärfung von 3. (sigma - Algebra) A i E(Ω), A i A j = für i j (paarweise unvereinbar) Dann gilt P ( i=1 A i) = i=1 P (A) 3

5 6.1 Rechenregeln 1. P (A) = 1 P (A) A A = A (Ω \ A) = Ω und A (Ω \ A) = P (Ω) = 1 = P (A) + P (A) 2. P ( ) = 0 3. A 1, A 2,, A n E(Ω) mit A i A j = für i j P (A 1 A 2 A n ) = P (A 1 ) + P (A 2 ) + + P (A n ) 4. P (A \ B) = P (A) P (A B) A = (A \ B) (A B) (A \ B) (A B) = 5. P (A B) = P (A) + P (B) P (A B) 6. A B P (A) P (B) B = (B \ A) A P (B) = P (B \ A) + P (A) Ω sei diskret {e i } Elementarereignis Ω = {e 1 } {e n }( ) P (Ω) = 1 = P P n (+ ) P ({e i }) = P i = 0 A Ω: A = {e i1,, e ik } P (A) = P i1 + + P ik 4

6 Spezialfall: Laplace-Experiment Ω = {e 1 } {e n } und p = p i mit i = 1,, n p = p i = 1 n und P (A) = A n Urnenmodell I N Kugeln, davon M rote alle übrigen schwarz, Ziehung von n Kugeln (gleichzeitig Laplace W.) ohne zurücklegen. M N und n N A Wahrscheinlichkeit um k rote Kugeln zu ziehen P (A) = (M k ) ( N M n k ) ( N n) Urnenmodell II N Kugeln, davon M rote alle übrigen schwarz, Ziehung von n Kugeln (gleichzeitig Laplace W.) mit zurücklegen. M N und n N ziehen A Wahrscheinlichkeit um beim 1. mal eine rote Kugeln zu P (A) = M N 0 k n B Wahrscheinlichkeit für k rote der n Kugeln P (B) = ( M N ) k ( ) 1 M n k ( N n k) 6.3 Ω sei stetig Alle Elementarereignisse sind gleich wahrscheinlich P ({e}) = 0! Beispiele: 1. Ω = R (Ω = s 1 ) P (A) Länge von A P (Bogen) Bogenlänge von = Bogenlaenge 2π 2. Tor Ω = [0; 3]x[0; 2] P (A) Fläche von A = F (A) 6 5

7 6.4 Unvereinbarkeit Unabhängigkeit [Ω, E(Ω), P ] 1. A, B E(Ω) A, B sind unvereinbar, falls A B = 2. A 1,, A n E(Ω) heißen paarweise unvereinbar, falls A i A j = für i j 3. A 1,, A n E(Ω) heißen Vollständig unvereinbar, falls für jedes k n A i1 A ik = für i r i s 6.5 bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit für A unter der Bedingung B. P (A B) = P (A B) P (B) P ( B) erfüllt die Axiome eines Wahrscheinlichkeitsmaßes für E(Ω), d.h.: 1. P (A B) 0 2. P (Ω B) = P (Ω B) P (B) = 1 3. A 1 A 2 = : P (A 1 A 2 B) = P (A 1 B) + P (A 2 B) 4. P (A 1 A 2 B) = P ((A 1 A 2 ) B) P (B) 6.6 Multiplikationssatz P (A B) = P (A B) P (B) = P ((A 1 B) (A 2 B)) P (B) = P (A 1 B)+P (A 2 B) P (B) A; B E(Ω) heißen unabhängig, falls eine der Folgenden Bedingungen erfüllt ist: 1. P (A B) = P (A B) 2. P (A) = P (A B) P (B) = P (B A) 3. P (A B) = P (A) P (B) Wenn A und B unabhängig sind MULTIPLIZIEREN sich die einzelnen Wahrscheinlichkeiten. P (A B C) = P (A) P (A B) P (C A B) 6

8 7 Ereignisbäume Nur für Mehrstufige Zufallsexperimente anwendbar. An den Zweigen steht die bedingbte Wahrscheinlichkeit dafür das das Ereignis am Ende des Zweigs eintritt. Pfadregeln: 1. Multiplikationsregel: Die Wahrscheinlichkeit für das Ereignis am Ende eines Pfades ist das Produkt der Wahrscheinlichkeiten der Zweige die zu diesem Ereignis führen. 2. Additionsregel: Die Wahrscheinlichkeit für ein Ereignis ist gleich der Summe der Wahrscheinlichkeiten aller Pfade, längs derer es erreicht werden kann. 8 Zufalls-variablen, Verteilungsfunktion 8.1 Diskrete Zufalls-variablen [Ω, E(Ω), P ], X : Ω R ZV X heißt diskret, falls X nur endlich oder abzählbar unendlich viele Werte annimmt. Dann ist X durch seine Verteilung bestimmt also die Werte x 1, x 2,, x n (, ) und die Wahrscheinlichkeiten p i = P (X = x i ) = P ({e Ω X(e) = x i }) > 0 X { (x i ; p i )} mit i = 1, 2,, n(, ) P (X x) = F X (x) P (X > x) = 1 P (X x) = 1 F X (x) a < b: P (a < X b) = P ({X b} \ {x a}) = P (X b) P (X a) = F X (b) F X (a) P (a X b) = P ({a < X b} {X = a}) = F X (b) F X (a) + P (X = a) P (X = a) = F X (a) F X (a) mit F X (a) = linksseitigen GW von F X in a { 0,falls a keine Sprungstelle von F X ist. P (X = a) = sprunghöhe,falls a Sprungstelle von F X ist. 7

9 8.2 Stetige Zufalls-Variablen [Ω, E(Ω), P ], X : Ω R ZV X heißt stetig, falls X eine Dichte (funktion) f hat, d.h. eine Funktion f : R R mit 1. f(x) 0 für alle x, 2. + f(x)dx = 1 und 3. P (X x) = F X (x) = x f(t)dt x f(t)dt = F X(x) F X (x) = f(x) gilt. c < x: x f(t)dt = x f(t)dt c f(t)dt = F c X(x) F X (c) F X(x) c Folgerung: X stetig P (X = x) = 0 für alle x R. P (a X b) = P (a < X b) = P (a X < b) = P (a < X < b) = F X (b) F X (a) 8.3 Symmetrische ZV Die Zufalls-Variable X heißt symmterisch zu c R, falls für alle x R P (X c x) = P (X c + x) gilt. P (X c x) = F X (c x) P (X c + x) = 1 P (X < c + x) = 1 P (X c + x) = 1 F X (c + x) F X (c x) = 1 F X (c + x) Rotations symmetrisch um (c; F X (c)). Folgerung: Ist die ZV X stetig und symmetrisch zu c, dann gilt für ihre Dichte f(c x) = f(c + x), der Graph geht also unter Spiegelung an der Geraden x = c in sich über. c = 0 f gerade 8.4 Verteilungsparameter entsprechen dem arithmetischen Mittel der Statistik Erwartungswert E(X) = µ X diskret, d.h. durch {(x i ; p i )} beschrieben µ = E(X) = i p i x i X stetig µ = E(X) = + x f(x)dx 8

10 8.4.2 Varianz V (X) = σ X diskret σ = V (X) = E(X 2 ) (E(X)) 2 = E((X E(X)) 2 ) X stetig σ = V (X) = + (x µ)2 f(x)dx = + (X E(X))2 f(x)dx Eigenschaften (Rechenregeln) g(x) = b x + a 1. E(g(x)) = b E(X) + a 2. X symmetrisch zu c R = E(X) = c 3. zentrieren von X : X µ x (µ x = E(X)) = E(X µ x ) = 0 4. V (g(x)) = b 2 V (X) 5. Standardisieren von X : Z = X µx mit µ x = E(X) und = V (X) > 0 ( ) 1 = E(Z) = E X µx = 1 E(X) µx = 0 ( ) 1 = Z(Z) = V X µx = 1 V (X) = 1 σx 2 6. Tschebyscheff-Ungleichung (grobe Abschätzung) P ( X µ x ε) 1 σ2 x ε 2 P ( X µ x ε) σ2 x ε 2 ε = λ : λ = 1; 2; 3 P ( X µ x λ ) 1 λ 2 λ = 2 P ( µ x 2 X µ x + 2 ) Bereich λ = 3 P ( µ x 3 X µ x + 3 ) Bereich 9

11 8.5 Spezielle Zufalls-Variablen Diskrete Verteilung [Ω, E(Ω), P ] A E(Ω) mit P (A) = Π > 0 Bernoulli - Experiment es wird n mal unabhängig ausgeführt. X gibt an wie oft A eingetreten ist. Werte von X: 0; 1; 2; 3; ; n p i = P (X = i) = ( ) n i Πi (1 Π) n i Binomial Verteilung mit n N 0 < Π < 1 X B(n; Π) µ x = E(X) = n Π; σ 2 x = V (X) = n Π (1 Π) für sehr große n und sehr kleine Π: Faustregel: Π 0, 1; n 50 und n Π 9 B(n; Π) P o (µ) X P o (µ) P o (µ) = P (X = i) = e µ µi i! mit µ = n Π E(X) = µ = V (X) Bernoulli - Experiment X gibt die Anzahl der Wiederholungen an bis A erstmalig eingetreten ist. Werte von X: N p i = P (X = i) = Π (1 Π) i 1 X G(Π) heißt Geometrische Verteilung E(X) = 1 1 Π ; V (X) = Π Π 2 Hypergeometrische Verteilung Modell: Urne mit N Kugeln, 0 < M < N rote, Rest schwarz, es werden n Kugeln ohne zurücklegen gezogen. X = Anzahl der roten unter n gezogenen Kugeln. Werte von X: 0; 1; 2; 3; ; n mit i M; n i N M p i = P (X = i) = (M i ) ( N M n i ) ( N n) E(X) = n M N V (X) = n M N (1 M N ) N n N 1 10

12 8.5.2 Stetige Verteilung Rechteck- oder Gleichverteilung: Exp.: zufällige Wahl einer Zahl im Intervall [α; β], α < β 0, x < α 1 Dichte f(x) =, α x β β 2 0, x β Verteilungfunktion F (x) = 0, x α x f(t)dt = x α, α < x < β β α 1, x β P (a X b) = b b a f(x)dx = a β α Exponentialverteilung: Seltenes Ereignis wird mit der Poission-Verteilung beschrieben. Dann ist die Zeit, die bis zum nächsten Eintreten dieses Ereignisses vergeht- die Wartezeit-exponential-Verteilt. { 0, x < 0 Dichte f(x) = λ e λx, x 0 Verteilungfunktion F (x) = x f(t)dt = x 0 λ e λt dt = [ e λt] x 0 = 1 e λx = E(X) = 1 λ ; V (X) = 1 λ 2 Satz: Die Exponentialverteilung hat kein Gedächtnis ; d.h. P (X > s + t X > t) = P (X > s) für alle s, t. { 0, x < 0 1 e λx, x 0 Normalverteilung: ϕ µ,σ 2(x) = 1 2π σ e (x µ)2 2σ 2 Φ µ,σ 2(x) = x infty ϕ µ,σ 2(t)dt (Gaus-Verteilung) tabeliert für µ = σ 2 = 1 11

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Vorlesung gehalten von Martin Aigner. Wintersemester 2008/9

Vorlesung gehalten von Martin Aigner. Wintersemester 2008/9 ELEMENTARE STOCHASTIK Vorlesung gehalten von Martin Aigner Wintersemester 28/9 Inhaltsverzeichnis 1 Grundbegriffe........................... 1 1.1 Zufall........................... 1 1.2 Wahrscheinlichkeitsräume................

Mehr

Wahrscheinlichkeitsräume und Zufallsvariablen

Wahrscheinlichkeitsräume und Zufallsvariablen Kapitel Wahrscheinlichkeitsräume und Zufallsvariablen. W-Raum Unter einem Zufallsexperiment verstehen wir einen vom Zufall beeinflussten Vorgang, der ein entsprechend zufälliges Ergebnis hervorbringt.

Mehr

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis Stochastische Prozesse: Grundlegende Begriffe bei zufälligen Prozessen In diesem Abschnitt beschäftigen wir uns mit den grundlegenden Begriffen und Definitionen von Zufallsexperimenten, also Prozessen,

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript Wahrscheinlichkeitsrechnung Sommersemester 2008 Kurzskript Version 1.0 S. Döhler 1. Juli 2008 In diesem Kurzskript sind Begriffe und Ergebnisse aus der Lehrveranstaltung zusammengestellt. Außerdem enthält

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Wir betrachten Ereignisse, die in fast gleicher Form öfter auftreten oder zumindest öfter auftreten können. Beispiele: Werfen eines Würfels, Sterben an Herzversagen

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele

KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele Verteilungen Problemstellung Ergebnisraum Ω Stichprobe (n aus N) mehrfaches Auswählen = wiederholen Formel für P Erwartungswert

Mehr

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 18: Woche vom Übungsaufgaben 9. Übung SS 18: Woche vom 11. 6. 15. 6. 2018 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Sprechstunde zur Klausurvorbereitung

Sprechstunde zur Klausurvorbereitung htw saar 1 Sprechstunde zur Klausurvorbereitung Mittwoch, 15.02., 10 12 + 13.30 16.30 Uhr, Raum 2413 Bei Interesse in Liste eintragen: Max. 20 Minuten Einzeln oder Kleingruppen (z. B. bei gemeinsamer Klausurvorbereitung)

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

3. Zufallsvariable und Verteilungen

3. Zufallsvariable und Verteilungen 3. Zufallsvariable und Verteilungen Häufige Situation in der Praxis: Es interessiert nicht so sehr das konkrete Ergebnis ω Ω eines Zufallsexperimentes, sondern eine Zahl, die von ω abhängt Beispiele: Gewinn

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Einführung in die angewandte Stochastik

Einführung in die angewandte Stochastik Einführung in die angewandte Stochastik Fabian Meyer 5. April 2018 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 3 1.1 Definitionen................................... 3 1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung,

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

3. STOCHASTISCHE PROZESSE 73

3. STOCHASTISCHE PROZESSE 73 3. STOCHASTISCHE PROZESSE 73 3. Stochastische Prozesse 3.1. Grundlegende Begriffe bei zufälligen Prozessen. In diesem Abschnitt beschäftigen wir uns mit den grundlegenden Begriffen und Definitionen von

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

3 Stetige Zufallsvariablen

3 Stetige Zufallsvariablen 3 Stetige Zufallsvariablen Eine Zufallsvariable heißt stetig, falls zu je zwei Werten a < b auch jeder Zwischenwert im Intervall [a, b] möglich ist Beispiele: X = Alter, X = Körpergröße, X = Temperatur,

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Wahrscheinlichkeitsraum Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Kombinatorik & Stochastik Übung im Sommersemester 2018

Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik Formeln & Begriffe Begrifflichkeiten Permutation = Anordnung in einer bestimmten Reihenfolge Kombination = Anordnung ohne bestimmte Reihenfolge

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Messbare Abbildungen Bildwahrscheinlichkeit Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Günther Bourier Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung Mit Aufgaben und Lösungen 3. F überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort Inhaltsverzeichnis

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn 8.5 Eindimensionale stetige Zufallsvariablen Eine Zufallsvariable X heißt stetig, wenn es eine Funktion f(x) gibt, sodass die Verteilungsfunktion von X folgende Gestalt hat: x F(x) = f(t)dt f(x) heißt

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Inhaltsverzeichnis

Inhaltsverzeichnis Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 5 1 Grundbegriffe.............................. 6 1.1 Einleitung, Geschichte.................. 6 1.2 Zufällige Ereignisse..................... 10 1.3 Ereignisfelder..........................

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Bem. 6 Die charakterische Funktion existiert.

Bem. 6 Die charakterische Funktion existiert. 4.4 Charakteristische Funktionen Def. 2.14 Sei X Zufallsvariable mit Verteilungsfunktion F X und Dichte f X (falls X stetig) oder Wkt.funktion p i (falls X diskret). Die Funktion φ X (t) := Ee itx = eitx

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Laplacesche Wahrscheinlichkeitsräume Kombinatorik Allgemeine diskrete Wahrscheinlichkeitsräume Deskriptive

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

Stochastik. Frank Eckert und. Thomas Huppertz Letzte Änderung:

Stochastik. Frank Eckert und. Thomas Huppertz Letzte Änderung: Stochastik getext von Frank Eckert Frank.Eckert@post.rwth-aachen.de und Thomas Huppertz thuppert@fh-niederrhein.de Letzte Änderung: 4.Juli.2000 INHALTSVERZEICHNIS Inhaltsverzeichnis Kombinatorische Grundformeln

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel II - Wahrscheinlichkeitsraum Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

FORMELSAMMLUNG STATISTIK B

FORMELSAMMLUNG STATISTIK B Somersemester 2012 FORMELSAMMLUNG STATISTIK B Prof. Kneip / Dr. Scheer / Dr. Arns Version vom April 2012 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 2 2 Diskrete Zufallsvariablen 5 3 Stetige Zufallsvariablen

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik Grundlagen der Stochastik Johannes Recker / Sep. 2015, überarbeitet Nov. 2015 Fehlermeldungen oder Kommentare an recker@sbshh.de Inhalt 1. Grundlegende Begriffe der Wahrscheinlichkeitsrechnung... 2 1.1.

Mehr

1 Elementare Wahrscheinlichkeitstheorie

1 Elementare Wahrscheinlichkeitstheorie 1 Elementare Wahrscheinlichkeitstheorie 1.1 Zufallsexperiment Definition 1.1. Ein Zufallsexperiment ist ein Vorgang, der im Prinzip beliebig oft unter identischen Randbedingungen wiederholt werden kann.

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129

Teil II. Wahrscheinlichkeitsrechnung. Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129 Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr