ART 5. Kontravarianter und kovarianter Vierervektor

Größe: px
Ab Seite anzeigen:

Download "ART 5. Kontravarianter und kovarianter Vierervektor"

Transkript

1 ART 5. Kontravarianter und kovarianter Vierervektor Wolfgang Lange. Oktober 205 B. Mathematische Hilfsmittel für die Aufstellung allgemein kovarianter Gleichungen. Über 5. Kontravarianter und kovarianter Vierervektor Wir beginnen mit den Bemerkungen am Schluss von Einsteins Die Grundlage der allgemeinen Relativitätstheorie 5. Diese Schreibweise der Indies und die bekannte Matrienrechnung wird bereits hier angewendet.

2 W.Lange - ART 5. Kontravarianter und kovarianter Vierervektor. Oktober 205 Einstein verwendet den Begriff Linienelement unterschiedlich. Hier ist es ein vierdimensionaler Vektor, der nicht mit dem später verwendeten Linienelement ds übereinstimmt. Gl. 5 ist ausgeführt für einen Wert σ mit d σ = ν d σ = T = d ν = σ d + σ + σ + σ, σ d und d = σ T d Damit werden für jedes σ die vier Differentiale in der bekannten Matrischreibweise als kontravarianter Vierervektor d d d d d d 3 d = d = Λd, T d Λ = T = µ d. 2

3 W.Lange - ART 5. Kontravarianter und kovarianter Vierervektor. Oktober 205 oder als bekannte Matri mit Zeilen- und Spalteninde Λ µν. Die Auflösung dieser Transformation erfolgt durch linksseitige Multiplikation d Λ d = Λ Λd = Id = d, Statt der beiden Spaltenvektoren der Differentiale kann man beliebige Größen verwenden und kommt auf ein Gleichungssstem bw. die Tensorgleichung 5a A σ = A ν = ν= ν= σ d d 2 d 3 d A ν σ A ν a = T a = Λa, A σ ν A σ a = σ. T a = Λ a. Die Spaltenvektoren des klassischen Gleichungssstems nennt Einstein kontravariante Vierervektoren mit dem ugegörigen Transformationsgeset. Dieser Abschnitt ist nur mit der Matrienrechnung u verstehen. Zwei Vektoren a und b sind so u multipliieren, dass das Ergebnis ein invarianter Skalar wird. Das geht nur mit der Transposition des 3

4 W.Lange - ART 5. Kontravarianter und kovarianter Vierervektor. Oktober 205 einen Spaltenvektors in einen Zeilenvektor und wegen des kontravarianten Tensors B σ b = Λb lautet die Beiehung a T b = a T Λ Λb = a T Ib = a T b. Der kontravariante Vektor wird B σ = ν= und der kovarianten Vierervektor mit unterem Inde Das Produkt ist Das führt uns u dem Sat: A σ = a T = a T Λ = A σb σ = ν= B ν A ν σ ν, und a = Λ T a. σ σ A ν ν B ν σ = A ν ν B ν. Das skalare Produkt weier Vektoren eines Zeilenvektors mit einem Spaltenvektor ist invariant gegenüber linearen Transformationen, wenn der Spaltenvektor mit einer Transformationsmatri Λ linksseitig kontravariante Transformation und der Zeilenvektor rechtsseitig mit der Inversen Λ der verwendeten Transformationsmatri kovariante Transformation multipliiert werden. Beide Vektoren werden kontragredient ueinander transformiert. Das ugehörige Differential ist Alle vier gestrichenen Differentiale sind d d 2 d 3 d d σ σ = d + d σ d σ d σ, d σ = d = d Wir haben in dem kovarianten Differential d σ einen kontravariantrn Ableitungsvektor T = T 2 3 T = = und die gesamte Matri wird ein dadisches Produkt oder ein Tensor der Stufe 2 T = Λ = T = µ = Λµ ν..,

5 W.Lange - ART 5. Kontravarianter und kovarianter Vierervektor. Oktober 205 Offensichtlich sind in 7 die Indies der partiellen Ableitung vertauscht worden Druckfehler oder sstematischer Fehler?. Danach ist der kovariante Tensor A σ a T ein Zeilenvektor und der kontravariante Tensor B σ b ein Spaltenvektor. Das Besondere an den beiden behandelten Transformationen ist die Gegenüberstellung der Zeilen- und Spaltenvektoren a T = a T Λ, b = Λb. Durch Transposition der rechten Gleichung ergibt sich die Paarung a T = a T Λ, b T = b T Λ T. Beide Zeilenvektoren werden mit Λ und Λ T kontragredient ueinander transformiert, d.h. die kovarianten und kontravarianten Vektoren transformieren sich kontragredient ueinander. Das Wort Umkehrung bedeutet also Kontragredien. Bianchi [] verwendet dafür das Wort reciprok. Kovarianter und kontravarianter Vierervektor sind als Zeilen- bw. Spaltenvektor die Grundlagen der Matrienrechnung. Davon weicht die Tensoralgebra in einigen Stellen ab, weil das Transformationsverhalten um Erreichen einer Invarian normaler Vektorprodukte dient. Dennoch gibt es die Invarian bei quadratischen Formen auch ohne die genannten Bedingungen. Anmerkung: Der kontragredienten Transformation bediente sich Lorent [2, 3] im Zusammenhang mit der Galilei-Transformation 0 0 p 0 0 p t 0 0 p t p p p p 0 0 p 0 0 p t + p t + p t + p t t Der Ausdruck = t t p p p ist darin der Ansat für die Ortseit. v + p v + p v + p t. Literatur [] Bianchi, Luigi: Vorlesungen über Differentialgeometrie.. Teubner, S. [2] Lorent, H.A.: La théorie électromagnétique de Mawell et son application au corps mouvmants. E. J. BRILL, 892 [3] Lorent, H.A.: Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern. E. J. BRILL,

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Mathematische Grundlagen der Relativitätstheorien - Vektorräume -

Mathematische Grundlagen der Relativitätstheorien - Vektorräume - Mathematische Grundlagen der Relativitätstheorien - Vektorräume - Wolfgang Lange 25. September 24 Vektorräume. Allgemeine Koordinaten Allgemeine Koordinaten sind Orientierungswerte in beliebigen Systemen.

Mehr

Mathematische Grundlagen der Relativitätstheorien - Lineare Algebra, Invarianten -

Mathematische Grundlagen der Relativitätstheorien - Lineare Algebra, Invarianten - Mathematische Grundlagen der Relativitätstheorien - Lineare Algebra, Invarianten - Wolfgang Lange 20. Oktober 204 Lineare Algebra. Determinanten Determinanten sind quadratische Gebilde der Gestalt a a

Mehr

Seminarvortrag. Spinoren der Lorentzgruppe

Seminarvortrag. Spinoren der Lorentzgruppe Seminarvortrag Spinoren der Lorentzgruppe Juli 2003 Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Tensoren und Spinoren........................ 3 1.2 Lorentzgruppe............................ 3 2 Spinoren 4

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Lorentz-Transformationen und Invarianz

Lorentz-Transformationen und Invarianz Lorentz-Transformationen und Invarianz Wolfgang Lange. April 0 Einleitung Bei der Suche nach einer allgemeinverständlichen Erläuterung von Transformationen und Tensoren fand ich die besten Erklärungen

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

1.5 Relativistische Kinematik

1.5 Relativistische Kinematik 1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das

Mehr

Theoretische Elektrotechnik

Theoretische Elektrotechnik Theoretische Elektrotechnik Band 1: Variationstechnik und Maxwellsche Gleichungen von Dr. Roland Süße und Prof. Dr. Bernd Marx Technische Universität Ilmenau Wissenschaftsverlag Mannheim Leipzig Wien Zürich

Mehr

Kapitel 4. Lorentz-Tensoren

Kapitel 4. Lorentz-Tensoren Kapitel 4 Lorentz-Tensoren Nach Möglichkeit versucht man, die Gesetze der Physik so aufzustellen, dass sie in allen Inertialsystemen die gleiche Form haben, also forminvariant unter Translationen und Rotationen

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

7.6 Relativitätstheorie und Elektrodynamik

7.6 Relativitätstheorie und Elektrodynamik 7.6. RELATIVITÄTSTHEORIE UND ELEKTRODYNAMIK 77 7.6 Relativitätstheorie un Elektroynamik Für eine Beschreibung von Kenngrößen in er Natur, ie mit er speziellen Relativitätstheorie verträglich ist, ist es

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

V.2.3 Folgerungen. V.2.4 Minkowski-Raum. V.2.3 a. Zeitdilatation V.2.3 b. Längenkontraktion Aufgabe 30 V.2.3 c

V.2.3 Folgerungen. V.2.4 Minkowski-Raum. V.2.3 a. Zeitdilatation V.2.3 b. Längenkontraktion Aufgabe 30 V.2.3 c 98 Mathematischer Apparat der Speziellen Relativitätstheorie V.2.3 Folgerungen V.2.3 a Zeitdilatation V.2.3 b Längenkontraktion Aufgabe 30 V.2.3 c Additionstheorem für Geschwindigkeiten Aufgabe 34 V.2.4

Mehr

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg Geometrie der Maxwell-Theorie Max Camenzind Senioren Uni Würzburg Die Themen Die Geometrisierung der Speziellen Relativität durch Hermann Minkowski im Jahre 1908. Die kausale Struktur der RaumZeit. Die

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Vektorraum. (λ 1 + λ 2 ) v = λ 1 v + λ 2 v. Vektorraum 1-1

Vektorraum. (λ 1 + λ 2 ) v = λ 1 v + λ 2 v. Vektorraum 1-1 Vektorraum Eine abelsche Gruppe (V, +) heißt Vektorraum über einem Körper K oder K-Vektorraum, wenn eine Skalarmultiplikation definiert ist, die (λ, v) K V das Produkt λ v V zuordnet und folgende Eigenschaften

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation 10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation (a) Inertialsysteme und das spezielle Relativitätsprinzip Es gibt unendlich viele Inertialsysteme (IS), die sich relativ

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Sechste Vorlesung: Gravitation II

Sechste Vorlesung: Gravitation II Sechste Vorlesung: Gravitation II 6.1 Das Einstein-Hilbert-Funktional 6.2 Relativistische Elektrodynamik 6.3 Spurfreiheit des Energie-Impuls-Tensors T αβ em * 6.1 Das Einstein-Hilbert-Funktional Wir wollen

Mehr

1.3 Transformation der Geschwindigkeit

1.3 Transformation der Geschwindigkeit [Griffiths 1.1.3, 1..1] 1.3 Transformation der Geschwindigkeit Seien S und S Inertialsysteme. S bewege sich gegenüber S mit der Geschwindigkeit V = V e 1. Es sei wieder β = V/c, γ = 1/ 1 β. Für ein Ereignis

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil 3 SIEGFRIED PETRY Fassung vom 5. Juni 06 I n h a l t Transformation der Komponenten eines Vektors bei Basiswechsel. Einführung einer neuen Basis. Transformation der

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

02. Vektorräume und Untervektorräume

02. Vektorräume und Untervektorräume 02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Die Spezielle Relativitätstheorie

Die Spezielle Relativitätstheorie 2 Die Spezielle Relativitätstheorie Mithilfe des berühmten Michelson-Morley-Experiments wurde entdeckt, dass die Geschwindigkeit des Lichts in allen Inertialsystemen den gleichen Wert hat. 1 Einstein war

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 1 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Lineare Algebra 1. . a n1 a n2 a n3 a nm

Lineare Algebra 1. . a n1 a n2 a n3 a nm Lineare Algebra 1 Lineare Algebra Hilfreiche Konzepte zur Vereinfachung der Darstellung und Berechnung stellt die lineare Algebra bereit. Auch wenn sie nur an wenigen Stellen des Buches verwendet wurden,

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Tensoren auf einem Vektorraum

Tensoren auf einem Vektorraum ANHANG A Tensoren auf einem Vektorraum In diesem Anhang werden einige Definitionen und Ergebnisse betreffend Tensoren ohne Anspruch auf mathematische Strenge zusammengestellt. Das Ziel ist, den modernen

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 32 8 Lineare Algebra: 1 Reelle Matrizen Grundbegriffe Definition

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Tensoren. Duale Basis ermitteln Zusammenhänge

Tensoren. Duale Basis ermitteln Zusammenhänge Tensoren Koordinatentransformation Metrische Matri (Metrischer Tensor Parallelogrammfläche Drehung um den Ursprung Orthogonale Matri Koordinatentransformation bei einer Drehung Tensoren in der Phsik Tensoren

Mehr

Nun erinnern wir an die Konvention, dass die Komponenten von v V (bzgl. B) einen Spaltenvektor. v 1 v 2 v =

Nun erinnern wir an die Konvention, dass die Komponenten von v V (bzgl. B) einen Spaltenvektor. v 1 v 2 v = eim Rechnen mit Linearformen in V zusammen mit Vektoren in V ist es von Vorteil, mit der Dualbasis zu einer gewählten asis von V zu arbeiten Hierzu einige Erläuterungen Wie ede asis von V kann die Dualbasis

Mehr

L5 Matrizen I: Allgemeine Theorie

L5 Matrizen I: Allgemeine Theorie L5 Matrizen I: Allgemeine Theorie Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem y + z = 1 + y z

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Dirac Gl. relativistischer Fall

Dirac Gl. relativistischer Fall Dirac Gl. relativistischer Fall Freie Dirac Gleichung ohne Feld: ħ = c = iħ Ψ t α = Lösungsansatz: Ψx = = [ α p + mβ]ψ σ, β = σ 2 2 Pauli Matrizen ϕp χp pos. Energie e ipx iet p x neg. Energie Lösungen

Mehr

Allgemeine Transformationen bei Levi-Civita - Zur Diskussion der Gleichzeitigkeit -

Allgemeine Transformationen bei Levi-Civita - Zur Diskussion der Gleichzeitigkeit - Allgemeine Transformationen bei Levi-Civita - Zur Diskussion der Gleichzeitigkeit - Wolfgang Lange 3. November 2017 In der Reihe Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

Aufgaben zu Kapitel 22

Aufgaben zu Kapitel 22 Aufgaben zu Kapitel Aufgaben zu Kapitel Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij

Mehr

L5 Matrizen I. Matrix: (Plural: Matrizen)

L5 Matrizen I. Matrix: (Plural: Matrizen) L5 Matrizen I Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen (spezielle

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Dreizehnte Woche, 272014 9 Der Gauß-Algorithmus (Ende) estimmung des Inversen einer

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

Ergänzung zur Vektorrechnung

Ergänzung zur Vektorrechnung Ergänzung zur Vektorrechnung Fakultät Grundlagen Juli 5 Fakultät Grundlagen Ergänzung zur Vektorrechnung Übersicht Verallgemeinerung des Vektorbegriffs Verallgemeinerung des Vektorbegriffs Fakultät Grundlagen

Mehr

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik Formelsammlung für den Teilbereich Zustandsraumdarstellung der Vorlesung Einführung in die Regelungstechnik Diese Formelsammlung ist ein Auszug aus der Formelsammlung zur Systemtheorie-Vorlesung von Matthias

Mehr

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G JoachimlRisius Vektorrechnung Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G Inhaltsverzeichnis 1. Darstellung von Punkten durch Koordinatensysteme 11 1.1. Die

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

Spezielle Relativitätstheorie. Nicolas Borghini

Spezielle Relativitätstheorie. Nicolas Borghini Spezielle Relativitätstheorie Nicolas Borghini Version vom 7. Mai 2017 Nicolas Borghini Universität Bielefeld, Fakultät für Physik Homepage: http://www.physik.uni-bielefeld.de/~borghini/ Email: borghini

Mehr

Formelsammlung Klassische Feldtheorie

Formelsammlung Klassische Feldtheorie Formelsammlung Klassische Feldtheorie 6 (Pseudo-)Orthogonale Gruppen 1. Definition Gruppe: Menge G mit einer Operation (g 1,g 2 ) G G g 1 g 2 G (Multiplikation) (1) die folgende Bedingungen erfüllt: Assoziativität:

Mehr

Höhere Mathematik 1. Lösungshinweise zu den Hausaufgaben: 3. Gruppenübung zur Vorlesung. Wintersemester 2016/17

Höhere Mathematik 1. Lösungshinweise zu den Hausaufgaben: 3. Gruppenübung zur Vorlesung. Wintersemester 2016/17 T. Conde, J. Meinel, D. Seus, S. Thelin, R. Tielen, A. Wünsch. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester 6/7 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 7. Lineare

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij t ji, r ijj, s ij t jk

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig

Mehr

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren.

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - deutsche Wikipedia - Spacetime and

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.4 2009/05/28 16:37:16 hk Exp $ 7 Vektorräume und Körperweiterungen Bisher haben wir zwar die Existenz und Eindeutigkeit von Tensorprodukten bewiesen, und auch einige ihrer Eigenschaften

Mehr

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012 Tensoren Oliver Jin, Florian Stöttinger, Christoph Tietz January 24, 2012 Inhaltsverzeichnis Einleitung Einstein sche Summenkonvention Ko- und Kontravariant Stufen Transformationsverhalten Symmetrie Tensoralgebra

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Ein Skript für Lineare Algebra I und II

Ein Skript für Lineare Algebra I und II Ein Skript für Lineare Algebra I und II Chris Preston 2003/04 1 2 Dies ist ein Skript für die Vorlesungen Lineare Algebra I und II. Die Texte von Jänich [5] und Fischer [3] haben die Darstellung beeinflusst.

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr